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A PRIORI BOUNDS AND NECESSARY CONDITIONS
FOR SOLVABILITY OF PRESCRIBED CURVATURE EQUATIONS

Neil S. Trudinger

We prove an estimate for the magnitude of solutions of the prescribed higher
order mean curvature equations and examine the necessity of our conditions.
Our results include well known sharp estimates for the mean and Gauss curva-
ture and our previous estimate for scalar curvature as special cases.

In the article [12], we formulated and proved in the scalar curvature case
m = 2, an estimate for the magnitude of classical solutions of prescribed curva-
ture equations of the form

(1) Hm[u] =%, m=1,.,n,

in domains 2 in Euclidean n space R", where H In[u] denotes the m mean cur-

vature function of the graph of the function u € Cz(ﬂ) and 9 is a given non—
negative function on . In this paper we establish such a result for the remain-
ing cases and deduce from it, with aid of our first derivative estimates in [13]
and the recent second derivative estimates of Caffarelli, Nirenberg and Spruck
(3], Ivochkina [6,7], sharp existence theorems for the classical Dirichlet problem
for equation (1), analogous to those of Serrin [11] for the mean curvature case,
m = 1, and Trudinger and Urbas [15] for the Gauss curvature case, m = n. By
relaxing our hypotheses, we also infer by approximation, existence theorems for
weak (or viscosity) solutions, as introduced in [13].

We recall from [12], that if &= (k),...,s;) denotes the principal curvatures

of the graph of u, S, then H_ isgiven by
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TRUDINGER

(2) H [w]=H_[S]=H_(x)= Enil...nim .

where the sum is taken over all increasing m-tuples, (il""’im) € {1,4:,0) -
Adapting the terminology of [3], we call a function u € Cz(ﬂ) , H ~admissible
(or simply m admissible) if the principal curvatures x = (nl,...,/sn) of its graph

. . - . n .
S lie in the closur_e Km of the convex cone K = = Km,n in R™, given by
— n 3 —
(3) Km,n = {n €eR I Hj(fc) >0,j= 1,...,m}
= {ne R" | H (s+n)2H_(x)>0 Ve K+} ;

where K' = K is the positive cone in R™ ; (see [3],[6],[8]). Clearly the opera-
tor Hm is degenerate elliptic with respect to admissible functions, but also gl—
liptic if their graph curvatures lie in Km . The cone Km may also be charac-
terized as that component of the positivity set of the function H containing

K'[3]. We shall also refer to the boundary 0 ¢ c% as m admissible if its
principal curvatures &’ = (ni,...,;sl’l_l) lie in Km a1 - Similarly to [12], we

shall assume that € is bounded, with boundary 0% € c? and that P is a
bounded, non—negative integrable function on 2 satisfying

(@ m [y ¢ a0 [B_ o8],
E O

for all subdomains E c @ with (m-1) admissible boundary JFE € c? , and for
some positive constant x . When m = 1, we set H0 = Hm—l =1, K0 = Ko n
=R" . We shall also assume here that A9 itself is (m-1) admissible, whence

(4) also holds for E = o0 .

Theorem 1. Let u € C°(TN) n Cz(ﬂ) be an admissible solution of the differen-
tial inequality

(5) H [u<y

in Q. Then we have the estimate
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TRUDINGER

(6) infu-C < u < sup 9
N i Y]

in Q, where C 1is a positive constant depending only on n, m, x, sup ¥ and 2.
Q0

Proof of Theorem 1. The upper bound in (6) is an immediate consequence of
the assumed m admissibility of u. To get the lower bound we shall employ,
as in [12], a method based on Moser iteration but instead of using the full
strength of the special Sobolev type inequality, [12], Lemma 2, we make do
with a relatively simpler Poincaré type inequality. The details of the present
proof will be technically more intricate than in [12]. We adopt similar notation
to [12], so that if a = [aij] is an n x n matrix, we let

(7) A (a) =[a]
denote the sum of its m x m principal minors, (with A = 1), and set
. 0A
(5 ALIE) = —2a).
da . .
1)

For graphs S of functions ue€ 02(9) , we compute curvature with respect to
the downwards directed normal,

9) (vwg,) = @82, v = 14]Du)2

The principal curvatures are then the eigenvalues of the Jacobian matrix Dv,
so that we have the formulae,

(10) H_[u]=H_[S]=[Ds]_=A_(Dv).

For boundaries JE € C2 of domains E R , we let 7 denote the unit outer
normal to JE with Kyrenbip_q the principal curvatures of JE given by the

eigenvalues of D, excluding zero, and
(11) H_[6E] = [D1],, -
If g is any continuously differentiable vector field on @, we can write [Dg] |

in the divergence form
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1 .
(12) AglD,] = 2 Djfa e,
while, as proved in [12],

(13) A (De)g;g; = Ig1™ DEly, ; »

whenever g# 0, § =g/|g| . When we substitute g = v in (13), we obtain

(14) AgluDa = [J_‘;L] C,,[u]
where

2- :
- " | Du] m[Diju—'yi'ykaju]m_1 if |Du| #0
15 C_[u] =
m if Du=0
and v = Du/|Du| . Since H_ is degenerate elliptic with respect to u, we
have C_[u] 20.

We now proceed as in [12] by replacing u by u-infgqu,sothat u20 on
o and denote Q = {u<0}C QM. Integrating (14) over Q and using
(12), we then obtain

m
(16) [ o220 e p=m [ f-uy
1, L

for any fe Cl([R) , 20, 1(0) = 0. Choosing initially the function f(t)=t,
we conclude, precisely as in [12], the preliminary estimate

% J;l O[D 7]m—1

IA

(a7) fn c_fu]
. (o]

m
¢ x(m-1) j;?ﬂ Hm—2[mo]
0

where [D9] _, is defined to vanish when Du=0. (Note that by Sard’s
theorem, there is no loss of generality in assuming dQ - c? isa non-degene-

rate level surface of u). The last inequality in (17) follows by application of
[12], Lemma 3 to the approximations
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76:%, Ve=’/ 52+|Du|2, €>0,

€
noting that the m admissibility of u implies the non-negativity of [D7€] -

for 0< e< 1. Next, forany € (0,1), we may estimate from (16),

(18) J;Du|>6f,(_u)cm[u] <m o™/25m J‘;of(—u)q/).
But we may also estimate
(19) fl RSO RY. [ v,

0o

$ma f £ (-u)Cppy 0]

-mf%ﬁwn

provided fe€ C2([R+) , £/(0) = f(0) = 0 . To proceed further we use the following
Poincaré type inequality.

LEMMA 2 For any vE€ C2(Q) nC°() with v=0 on 8Q, Cplvl20 in

Q , we have
m—1)R
(20) [ et <221 [ €

where R = %d.ia,mﬂ and 1 <m<n-1.

The proof of Lemma 2 if provided at the end of that of Theorem 1. We shall
also need the follwing Sobolev type inequality which arises on combination of
Lemma 2 and the usual Sobolev inequality, ([5], Theorem 7.10),

(21) v, f c v
n—l m—-—l

where the constant ¢~ can be taken to be the isoperimetric constant (nwn)—1

Returning to the proof of Theorem 1, we combine (19) and (20) to estimate
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f'(-u)C_, [u] € LI:‘I) J;l of’ (-u)C_, [u]

(22) [

|Du|<é (n-m

provided m < n. Selecting the same function f as in [12], namely
(23) f(t) = (1+t)P-p-1, p>1 ,

we then obtain from (18) and (22), for w=1-u,
@) of Hlac o[ whsssf )
) 0 0

where C dependson n,m and R . Choosing

(25) 5= ?U(ZIFH ,
we then deduce from (24) and (17),
(26) J ottt = o (11l

<cg™ fn (1+9)f
where now C dependson n,m and Q G Applying inequality (21), we obtain
(21) il , < o[ ()

2T s

and consequently, forany 4> 1,
(28) Wl < (O™ Pl g,

n-1

where now the constant C depends on n, m,supy and € - Successive ite-
ration of (28), from [ = n/(n-1), then yields our desired estimate
(29) sapw < Clw| |

n-1
< C,
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by virtue of (17) and (21). This completes the proof of Theorem 1, (at least in
the case 5= Q), except for Lemma 1 which we now treat.

Calculus on hypersurfaces

Lemma 1 follows from and extension to higher order curvatures of the basic
integration formula for hypersurfaces ([10],(5],Lemma 16.1). Let # be an open
set in R™ and suppose we have a C2 hypersurface S in 4 which is repre-
sented as the level set of a function ¢ € 02(11) so that we can take |D¢| #0,
¢ =0 on S.The tangential gradient operator on S is defined by

(30) g = Dg - (v Dg)y

- B

is the unit normal to S (in the direction of increasing ¢). It follows that the

forany ge€ Cl(ll) , where

matrix 67 is symmetric on S with eigenvalues Ky 0 where Koy

Fp-1 Fp-1
are principal curvatures of S (with respect to 9), so that we have the follow-
ing formulae for the higher order curvatures of S,

(31) H_[S]=[6]=A(67) -

LEMMA 3 Letting dA denote the area element in S and Hrinj[S] = Arinj[&y],

we have
(32) J; Hl;lajg dA=m J; gH 7 dA

forall g€ C(l)(ll) .

Proof We first establish the divergence formula,
ij kl
(33) 5jHILJ = Hm—1(51'7j)(6k7j)7i .

To prove (33), we make use of the recursion formula,

ij_ ij . Aik
(34) A=A ¢ a3Am1
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so that, with a = év, we have

kl&

ij_
(35) H =My 60 n — By 050 - 5(Hm D&%

If we assume that (33) is valid when m is replaced by m-1, then the last term
in (35) vanishes and using the commutator formula [10],

(36) 66— 68, = (%8 — 18 M)y »
we thus obtain
(37) 6HL) = HIX (88 - 8.8m)
Hrinél(’yiéjfrl UL
=B}k mLY U

whence (33) follows for all m > 1 by induction. To derive (32), we now inte-
grate (33) over S, thereby obtaining from [5], Lemma 16.1, (which corresponds
to the case m = 1),

ij _f ] f ij,

(38) fH 6 S(JJHm g dA + SHHm 78 dA
=J;(HHm_1 m- 16 'Yk '7k)g'7 dA
=mjs;ng'yi dA .

To derive Lemma 2, it suffices to assume that S is compact and select
(39) E=X—V;
for some fixed y € & , to obtain

J; H X8 - A = _f; H 7(x-y)dA

and hence
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(40) (n- m)J; H ,dA=m J; H_ 7(x-y)dA
<mR j; |H_| dA

by appropriate choice of y. Finally by taking S to be a 02 level set of the
function v in Lemma 2, we conclude by the co-area formula [4],

(41) (n-m+1) J;l Cpalvl = (m—l)J;l Cm[v]l—)li-lg—J:—Tl)—
< (mRJ Chlol

whence Lemma 2 follows. Note that by Sard’s Theorem [4], almost all levels
sets of v are C2 provided v € C(2) so strictly speaking, we should pass to
our condition v € 02(9) by approximation.

The proof of Theorem 1 is thus complete in the case when ~ 1, or equi-

valently when 0Q is a level set of u. Note that our condition Hm_l(aﬂ) >0
becomes redundant in this case. To complete the proof in general we still need

to estimate the term f H_o[3Q ] occuring in the estimate (17), when Q is
6[!0
replaced by o0 It is convenient for us to defer this step until after our exis-

tence considerations. We observe here that Lemma 2 guarantees our condition
(3) is non void in that it will certainly be satisfied if sup®y is sufficiently small.

We are also indebted to Robert Bartnik for providing an earlier derivation of
the key inequality (40) from the first variation formula for the integral

L H dA

rather than our integration formula, Lemma 3. For a compactly supported vari-
ation 7, Bartnik’s formula asserts

J.LHm—ldA = mLHm(n,'y)dA,

whence (40) follows again, with the choice n=g.
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Application to the Dirichlet problem

Recently Ivochkina [7] has succeeded in obtaining global second derivative
estimates for solutions of the prescribed m curvature equation (1) under geo-
metrically natural conditions, thereby extending earlier work of herself [6] and
Caffarelli, Nirenberg and Spruck [3] for the case of uniformly convex domains
and constant boundary values. The incorporation of our Theorem 1 here and
our gradient estimates in [13] with these second derivative estimates yields cor-
responding existence theorems for the classical Dirichlet problem for equation
(1). Accordingly let us now assume 00 € ¢l , BE C3’1(ﬁ) , YE Cl’l(ﬁ) )
¥ > 0 in {1, together with (3) and the geometric condition:

(43) H_[60]2¢ onon,

with 0 assumed m admissible, the latter being redundant if 4Q is connec-
ted.

THEOREM 4. Under the above hypotheses, there ezxists a unique, admissible,
classical solution of the Dirichlet problem,

(44) H [u]=9 inQ, u=g on 0.

Theorem 4 follows by combination of the above mentioned solution and deri-
vative estimates with the second derivative Holder estimates of Krylov [9] and
the method of continuity as described, for example in [5]. By virtue of the
Schauder theory [5] the solution u € C3’a(ﬂ') for any a < 1. When the boun-
dary values g are constant we need only assume O € ¢l , BE Cz’l(ﬂ)
with resultant solution u € C3’a(9) n Cz’a(ﬂ') for any a<1, [7]. When we
further reduce the above smoothness and positivity hypotheses, we obtain the
existence of weak solutions in the viscosity sense [13]. These results may be
achieved by direct approximation from Theorem 4, rather than through the uni-
formly elliptic regularization approach of [13]. To formulate such results, let us
first recall from [13], that a function u € C°(R) is called a viscosity solution of
equation (1) if:

(i) forany p€ Cz(ﬂ) and local maximum x of u- ¢, we have

H_[6l(x,) 2 ¥x_)
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(ii) for any admissible ¢ € Cz(ﬂ) and local minimum of u - ¢, we have

H,_[#l(x,) ¢ Wx)

We now assume only Q€ C2, ge c°(aq), ¢/™ e c%i@n n cli(a),
v>0 in Q, together with (3) and (43). Then, also utilizing the interior gra-
dient bounds of Korevaar [8] and the stability of viscosity solutions under uni-
form convergence [13], we get a weak existence theorem.

THEOREM 5. Under the above hypotheses, there ezists a unique viscosity solu-
tion ue€ Co(ﬁ) of the Dirichlet problem (44), which is locally uniformly Lip-
schitz continuous in Q. If g€ Cl’l(ﬁ) , then u € Co’l(ﬂ) .

The uniqueness in Theorem 5 follows since viscosity solutions can be approxi-
mated by classical solutions using Theorem 4; (see [13], Corrigendum). Note
that all the above theorems extend to embrace equations of the form

(45) H[1] = ¢(xu),

provided % is monotone increasing with respect to u, and in (3) and (43),
¥(x) is replaced by ¥(x,inf g) , ¥(x,g(x)) respectively.

We observe also that only the already proven case of Theorem 1 when u is
constant on 0§ is necessary to derive Theorems 4 and 5 as the solutions so ob-
tained in these cases will provide lower bounds for solutions in the general case.

On the necessity of condition (3)

Let ueC3(TT) satisfy equation (1) in Q. By the Reilly formula ([12],
Lemma 3), inequality (3) is satisfied whenever E = {u <t} for any teR,
and

(46) 1-x = s;})p [1 —J%]—;—IE] ;

To get a similar inequality for other sets E , we first observe that we can find a
further admissible function i € Cz(ﬁ) with

(47) Holi] = > ¢

in {7. To see this, we assume (without loss of generality) that dist(0,Q)> 1
and set
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(48) i=u+7,

where 7 is a uniformly convex function given by

(48) m(x) = 1 exp 3A(|x| 2 -d%), d=sup|x],
x€f}

and A is a positive constant to be determined. Writing

(50) 1 /™[] = F(Du,D%) ,

for admissible u € Cz(ﬂ) , we then have
(51) B/ ™G] - 5/

= F(Du+Dn,D2u+D2n) - F(Du+D1],D2u)
+ F(Du+Dn,D2u) - F(Du,D2u)

> F(Du+Dy,Dy) — ¢, | Dy

> c,(detD?p)' /™ ~ ¢ | Dy

using the concavity and homogenity of F with respect to D2u , where < and
¢, are positive constants depending only on n,m, |Du|  and |D2u| o BY
fixing the constant A appropriately in terms of ¢ 0 ¢ 0 and d, we infer
(41). Consequently, if JE € 02’1nKm , we can, (by Theorem 4), solve the clas-

sical Dirichlet problem

(52) H _[1] =9 inE,i=0ondE

forany 0<9< P in E, with Pe€ Cl’l(E) , sufficiently small on JE , since

the function @ will provide a lower barrier. Consequently by approximation,
we obtain inequality (3) for any EcQ with JE € c2n K and for some

fixed x dependingon n,m, |Du|0, |D2u|0.

The above considerations also facilitate the completion of the proof of
Theorem 1. For we observe that the inequality
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(53 w [ [p®)] <[ iy yto0

continues to hold when the function v is replaced by v =y €"+|Du|® for

any € > 0. Sending ¢ — 0, we may then deduce, back in (17),

(54) (m-1) fn D, < fn D,
0 0

3

o w2l

and this provides the missing estimate for f H_ _o[82] in inequality (17) in
b,
the proof of Theorem 1, when o€ 2,0 5 F Q2. It is easy to check that any

further dependence on QO in the remainder of the proof can be replaced by the
corresponding dependence on . Indeed our proof yields a constant C de-
pending on diam @ and f H_ _o[#1] (which is not as good as the proof in
1
[12] where C depends only on the perimeter of © in the case m = 2).
Condition (3) will be further examined, in conjunction with our treatment of

isoperimetric inequalities in [14] and its essential necessity will result as a by-
product of that work.
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