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REPRESENTATION OF A p-HARMONIC FUNCTION
NEAR A CRITICAL POINT IN THE PLANE

GUNNAR ARONSSON

A representation theorem is given for a p-harmonic function p(1 < p < 00)
in the plane, near a zero 2y of grad . The proof uses "stream functions”
and the hodograph transformation. The stream function of a p-harmonic
function is p’-harmonic, where ;1, + ;1,- = 1. In principle, all properties of
@ near 2o can be found from the representation. Some consequences are
derived here, e.g. the optimal Hélder continuity of grad ¢.

1. Introduction

Let © be a p-harmonic function, i.e. a weak solution of the equation
div(IVelr=2Vp) =0,

in a domain 0 C R2. This equation is the Euler equation for the functional
fn |Vp|Pdz. In this work, it is assumed that 1 < p < oco. It is well known
that there is an a > 0 such that o € C'® on any compact subset of 1. It
is also known that the set E of critical points (i.e. where Vp = 0) consists
of isolated points only, unless ¢ is a constant. Further, with the use of
elliptic regularity theory it can be proved that ¢ € C*, in fact ¢ is real
analytic, in 1\ E. However, the equation degenerates on E to some extent
(for p # 2) and the argument does not work there. In fact, it is known from
examples that ¢ need not be in C? near a point in E.

It has therefore been an open problem for some time to determine
more precisely the structure of ¢ near a critical point. We derive here
a representation theorem for o, valid in a full neighbourhood of a critical
point 2. In principle, all properties of ¢ near z, are determined by that
theorem (Th. 4).

The first step towards the representation is the observation (Th. 1)
that ¢ has a conjugate, or "stream” function 4, which is p’-harmonic,

where % + # = 1. Accordingly, the representation includes ¢ and %.

Some consequences of Theorem 4 are proved, and the following ones
should be mentioned here:
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a) determination of the ezact Holder exponent of Vi near z as a function
of p and the order N of the critical point 2z, (Theorem 5). By varying
N, this gives at once the best possible a above.

b) singular expansions of ¢ and ¢ near z (Theorem 6).

The derivation of the representation theorem is based on the hodograph
method in a convenient form, which uses a stream function ¢ (Theorem 3).
Accordingly, the representation has the form of a linear superposition

2 oo Zon (g’)
p(z) | = Z Am | Om(s")
b)) miEe (s
where ¢! = {/p, + tp,, and where each triple
Zm (")
oa(s’) |,
Yo (s')

considered separately, generates a (p, p’)-harmonic pair (¢, ¥p,) of a sim-
ple nature (namely quasi-radial), at least locally for ¢/ # 0.

2. Some background material

Consider a partial differential equation of the form

- (F(Vel) )
div (—— Vo) =0
Vol ’
where F(t) is strictly increasing. Let ¢ be smooth, with Vi # 0, and
satisfy the differential equation in a simply connected domain 2 C RZ.
It is then elementary to construct a ”stream function” v, attached to ¢,
which satisfies in {2 the reciprocal equation

FHVED o)
div (_IVW—V'p) =0.

In particular, the choice F(t) = tP~!, i.e. the p-harmonic equation, gives
F~1(s) = s*'~1, where p' = 527 Thus, ¢ is p'-harmonic, where -:;+‘% =1.
Details concerning this are found in [4], pp. 80-81. Before proceeding, it is
necessary to state the precise solution concept to be used in the sequel.

We now say that ¢ is p-harmonic in 2 C R™ if p € W,oP(02) and

/ |Vol|P~2Vp - Vndz =0
0

for all n € C}(N). Let 1 < p < oo, and let p be p-harmonic in 1 C R".
Then ¢ is locally in C1. See [10] or [16]. Further,  is real analytic away
from the zeros of Vip; see [15], p. 208. If n = 2, then it is known that the
zeros of Vp are isolated. For this we refer to [8], p. 8. We also refer to [1]
where a complete proof is given. Finally, this fact is also discussed in [5].

The above background motivates our
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Theorem 1. Let 1 < p < oo and let ¢ # constant be p-harmonic in a
simply connected domain @ C R%. Then there exists a p'-harmonic function
¥ € C'(0), where ; + . = 1, such that

Yz = —IVQOIP—Z‘Py (3)
Yy = |V¢|p_2Ws-
Both ¢ and ¢ have locally Holder continuous gradients. The zeros of Vi
and Vi are isolated in ). Streamlines of p are level lines of Y, and con-
versely.

The short proof is found in [4], p. 82.

Remark. The use of stream functions is, of course, classical. In this case
it apparently appeared first in [3]. There is a physical interpretation of the
p-Laplace equation in R? in terms of laminar pipe flow of so-called power-
law fluids, and this interpretation motivates the name stream function for
t. These aspects will be discussed elsewhere. Compare [9] and [18].

Some further analogies with complex analysis are derived in [5]. A
very useful fact is that the complex gradient ., — 1, of a p-harmonic
function is a quasi-regular function of z = z + ty. In particular, there is a
representation

oz —tpy =hox (4)
where h is analytic and x is quasi-conformal. Concerning this, we refer to
[5], [8] and [17].

The following result is important for the hodograph method. It is

proved in [5].

Theorem 2. Let ¢ be p-harmonic in a plane domain D. Assume that o is
not a linear function. Then there exists a set E of isolated points in D,
such that o is real-analytic and

PazPyy — Pay # 0
inD\E.

The proof uses the representation (4) and well-known properties of
quasi-conformal mappings.

The reader, who wants to know more about the background of this
work, is referred to 2], [5] and [14].

3. Hodograph transformation for the p-harmonic equation

The hodograph method is a classical technique, e.g. for linearizing poten-
tial equations in gas dynamics. The idea is roughly that %f and %’5 are
introduced as new independent variables. Good references for this method
are (7], pp.13-14, and [6], pp. 130-132. The method is well suited for han-
dling the p-harmonic equation in the plane, and a detailed exposition of
the procedure is given in [4], pp. 90-93. For convenience, we agree that
Theorem 3 here means Theorem 3 in [4]. It is further agreed that systems
(5)-(8) here refer to systems (a)-(d), respectively, in [4].
It is now assumed that the reader is familiar with [4], pp. 90-93.
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4. Derivation of the representation theorem

Let ©(z,y) be p-harmonic in @ C R%, and let 1 < p < o0, p # 2. Let
Vi =0 at the origin and ¢ # constant. Theorem 4 gives a "hodographic”
representation of ¢ and a stream function 1 near the origin. It will be
derived using a step-by-step construction.

4.1 A. Construction of the mappings needed
We start from the representation (4):

‘oz_ipy=h°x’

with h analytic and x quasi-conformal. Choose a neighbourhood U, of
z = 0 such that Up C 0 and Vyp # 0 in Up\{0}. It is no restriction to
assume that ﬂ;—’(ﬁ“’)‘d # 0 in Up\{0}, as follows from Theorem 2. Let Uy
be simply connected, so that a stream function ¥ exists in Uj.

Put ¢ = x(z) and ¢ = @, + 1y = (ho x)(2). Let x(0) = 0 and let
N be the order of the first nonvanishing derivative of h(¢) at £ = 0. Thus
N > 1. Put By(8) = {¢: || < 6}. Thereis a § > 0so that h(¢) = (G(¢))Y
for all £ € By(6), where G(§) is analytic and univalent. (See [13], p 148).
Assume that x(Up) D Bi(6). Put ¢' = G(€) and B'(p") = {¢' : |¢'| < '}
Choose p' > 0 so that G(By(6)) D B'(p').

Put U = (x! o G~)(B'(p’)). Then U C U, and (s + tpy)(2)
(G(x(2)))¥ for z € U. Thus ¢ = (¢')¥, and B'(p") is mapped onto B(p)
{¢ : |¢| < p}, where p = (p")V.

Clearly, © and v are well-defined, continuous functions of ¢’ € B'(p').

Introduce polar coordinates in the ¢- and ¢/-planes : ¢ = |¢|, § = arg¢,
¢’ =|¢'| and 6’ = arg¢’. Finally, put u = —loggq and ' = —log¢’. It is no
restriction to assume that ©(0) = ¢(0) = 0.

Definition. The number N is called the order of the critical point. It is
clearly independent of the choice of the representation ho x for the complex
gradient.

Figure 1 should make the situation clear.

4.2 B. Modified hodograph equations

By construction, z = 2(¢'), ¢ = p(¢’) and ¥ = ¢(¢’) are well-defined and
continuous for ¢! € B'(p'). Further, z = z(¢*) is one-to-one and the function
z(0) = 0. For 0 < |¢/| < p' we have z € Up\{0}, and thus Vi # 0 and
ﬂ.ﬁ?‘;:—‘:}d # 0. Fix any ¢}, 0 < |¢§| < p'. By restricting ¢’ and ¢, one
can define ¢/ = ¥/¢ uniquely, so that z = 2(¢) becomes well-defined and
smooth near ¢ = (¢5)". But this is the situation studied in Section 3 and
in [4]. There it was shown that ¢ = p(¢), ¥ = ¥(¢) satisfy the ” Chaplygin
system” (6), using polar coordinates g, 8:

Yq

P = qP"3
_ (p=1)¢s
«= Tt
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Figure 1

z-plane = physical plane

¢-plane = hodograph plane

(v, %)-plane = potential plane

(g, 0)-plane = polar hodograph plane
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With u = —log g, the system takes the form

ou=(p—1)elP~2# yy ©)
o = —elP=2)n Yu-
But 4 = N/, 8 = N@', and thus
v =(p—1)eNP-2u" g,
{ ou = (p . )-2) ' Ve (10)
Yo = —€ P L lﬁul.
Cross-differentiation and elimination gives:
-2
©woror + Tlp“:“l — Np___.lp“' =0
(11)

1 p—2
19t — U N——'- r=0.
'/’00 +p_1¢up+ p_]_'/)u

Clearly, these equations are valid for 0 < [¢| < p', in spite of the ”local”
derivation. Note that the last two equations have constant coefficients and
are formal adjoints of each other.

4.3 C. Finding a solution base

A sufficient class of solutions to (10) will be needed, along with expressions
for z(u',6'), or rather 2(¢',0'). Put ¢ = F(6’')G(p') and insert into the first
equation (11). This gives

F'+XF=0
G"-N(p-2)G'-(p—-1)NG=0

where ) is at our disposal.
The characteristic equation for G is

a®—N(p—2)a—(p-1)X =0.

It turns out to be sufficient to consider the cases A’ > 0 and a < 0.
Assume first that A’ > 0. Put A = F‘; >0and g = 5 > 0. Thus,

A2+ (-2 Mp-1)=0, (12)

and

1
B=3(Vp-22+4Ap-1)-p+2).
The following observations will be useful.

Lemma 1. Let p be fixed (1 < p < oo) and consider the function f = (),
for A > 0. It is positive and strictly increasing, (1) = 1, and for A > 1 one
has1 < () < A.

Proof: The last statement follows by verifying that %g <1lfor A > 1, and
the rest is trivial.
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The equation for ¢ is clearly satisfied by p = e=N24' sin /X (8’ — 6,),
for any 6. A corresponding ¥ is easily found from (10):

¥ = Ke v % cos\/_(a'—oo),

where K = > 1) = = K(X).

This pair (p, ) satisfies (10) for any A’ > 0 and any 6y. In terms of

(¢',0"), this is
o = (¢')¥P sin VX (8’ — 6o)
= (13)
V= K(q')’éx: cos V(8 — 6,).

Consider then the case A\’ = 0. Here, F(#') is linear and G(p') = A +
BeN(@=2u" — 4 4 B(¢')¥(2-7), (Recall that p # 2). Only the two pairs

{W —= (qI)N(2—p)
_ P2, (14)
Y= Nﬁo
and N y
p=N(p-2)
{w - (gy"e- o

will be needed, besides (13).
Formulas for z = z(q’,0’') connected to (13) will be needed later.

The relations g’ = ‘—: and a’ = %—; were found in (4], p. 90. Thus,

iNo'

the formula.s f—w and 22 5% ¢ '(_T’"_“ hold here, at least locally.

For the solutlon couple (13), the chain rule easily gives

% iV N (g N (B-1)- 1(cos\/_(ﬂ' 0)—1N—\/,\_sm\/—(0~—90))

and
% - Xe:'Na'(ql)N(ﬂ—l) :

(cos V(0 — ) - sin V(8 — oo))

( 1)\/_

for any X' > 0. The formula for suggests that

_ VN anet W1 (o ro )~ 2L i -
e ML ‘( VELE ~t0) \/_ e 00()12)

provided A’ > 0, A’ # N2. (Then § # 1.) Routine calcula.tlons, using (12),
show that (16) also gives the correct expression for 22 30 T X =N? 2, then
B =1and

83:,- = %;'Ne‘""‘). (17)
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Further formulas will not be needed. The expressions (13) and (16), for
varying A/, create ”base vectors” to be used in Theorem 4.

Remark: The pair (14) is the "hodographic image” of the pair

-3
_(r-1 )\
w—(p—2a

_p-2
e

for p > 2, and of the pair

p—1 ¥t
e=\a"

_p-2
¢—p_1(¢+1r)

for 1 < p < 2. It is understood in this interpretation that N6’ is replaced
by 8 and (¢')V is replaced by ¢. Analogously, the pair (15) is interpreted
as the hodographic image of

{w=@—nw+9

b=(p-2p2"

for p > 2, and of the pair

{¢=@-mw—9

Y=(2-p)P 2"

for 1 < p < 2. All this is easily verified. Clearly, these pairs (©(z), ¥(2))
can be seen as nonlinear analogs of ¢ = Relogz, ¥ = Imlogz, p = 2.

Finally, the case X' = N2, i.e. with # = 1 and the relation (17), is
related to p-harmonic functions of the form ¢ = €*f(y), constructed by
T. Wolff in [23]. We omit the details.

4.4 D. Preliminary determination of p(g',8') and v¥(¢',0').

By construction, ¢(q',6') and t(¢’,6') are 27-periodic in the variable ¢',
and belong to C* for 0 < ¢’ < p’. Put

(o', 0') = Ao + E A, sinm(8' —0,,)
m=1

¥(0',0') = Bo+ Y _ Bmcosm(d' —6,,).

m=1

We must show that Ag = By = 0.
Assume first that1 < p < 2.
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In the first formula (13), put A’ = m? for m = 1,2,3, ...,

B=Pm= (\/(p 2)2+4 (p—l) p+2)

and 6y = 0,,,. Consider the function

H(d,0') = Ao (g)m_p) + il An (%)Nﬂm sinm(¢’ — 0,,).

m=

Now (11) implies that

2 N(p—-2)+1
L(‘P)=¢0’0'+x§q:)1¢’q’q’+ (pp_l q'pg =0

in 0 = {(¢",6') | 0 < ¢’ < p'} and p € C(Q¥). Clearly, the same holds
for H(q',0'). Thus, L( — H) =0in ) and ¢ — H = 0 on 81’. Further,
@ — H is periodic with respect to 8’. If o — H # 0, then ¢ — H must
have an interior maximum or minimum, which is impossible, because of
L(p — H) = 0. See [19], p. 61. Thus ¢ = H in 0'.

Now ¥(p’,0*) = ¢(p',0* + 27) for any 6*, and it follows from (10)
that fo +27 o (-+)d6' = 0. Thus, 0.+2" g (p',0')d6' = 0, which gives
Ao = 0. Finally, ¢ is determined from (10) and the condition 4(0,68') = 0.

This clearly gives

- Am '3 !
d)(q’,ﬂ') — Z -(pl—)m . Km(q )-P'; Cosm(0 — 0m),
m=1

where K,,, = '(;TNZHFW' Using (12), one easily verifies that =N (p+Bm—
2). This gives the result

q,0’)—ZA ( )Nﬁmsinm(0'—0,,.)

m=1

p— oo NBm
w(ql,ol) _ N(q')N( 2) E Am ( ) cosm(f’ — ).

m=1

(18)

Note that lim p—"l} = -‘%TI— Further, N(p+Bm —2) > O for all m. Clearly,
m—+00
both series converge uniformly for 0 < ¢’ < p'.
Assume then that 2 < p < oo.

In this case one determines ¢ first, and then ¢, in a similar way. The

pair (15) is used instead of (14). The result is a representation of ©(¢’,8')
and (q',8') of the same form as above.
Remark. Since p(p',-) € C* and g is periodic in ¢, the Fourier coefficients
A = O(m~F) for any integer k > 1. Also, the growth of {8 }$° is quite
regular; %’3 — @ Because of this, convergence questions related to
(18) will not offer any difficulties.
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4.5 E. Completion of the proof
Put A’ = m? and 6y = 0, for m=1,2,3,.., m # N, in (16) and get
tm

Zm(qlaol) = N(ﬂm _ 1)

e'wa’(q')"(p"‘—l) (cos m(0' — 0,,) —

ﬂm

sinm(8’ —0,,)). (19)

Also recall equation (17) for the case m = N, X = N2, It is clear from
subsections C and D that the sequence {8, }{° is positive and strictly
increasing. Further, By = 1. Thus, the exponents N(B,, — 1) in (19) are
different and negative for m = 1,2,..., N — 1.

Take §; and &, such that 0 < §; < 6 < p’ and consider
o 9z
z(6g,0') = 2(61,0') = . b?(q’,O')dq'.

Equations (18) have the form

(g0 = Z om(d,0), ¥(¢,0) = E Ym(d',0").

m=1 m=1

3z __ 3z 83z 8 — Ym
Further, 3 a,,?f + Yy 31';1)7’ 3q’ Zm—l 3q’ and _'p' Z,.._1 Oq""

for §; < ¢' < &, with uniform convergence. Thus,
0z Opm . 0z 3bm\ _ =~ eN 9y, N Fy,
6q’ E (asp a¢ ' oy og ) Z;l((q')” a¢ ' ([@)eD o )

for 6; < ¢’ < 6;. Using (16), (17) and (19) this gives

ad . AN Ny,
aq' E (p’)"""' “ag Zm @O+ g

mgm
z(62, 0') - z(61,0') =
» ’ & FNON
= S e (B (60,0 - Zn(60,0) + N log 2.

mm=]
mEN

Write this relation as

2(62,0") — 2(6,,0') = Z +A"‘N -~o~+ E

(pl)N m=N+1
Here, the last sum contains positive powers of §; and 62, and is clearly

bounded when 6§ — +0. The first sum contains negative powers of 6;, 6
with different ezponents. The left-hand side is bounded when §; — +0. It
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follows immediately that A,, =0 for m =1,2,..., N. (Compare (19).) Let
6; — +0 and conclude that

ke A
z(6,0') = — 2 Z.n(63,0"). 20
6:0)= 3 (yism Imlsn?) (20)

This is clearly true for 0 < & < p' and all §'.

It only remains to show that Ay4; # 0. Let Ay be the first non-zero
element in the sequence {A;}3 - Choose f)s so that Aps > 0. Then (19)
gives, for the leading term in (20),

A
arg((p,)—:,’,,u Zp(5,,0")) = g + NO' — arg[cos M(8' — O) +
tNBm
M

Let 6’ increase from 0ps to ) + 27. Evidently, v(8') changes by N - 27 —
M - 2x. Trivial estimates show that

oo Am o m-.
5 iz 5 aniEye.
M M+1

+

sin M(0’ — 6ar)] = (0").

where C is independent of 6; and #’. But this quantity is clearly dominated
by half the leading term of (20) if 6; = 6, small enough. Therefore, also
arg z(6o, 8') changes by (N — M)2x, when 6’ increases by 2r. Now the
relation ¢/ = (G o x)(2) gives (N — M)2r = —2x. (Recall from subsection
A that G is univalent and x quasi-conformal.) Thus M = N + 1. The
results are collected in the basic theorem of this paper.

4.6 The representation theorem (Th. 4):

Consider a p-harmonic function © in a domain Q@ C R? containing the
origin. Let 1 < p < oo, p # 2, and o # constant. Suppose Vo = 0 at
z = 0 and denote by N the order of the critical point z = 0. Let w(r) be
that component of the open set {z € 01 : |Vyp(z)| < 7V}, which contains
the origin. A stream function ¢ ezists in w(r) if 0 < 7 < 79. Assume that
©(0) = ¥(0) = 0. Then there ezists a p’, 0 < p' < 19, such that ¢ and ¥,
considered on w(p’), admit a parametric representation as follows:

a) There exist scalar sequences {Am}fv,; ond {0,}%, satisfying
An+1 >0 and A,, = O(m™F) for any k > 0, such that the formulas

S.l - q:cio’ (ql > 0)

) Am
oz = Z ——W—mZm(q', 0’)

define a one-to-one bicontinuous mapping from {¢' : |¢'| < p'} to w(p').
Here, as before

Zn(d'\0) = 57— N0 ()N (Bm-1) [cosm(6' — 6,,) —

INfm . ’
- '—mi sinm(0' — 6,,)]
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and

ﬂm=%(\/(P—2)’+4%Z(p—1)—p+2).

The point ¢! =0 is mapped on z = 0.
b) The values of p and ¢ at z = 2(¢') are given by

o= 3 4, (%)wm sinm(0' — 0,,)

m=N+1
N oo '] N(P+ﬁm—2)
v=——(""e 3 4.= (1,) cosm(0' — O,).
p- m=N+1 m 4
The three series above converge uniformly for |¢'| = ¢' < p’. Further,

the value of Vi at z(¢') is (¢')V = (¢')¥eN?. Finally, observe that
Z:}’+1 A sinm(0' —0,,) is the Fourier series ezpansion of ¢ as a function
of 8" on the level curve V| = (p')V, i.e. on dw(p').

Remark 1: For any N = 1,2,3, ... and any Ay4+; > O there certainly
exists a p-harmonic function ¢, defined in @ = R?, corresponding to the
given Ay4+; and A,, = 0 for all m > N + 2. Such a function ¢ and the
corresponding 1y have been specified and studied in some detail. They are
of the form ¢ = r*f(4), ¥ = r'g(¢). We refer to (2], pp 138-150, [4] and
[5]. Observe the graphical presentations in (2], pp 154-156. (The integer
m there is the same as M = N + 1 here.) More information is given in
Lemma 2, Section 5C.

Remark 2: Clearly, the theorem is valid and simplifies greatly for p = 2,
although this case was avoided at some step in the proof (subsection 4C).
In this case, @ + i = f(z) is holomorphic and z is a holomorphic function
of ¢ = ¥1(2) = ¥/os — 1y near some point 2o, if zo is a zero of f’(z) of
the N-th order. Therefore, © + i3 is also a holomorphic function of ¢’ near
¢/ = 0 and can be expanded in a power series, just like z. The theorem
produces the correct formulas for this.
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5. Some consequences of the representation theorem
Certain implications of Theorem 4 deserve to be explained in some detail.

5.7 A. Behaviour of [Vip| near a critical point. Optimal exponents in
Alessandrini’s estimate.

Consider again the expansion z(¢’,8') = 3§ +1-- - The modulus of the
leading term is
AN+1 N+ 1 ) N(ﬁ'l+1—1) ’
e W O OME ~ ),
where 5
h(¥) = |cos(N + 1) — 'Nﬂi’:l sin(N + 1)9|. (22)

The expansion of z(¢',8') is uniformly convergent and the exponent N (8,,—
1) is positive and strictly increasing with m. One easily finds (see the
remark in subsection 4D) that

|2(d', 6))| c

q'-l-fl-lfo (q’)N(ﬂ"“—l) - (P')Nﬁnﬂ ’ h(ﬂ' - 0"'”‘)’

where C = fﬁﬁ@ﬁ% > 0 and the convergence is uniform in §’. But

(¢")N = g =|Vop| and (p')" = p, so that
(e8] _ ¢
q:]_l,l_e.o 'V¢|ﬁn+1—1 - pﬁu+1h(0 - 0N+1)' (23)
Corollary 1 of Theorem 4.
C1lz|Pw+17T < V| < Ca|z| P11 (24)

holds in a neighbourhood of the origin for suitable positive constants C;
and C,. Further,

ﬂN+1—1=% [\/(p—2)2+4(1+-}1v)2(p—1)—p . (25)

Recall that N(> 1) is the order of the critical point and 1 < p < oo.
(Obviously, the corollary is correct also forp=2.)

G. Alessandrini [1] has proved interesting lower bounds for the gradient
of a p-harmonic p in a domain 01 C R2, too lengthy to be stated here. The
bounds refer to a compact subset of 2, and each critical point 2; contributes
a factor |z — z|®™i, where C > 1 is a constant and m; > 1 an integer. It
follows from (24) that the best possible (i.c. smallest) ezponent attached to
a critical point of order N is Brpici

The following facts follow easily from (25): By+1(p) is a strictly in-
creasing function of p, for any fixed N, and strictly decreasing as a function
of N, for any fixed p. (It is understood that p > 1 and N > 1.)

Further, fn4+1(p) =2for N =1, p=2and for N = 2, p = 9. Finally,
lim fB4(p) = 4. It follows that By 41(p) > 2if and only if N =1, p > 2
p—o0

orN=2,p>09.
The above observations, combined with (24), lead to the following:
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5.8 Corollary 2.

Let p > 2. Then, in a neighbourhood of a critical point of order N = 1,
grad p can not satisfy a Holder condition with an exponent greater than

2
<
VP2 +12(p—1)—p

Further, let p > 9. Then, near a critical point of order N = 2, grad ¢ can
not satisfy a Holder condition with an exponent greater than

1.

¥(1,p) =

2
1(2,p) = oy g <1.

5.9 B. Optimal Holder continuity of the gradient of .

Consider again the function ¢ in Theorem 4, and recall from Section 2 that
@ € CH=, The question is: for which a is Vo a-Hoéldercontinuous near
z = 07 Clearly one wants « as large as possible. Because of Theorem 4,
the question is now reformulated: for which a > 0 are there constants C
and p* > 0 such that

|(g))V N — (g5)" €M% | < Clz(gh, 07) — 2(gh, 05) " (26)

for all (q1,0), (¢5,05), satisfying ¢} < p*, ¢4 < p*? The case where ¢} or
¢5 is zero is covered by the previous subsection; see equation (24). It is no
restriction here to assume that 0 < ¢} < ¢5. Further, it is no restriction to
assume p’ = 1, so that

oo
2(¢',0") = Z AnZn(d',0").
m=N+1

The leading term here will first be analysed.
Apart from a constant factor # 0, it is

eV (¢')[cos(N +1)(6' — Ox41) — iosin(N + 1)(0' — Ox+1)],

where s = N(fy+1 — 1) and 0 = ﬂg{ﬁ-‘ are positive. Clearly, it is no
restriction to assume Oy41 = 0. (A change of Oy simply means a twist
in the z-plane). It will be sufficient to study the mapping 2n+1(¢',¢') =
= (¢')*g(6'), where

9(0") = €V [cos(N + 1)’ — iosin(N + 1)6'].
Define mappings F; : C — C, 1 = 1,2,3, by the formulas
Fl ("ﬁ’) = r‘ei"
Fy(re®) = r|g(9)[e*®

g9(9)
lg(9)|"

Fa(re®) =r
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Then zn+1(q',0') = (Fs 0 Fz 0 Fy)(¢'¢?').

Clearly, Ii&l and 1 Iﬂ"] are bounded, uniformly in r a.nd 9. A similar
statement holds for the inverse mapping, multiplication by m Thus, F,
is bi-Lipschitzian, i.e. there are positive constants K;, K2 such that

K|z — z| < |F2(21) — Fa(22)] < Kalzy — 25|

for all 2y, z5.
Next, consider F3(re*®). It is trivial to verify that
1
s Cos2(N + 1)8 + 5% sin’ (N + 1)8°

d%(argg(")) ==

But 0 = —g_';’f{—‘, and 1< fBn41 < ‘L-;)— according to Lemma 1. There-

fore, a(N+l) = Nﬂ"“ < % and NI T—E"—‘S—“H < ﬁ Thus A =
max (?(Fl-e-_ﬂ’ 'IV‘-’TI') < %,and & (argg(?#)) < N—4% < 0. Let r(9) denote

the continuous branch of arg g(#) determined from r(O) 0. Clearly, 7(9)
is an odd function and 7'(¥) is periodic, with period w75 . Further,

7(9) — N9 = —arg|cos(N + 1)¢ + tosin(N + 1)9].

Let ¥ increase from 0 to 7% and conclude that r( i) - T =
ie. 7(§%7) = —n51- Hence, 7(£- §77) = —Lgx%y for any integer £. In

particular, 7(27) = —2x. The function 7(19) isa bx—Llpschxtzmn mapping of
R! onto itself, and obviously €® — ¢7(?) defines a bi-Lipschitzian mapping
of the unit circle onto itself. It follows that Fs(re*®) = re'’(?) is a bi-
Lipschitzian mapping, and consequently F3 o F> also has this property.
(Compare the argument for F3.)

In studying F;, we will use the following

Notation: A(z,y,2,...) % B(z,y,z2,...) means that there are positive
constants C;,C5 such that

ClB(z, Y, 2, ...) < A(.) < CQB(...)
for all z,y, 2, ... in question.
The elementary inequalities

(||| 1+1- |2|)<|z—1|<|ll 1 +1- |z (27)

hold for 0 < |z| < 1. Therefore, |z — 1| ~ h—:-[ -1+1—|2|

Consider Fl(q;-ew;) = (q;-)'c"”} for j = 1,2 and put R = :’. Then
0 < R <1 and (27) gives

IF1(016%) = Fi(ghe’®)] = (g3)*|R*€/ %) -1
~ (g)°(|€€@1=%) — 1| +1 - R?)
~ (¢5)°(|€®17%) —1| + 1~ R).
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Since F3 o F; is bi-Lipschitzian, it now follows that

2w 1(1,01) — 2n41(gh, 0)] = (05)° (1€ %) — 1| +1-R).  (28)

(Recall that zx41(") = Fs 0 Fy 0 Fy().)
Similarly,

(1) &N — (g5)N &#N| = (g5) N |(Re =)V —q
< N(gs)V |REC%) — 1| m (g5)¥ (|€¥=%) — 1| + 1 - R).
Note that the inequality here comes close to an equality, when R — 1 and

(6, — 65) — 0. A crucial question, coming from (26), is now: for which
a > 0 does there exist a C > 0 such that

C(gs)**(1e¥%=%) — 1] + 1~ R)* > (g3)" (| ~%) 1] + 1~ R)

holds for all 8,6}, and for all sufficiently small ¢}, ¢5 such that 0 < R =

—:-’t < 1?7 The obvious answer is that C exists if and only if s« < N and

a < 1. Therefore, in the particular case where A,, =0 for m > N + 2, it
(Wlx—l’ 1) . (See the remark of Th. 4.)

It remains to show that the result is the same in the general case. Recall
that 2(¢",0') = Y% 11 AmZm(¢',0'), and Ay 4y > 0. Clearly, a relation like
(28) also holds for Zy+1(q’,80'). Put Ay = Z,,(g1,01) — Zm(g5,05) for any
m. Next, |Ap| will be estimated from above, for m > N + 2. Put s, =

N(Bm —1) and g, (8') = &N (cos m(8' — ) — L= sinm(6' — 0,,.)) , 50
that Z,,(¢',0') = mbf':—_ﬁ(q‘)'"'gm(o').

From now on, C denotes a positive constant independent of m, ¢}, ¢5, 0}
and 67, not necessarily the same every time it occurs. Since lim 2 =

3@, it follows that

follows that amax = min

tm Nﬂm ¢
< < (8] < C.
lN(ﬁm—l)l—C" - |_C and n}ﬁ.x|g ) <c

Further,

(1) 9m (61) — (42)"™9m (62)] < (41)°™19m (01) — 9m (92)] +
+19m (62)11(21)*™ = (92)*™| < (91)*™19m (01) —9m (62)|+C (g2)*™ (1 - B°™).

Elementary estimates give
lgm (81) — gm (65)] < Cm|ef®1=%3) — 1
and 0 <1- R’ < Cm(1 — R). Thus,
1(91)*™gm (64) — (45)*™9m (65)] < C m(gh)*=(|¢"*s=%%) —1| +1 - R)

and

Y lAmAm| < C(I€%) —1| +1-R) - Y m|Am|(g)"  (29)
N+2 N+2
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It is clear from above (see (28)) that
Ans1lBu41] 2 Co(@) ™+ (=% 1]+ 1-R)  (30)

for some Cp > 0. It is also evident that S,, — Sy42 > am form > N +3
and for some a > 0. Since m|A,,| < C, it is obvious that

oo

Y mlAm|(g) menee

N+2
is bounded for (e.g.) 0 < ¢’ < 1, and s0

o

Y mlAm|(gh)*™ < C(d5)*+.
N+2

Now (29) gives

(oo}
Y [AmAn| < Cla) ™+ (€4~ ~ 1] +1- B),
N+2
and a comparison with (30) shows that

> 1
z [AmAm| < EAN+1|AN+1|
N+2

for 0 < ¢} < ¢5 < ¢* and for some ¢* > 0. It then follows that

©co
[Y AmAm| = Ansa|An 4]
N+1

and therefore the best Holder exponent for Vi is the same as in the previous
case. The results will now be summarized in a basic theorem.

Theorem 5. Let 1 < p < oo. For N = 1,2,3,... define the quantity (N, p)
by
2

p2+122(p—1)—p
1\/p2+5(p—1)~p’

Let p # const. be p-harmonic in a neighbourhood of z (two dimensions),
and let zy be a critical point of order N. Then Vi satisfies a Holder con-
dition with the exponent 4(N,p) in some neighbourhood of zy. Moreover,
Vi can not satisfy a Holder condition with a greater exponent than v(N, p)
in any neighbourhood of zg.

Remark: 4(N,p) <lifandonlyif N=1,p>20r N=2,p>9.

5 if N=1andp>2
v¥(N,p) =

ifN=2andp>9

in all other cases.

Corollary 1. The best Holder exponent for Vi, valid for any p-harmonic
© is

< forp>2
alp) =4 VPP +12(p-1)—p
1, forl<p<2.

Further, a(p) is strictly decreasing for p > 2 and lim o(p) = 3.
p—+oo
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5.10 C. A converse of Theorem 4.

Now that the estimates (28) — (30) are available, one can easily obtain
a converse of Theorem 4. Given p' > 0, N > 1 and real sequences
{An}%+1> {0m} 41> does there exist a corresponding p-harmonic function
©? Let {An}3%,, be a bounded sequence such that Ay, > 0. First, define
z = Z;vo+1Am Zm(q,0), p = E;vn+1"" Y= E;lo+1 *++, exactly as in
Th. 4, but with p replaced by 1. Clearly, all three series converge uniformly
for ¢’ small enough. It is crucial to verify that the mapping q’c“" — zis
one-to-one. The mapping properties of the leading term Ayx41Zn+1(q’,0")
are clear from the derivation of Theorem 5, and the estimates (28), (29),
(30) are still valid. It is further evident that

oo

> mlAnm|(g) e

N+2

is bounded for 0 < ¢’ < ¢p, for some gj > 0. (Recall that s,, —sy42 > am
for m > N + 3 and some & > 0.) Thus, one still has

oo
1
| z : Am Am| 2 EAN+1|AN+1|
N+1

for 0 < ¢} < ¢5 < ¢*, for some ¢* > 0. (Notation as before.) It follows
that ¢'e®® — z is an injective mapping for ¢’ small enough, and the image
clearly covers a neighbourhood of z = 0. The series for 2(¢’,0'), ©(q',0')
and y(¢’,0') stem from (13) and (16) in Subsection 4C and the systems
(6) - (11) are therefore satisfied by construction. It is clear from the series
for  that (¢'pe)% + @2 > O for ¢’ positive and small enough. (Again,
domination by the leading term.) Next, Theorem 3 is applied, locally for
small ¢’ > 0. (The transition from (¢’,68') to (g,0) is trivial.) It follows
that ¢ = p(z), ¥ = ¢¥(2) are p-harmonic and p’-harmonic, respectively, for
z # 0 and small enough. The ”singularity” at z = 0 is clearly removable.
Thus, the desired converse follows if p’ = 1.

Consider then the case p’ # 1. The relations

( oo
2= AmZm(q",0)
N+1
(> ]
Lo = E An(g")NBm sinm(0' - 6,,)
N+1
©o
Y= . Amé'ﬁ(q”)N(P"'ﬂM'z) cos m(0' — 0,,)
n Pl ™

represent a pair (p*(2*), ¥*(2*)) of the desired type, as shown above, for
¢" properly restricted. Now put ¢" = f; and

1 «— 1
e AmZm ll,ol -

p=p"
¢ = (pI)N(p—2)'/,t'
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These formulas for 2, and ¢ agree with the formulas in Th. 4. On the
other hand, p(2) is clearly obtained from *(2*) by a homotethy, and (2)
is obtained from t%*(2*) by homotethy + multiplication by constant. It
follows that (p(z),4(2)) is a pair as desired. Further details are left to the
reader.

One should observe that the sequence {Am}%, ; in Th. 4 is = O(m~*)
for any k > 0, whereas in the converse argument {A,,} was only assumed
to be bounded. The difference is due to the fact that the representation
in Th. 4 holds up to ¢’ = p’, whereas this need not be the case here. The
following result has been proved:

Let p' > 0 and let N > 1 be an integer. Let {An}%,,; and {0,}%,,
be bounded real sequences and let Ay4+1 > 0. Then the representation
formulas in Theorem 4 define a p-harmonic function © and a p'-harmonic
stream function 1y, in some neighbourhood of z = 0. Further, Vo =Vi¢ =0
at z = 0. Consequently, Theorem 4 contains all information about the local
behaviour of p and i near a critical point.

5.11 D. Singular expansions for ¢ and t near a critical point.

Let © and ¢ be as in Theorem 4. Using that theorem and estimates from
subsections 5A-B, we shall derive ”singular expansions” for ¢ and ¥ at
z =0, of the form

{ p(re’?) = r*f(g) + O(r*+)
Y(re?) = rig(¢) + O(r**?),

for some 6§ > 0. Here, r*f(¢) is p-harmonic with r’g(¢) a corresponding
stream function, and thus p’-harmonic.

Choose ro such that Th. 4 is applicable for |z] = r < ro. Then also
(24) holds. It is no essential restriction to assume that p’ = 1.

For any Q' = ¢'¢®’, with ¢’ < 1, put F(Q') = Y N1 AmZn(d,0)
and G(Q') = Anv+1Zn+1(¢',0'). Let 2z, be a variable point such that
0 < |z1| < ro. By Th. 4 there is a Q{ with ¢f < 1 such that F(Q}) = 2.
It is also clear from subsection 5B (the analysis of the leading term) that
there is a Q) = ¢5¢%> such that G(Q}) = z;. It is further true (see (24))
that

Clzlll/a < q‘{ < Cllzl|l/o

for ¢+ = 1,2 and for some positive constants C,C’. Here, as before, s =

N(Bn+1 — 1) = sy+1. Trivial estimates give

IF(Q1) — GRDIL Y. 14mZm(Q1)] < C(g))5¥+*

N+2

and therefore
IG(Q2) — G(QY)| = IF(QL) — G(Q))] < C(gh) ™+,
But (28) implies that

|G(Q3) ~ G(Q1)| 2 C(max gf)*+(j¢i~%) 1| + 1 - R),
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where R = :f—:"",';(.
Consequently,
€®1=93) _ 1] +1— R < C(g})5¥+3~5n+1, (31)

For any Q' = ¢'¢*?’, put

H(Q') = An41(¢)VP*+1 sin(N +1)(6' — On+1),

and
IQ) = S At Rt @)V Orrt2=) cos(N + 1)(8 — ).
These are the leading terms in the expansions of ¢ and v, and Th. 4 gives
lo(21) — H(QY)| < C(gy)VPr+ (32)
[¥(21) — 1(Q})] < C(gj) N Bw+ate=2) (33)

Further (compare subsection 5B),
|H(Q}) — H(Q%)| < Clmaxg})VP+1(|¢'%=%) 1| +1 - R)
and
[1(Q}) — I(Q%)| < C(maxgf)¥n+1+p=2)(|¢H(01=03) 1| 41— R).
Combination with (31) gives
|H(Q1) — H(Q2)| < C(maxgf)VFn+

and
II(QII) - I(QIZ)I < C(max q".)N(ﬁN+z+p-2).

Finally, the last two estimates will be combined with (32) and (33). Write
Q% = G~!(z;) and recall that ¢} = ¢5. We thus find

{ lo(21) — (H 0 G™*)(21)| < C(gy) VPr+2 (34)
(1) = (T G™*)(z1)| < C(g7) N Pr2¥P=2) (35)

or, equivalently,
B
lo(21) — (H 0 G™Y)(21)| < Clzy|Pw+1—T
[$(z1) - (10 G~ (21)] < Claa HHTT

It only remains to interpret the results obtained.

The following lemma reviews the basic facts concerning G(Q'), H(Q')
and I1(Q').
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Lemma 2. Consider the mapping G : C — C, given by

G(qleiol) = AN+IZN+l(q'1 0l)a
with Zy41(...) as in Theorem 4, and functions (C — R!) given by
H(q'e?') = An41(¢")VP¥+1 sin(N + 1) (6' — On41),

and

NBN+1
(P-1)(N+1)
Then G is a homeomorphism C « C such that the function po(2) =
(H o G~1)(2) is p-harmonic on C, the function ¥o(2) = (I o G™1)(2) is
p’-harmonic on C, and )y is a stream function of po. Further, po(z) and

o(2) are of the form
{ po(re'?) = r* 1 (4)
o(re®) = rg(4),
where k > 1, £ > 1. Moreover, the functions f(¢) and g(¢) are real analytic

and have parametric integral representations. Finally, (pz + ty)(2) =
(G=(2))N for all z € C and z = 0 is a critical point of order N for ¢ and
.

I(q'¢%) = Anss (¢)NBns1+7-2) cos(N + 1)(6' — O41)-

Proof: It is clear from section 5B (in particular the analysis of the leading
term) that G is a homeomorphism C « C. Thus, po and o are defined
and continuous on the whole z-plane. For ¢’ # 0, i.e. for z # 0, H and I
are locally well-defined functions of ge*® = (q'e"o')N . The expressions for
G, H, I are in complete agreement with [4], Th. 4, or [5], Th. 8, provided one

chooses A = %1-): and § = fn+1 there. We are thus allowed to conclude
that po(2) is p-harmonic, that ¥o(2) is p’-harmonic, and that ¢y is a stream
function for g, provided z # 0. The relation (. + ipy)(2) = ge* also
follows from [4] or [5], and so

(0o +1i0y)(2) = (¢ )V = (G7*(2))".

Clearly, the singularity” at z = 0 is removable, so Ap(po) = Apr(%0) =0
on C. It follows from ¢, + i, = (G~!(z))¥ that z =0 is a critical point
of the order N. Finally, it follows from [4], Lemma 5, that ¢ and %o have
the form stated above. Concerning the parametric representations of f(¢)
and g(¢) we refer to [4], Th. 2. (The assumption p > 2 made there is no
essential restriction at this moment). See also [2], Lemma 2. This completes
the proof.

The next theorem is the final result of this paper.

Theorem 6. Let p # const. be p-harmonic (1 < p < oo) in a neighbourhood
of z = 0. Let ¢ be a stream function, and suppose that ©(0) = ¥(0) = 0.
Suppose further that z = 0 is a critical point of order N > 1. Then there
are ”singular expansions”, valid near z = 0:

p(re'?) = r* f(¢) + O(r**%)

b(re?) = r'g(¢) + O(r**’)
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where k > 1, £ > 1 and 6§ > 0. Further, po = rkf(d;) is p-harmonic and
Yo = r’g(¢) is p’-harmonic on C. Finally, 1 is a stream function of p,.

Proof: Combine Lemma 2 with the estimates (34) and (35). The theorem
follows.

Remark 1: It is evident that k = ;2¥+l_ and ¢ = Bx+14P=2 Moreover,

Brn+1—-1 Bn41-1
one can choose § = EF=FE Also, using (31) one easily shows that
Vp(re'®) = Vg (re®) + O(rk~1+%), with the same 6. Observe also that
k—1= ISt i.e. (see subsection 5B) aumax = min(k—1,1), as expected.

Remark 2: Singular expansions of a p-harmonic function ¢ near a corner
of its domain of definition were obtained by P. Tolksdorf [20], [21] and
M. Dobrowolski [11]. These results are valid in R®. On the other hand,
conditions on the sign of ¢ near the corner are needed. See also [4], Section
4 and Theorem 5, in particular Remark 1. Clearly, that theorem gives a
simultaneous singular expansion of ¢ and v, as in the above theorem.

During the preparation of this report the author was informed about
recent work by T. Iwaniec and J. Manfredi: ” Best exponents for p-harmonic
functions on the plane”. The work by Iwaniec and Manfredi contains a
corollary, similar to but not identical with Corollary 1 of Theorem 5. (It
does not follow, if p > 2, from the work of I. and M. that a(p) itself
is a valid Holder exponent for Vy.) I. and M. obtain very interesting
results on the integrability of second-order derivatives of ¢, by using the
hodograph method in a form quite different from ours. They do not derive
a representation for ¢, and the corollary is the only overlap with the present
work.
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