

Werk

Titel: Represenation of a p-harmonic function near a critical point in the plane.

Autor: Aronsson, Gunnar

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0066|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

REPRESENTATION OF A p-HARMONIC FUNCTION NEAR A CRITICAL POINT IN THE PLANE

GUNNAR ARONSSON

A representation theorem is given for a p-harmonic function $\varphi(1 in the plane, near a zero <math>z_0$ of grad φ . The proof uses "stream functions" and the hodograph transformation. The stream function of a p-harmonic function is p'-harmonic, where $\frac{1}{p} + \frac{1}{p'} = 1$. In principle, all properties of φ near z_0 can be found from the representation. Some consequences are derived here, e.g. the optimal Hölder continuity of grad φ .

1. Introduction

Let φ be a p-harmonic function, i.e. a weak solution of the equation

$$\operatorname{div}(|\nabla \varphi|^{p-2}\nabla \varphi)=0,$$

in a domain $\Omega \subset R^2$. This equation is the Euler equation for the functional $\int_{\Omega} |\nabla \varphi|^p dx$. In this work, it is assumed that $1 . It is well known that there is an <math>\alpha > 0$ such that $\varphi \in C^{1,\alpha}$ on any compact subset of Ω . It is also known that the set E of critical points (i.e. where $\nabla \varphi = 0$) consists of isolated points only, unless φ is a constant. Further, with the use of elliptic regularity theory it can be proved that $\varphi \in C^{\infty}$, in fact φ is real analytic, in $\Omega \setminus E$. However, the equation degenerates on E to some extent (for $p \neq 2$) and the argument does not work there. In fact, it is known from examples that φ need not be in C^2 near a point in E.

It has therefore been an open problem for some time to determine more precisely the structure of φ near a critical point. We derive here a representation theorem for φ , valid in a full neighbourhood of a critical point z_0 . In principle, all properties of φ near z_0 are determined by that theorem (Th. 4).

The first step towards the representation is the observation (Th. 1) that φ has a conjugate, or "stream" function ψ , which is p'-harmonic, where $\frac{1}{p} + \frac{1}{p'} = 1$. Accordingly, the representation includes φ and ψ .

Some consequences of Theorem 4 are proved, and the following ones should be mentioned here:

- a) determination of the exact Hölder exponent of $\nabla \varphi$ near z_0 as a function of p and the order N of the critical point z_0 (Theorem 5). By varying N, this gives at once the best possible α above.
- b) singular expansions of φ and ψ near z_0 (Theorem 6).

The derivation of the representation theorem is based on the hodograph method in a convenient form, which uses a stream function ψ (Theorem 3). Accordingly, the representation has the form of a linear superposition

$$egin{pmatrix} z \ arphi(z) \ \psi(z) \end{pmatrix} = \sum_{m=N+1}^{\infty} A_m egin{pmatrix} Z_m(\zeta') \ \Phi_m(\zeta') \ \Psi_m(\zeta') \end{pmatrix}$$

where $\zeta' = \sqrt[n]{\varphi_x + i\varphi_y}$, and where each triple

$$egin{pmatrix} Z_m(\varsigma') \ \Phi_m(\varsigma') \ \Psi_m(\varsigma') \end{pmatrix},$$

considered separately, generates a (p, p')-harmonic pair (φ_m, ψ_m) of a simple nature (namely quasi-radial), at least locally for $\zeta' \neq 0$.

2. Some background material

Consider a partial differential equation of the form

$$\operatorname{div}\left(rac{F(|
ablaarphi|)}{|
ablaarphi|}
ablaarphi
ight)=0,$$

where F(t) is strictly increasing. Let φ be smooth, with $\nabla \varphi \neq 0$, and satisfy the differential equation in a simply connected domain $\Omega \subset \mathbb{R}^2$. It is then elementary to construct a "stream function" ψ , attached to φ , which satisfies in Ω the reciprocal equation

$$\operatorname{div}\left(rac{F^{-1}(|
abla\psi|)}{|
abla\psi|}
abla\psi
ight)=0.$$

In particular, the choice $F(t)=t^{p-1}$, i.e. the *p*-harmonic equation, gives $F^{-1}(s)=s^{p'-1}$, where $p'=\frac{p}{p-1}$. Thus, ψ is p'-harmonic, where $\frac{1}{p}+\frac{1}{p'}=1$. Details concerning this are found in [4], pp. 80-81. Before proceeding, it is necessary to state the precise solution concept to be used in the sequel.

We now say that φ is p-harmonic in $\Omega \subset \mathbb{R}^n$ if $\varphi \in W^{1,p}_{loc}(\Omega)$ and

$$\int_{\Omega} |\nabla \varphi|^{p-2} \nabla \varphi \cdot \nabla \eta \ dx = 0$$

for all $\eta \in C_0^1(\Omega)$. Let $1 , and let <math>\varphi$ be p-harmonic in $\Omega \subset \mathbb{R}^n$. Then φ is locally in $C^{1,\alpha}$. See [10] or [16]. Further, φ is real analytic away from the zeros of $\nabla \varphi$; see [15], p. 208. If n=2, then it is known that the zeros of $\nabla \varphi$ are isolated. For this we refer to [8], p. 8. We also refer to [1] where a complete proof is given. Finally, this fact is also discussed in [5].

The above background motivates our

Theorem 1. Let $1 and let <math>\varphi \not\equiv$ constant be p-harmonic in a simply connected domain $\Omega \subset \mathbb{R}^2$. Then there exists a p'-harmonic function $\psi \in C^1(\Omega)$, where $\frac{1}{p} + \frac{1}{p'} = 1$, such that

$$\begin{cases} \psi_x = -|\nabla \varphi|^{p-2} \varphi_y \\ \psi_y = |\nabla \varphi|^{p-2} \varphi_x. \end{cases}$$
 (3)

Both φ and ψ have locally Hölder continuous gradients. The zeros of $\nabla \varphi$ and $\nabla \psi$ are isolated in Ω . Streamlines of φ are level lines of ψ , and conversely.

The short proof is found in [4], p. 82.

Remark. The use of stream functions is, of course, classical. In this case it apparently appeared first in [3]. There is a physical interpretation of the p-Laplace equation in \mathbb{R}^2 in terms of laminar pipe flow of so-called power-law fluids, and this interpretation motivates the name stream function for ψ . These aspects will be discussed elsewhere. Compare [9] and [18].

Some further analogies with complex analysis are derived in [5]. A very useful fact is that the complex gradient $\varphi_x - i\varphi_y$ of a *p*-harmonic function is a *quasi-regular* function of z = x + iy. In particular, there is a representation

$$\varphi_x - i\varphi_y = h \circ \chi \tag{4}$$

where h is analytic and χ is quasi-conformal. Concerning this, we refer to [5], [8] and [17].

The following result is important for the hodograph method. It is proved in [5].

Theorem 2. Let φ be p-harmonic in a plane domain D. Assume that φ is not a linear function. Then there exists a set E of isolated points in D, such that φ is real-analytic and

$$\varphi_{xx}\varphi_{yy}-\varphi_{xy}^2\neq 0$$

in $D \setminus E$.

The proof uses the representation (4) and well-known properties of quasi-conformal mappings.

The reader, who wants to know more about the background of this work, is referred to [2], [5] and [14].

3. Hodograph transformation for the p-harmonic equation

The hodograph method is a classical technique, e.g. for linearizing potential equations in gas dynamics. The idea is roughly that $\frac{\partial \varphi}{\partial x}$ and $\frac{\partial \varphi}{\partial y}$ are introduced as new independent variables. Good references for this method are [7], pp.13-14, and [6], pp. 130-132. The method is well suited for handling the *p*-harmonic equation in the plane, and a detailed exposition of the procedure is given in [4], pp. 90-93. For convenience, we agree that Theorem 3 here means Theorem 3 in [4]. It is further agreed that systems (5)-(8) here refer to systems (a)-(d), respectively, in [4].

It is now assumed that the reader is familiar with [4], pp. 90-93.

4. Derivation of the representation theorem

Let $\varphi(x,y)$ be p-harmonic in $\Omega \subset R^2$, and let $1 , <math>p \neq 2$. Let $\nabla \varphi = 0$ at the origin and $\varphi \not\equiv$ constant. Theorem 4 gives a "hodographic" representation of φ and a stream function ψ near the origin. It will be derived using a step-by-step construction.

4.1 A. Construction of the mappings needed

We start from the representation (4):

$$\varphi_x - i\varphi_y = h \circ \chi,$$

with h analytic and χ quasi-conformal. Choose a neighbourhood U_0 of z=0 such that $\bar{U}_0\subset\Omega$ and $\nabla\varphi\neq0$ in $U_0\setminus\{0\}$. It is no restriction to assume that $\frac{\partial(\varphi_z,\varphi_y)}{\partial(x,y)}\neq0$ in $U_0\setminus\{0\}$, as follows from Theorem 2. Let U_0 be simply connected, so that a stream function ψ exists in U_0 .

Put $\xi = \chi(z)$ and $\zeta = \varphi_x + i\varphi_y = (\overline{h} \circ \chi)(z)$. Let $\chi(0) = 0$ and let N be the order of the first nonvanishing derivative of $h(\xi)$ at $\xi = 0$. Thus $N \geq 1$. Put $B_1(\delta) = \{\xi : |\xi| < \delta\}$. There is a $\delta > 0$ so that $h(\xi) = (G(\xi))^N$ for all $\xi \in B_1(\delta)$, where $G(\xi)$ is analytic and univalent. (See [13], p 148). Assume that $\chi(U_0) \supset B_1(\delta)$. Put $\underline{\zeta'} = \overline{G(\xi)}$ and $B'(\rho') = \{\underline{\zeta'} : |\zeta'| < \rho'\}$. Choose $\rho' > 0$ so that $G(B_1(\delta)) \supset \overline{B'(\rho')}$.

Put $U = (\chi^{-1} \circ G^{-1})(B'(\rho'))$. Then $U \subset U_0$ and $(\varphi_x + i\varphi_y)(z) = (\overline{G(\chi(z))})^N$ for $z \in U$. Thus $\zeta = (\zeta')^N$, and $B'(\rho')$ is mapped onto $B(\rho) = \{\zeta : |\zeta| < \rho\}$, where $\rho = (\rho')^N$.

Clearly, φ and ψ are well-defined, continuous functions of $\zeta' \in \overline{B'(\rho')}$.

Introduce polar coordinates in the ζ - and ζ' -planes : $q = |\zeta|$, $\theta = \arg \zeta$, $q' = |\zeta'|$ and $\theta' = \arg \zeta'$. Finally, put $\mu = -\log q$ and $\mu' = -\log q'$. It is no restriction to assume that $\varphi(0) = \psi(0) = 0$.

Definition. The number N is called the **order** of the critical point. It is clearly independent of the choice of the representation $h \circ \chi$ for the complex gradient.

Figure 1 should make the situation clear.

4.2 B. Modified hodograph equations

By construction, $z = z(\varsigma')$, $\varphi = \varphi(\varsigma')$ and $\psi = \psi(\varsigma')$ are well-defined and continuous for $\varsigma' \in \overline{B'(\rho')}$. Further, $z = z(\varsigma')$ is one-to-one and the function z(0) = 0. For $0 < |\varsigma'| \le \rho'$ we have $z \in U_0 \setminus \{0\}$, and thus $\nabla \varphi \neq 0$ and $\frac{\partial (\varphi_z, \varphi_y)}{\partial (z, y)} \neq 0$. Fix any ς'_0 , $0 < |\varsigma'_0| \le \rho'$. By restricting ς' and ς , one can define $\varsigma' = \sqrt[N]{\varsigma}$ uniquely, so that $z = z(\varsigma)$ becomes well-defined and smooth near $\varsigma_0 = (\varsigma'_0)^N$. But this is the situation studied in Section 3 and in [4]. There it was shown that $\varphi = \varphi(\varsigma)$, $\psi = \psi(\varsigma)$ satisfy the "Chaplygin system" (6), using polar coordinates g, θ :

$$\left\{egin{aligned} arphi_{ heta} &= rac{\psi_q}{q^{p-3}} \ arphi_q &= -rac{(p-1)\psi_{ heta}}{q^{p-1}}. \end{aligned}
ight.$$

With $\mu = -\log q$, the system takes the form

$$\begin{cases}
\varphi_{\mu} = (p-1)e^{(p-2)\mu} \psi_{\theta} \\
\varphi_{\theta} = -e^{(p-2)\mu} \psi_{\mu}.
\end{cases}$$
(9)

But $\mu = N\mu'$, $\theta = N\theta'$, and thus

$$\begin{cases} \varphi_{\mu'} = (p-1)e^{N(p-2)\mu'} \ \psi_{\theta'} \\ \varphi_{\theta'} = -e^{N(p-2)\mu'} \ \psi_{\mu'}. \end{cases}$$
(10)

Cross-differentiation and elimination gives:

$$\begin{cases} \varphi_{\theta'\theta'} + \frac{1}{p-1} \varphi_{\mu'\mu'} - N \frac{p-2}{p-1} \varphi_{\mu'} = 0 \\ \psi_{\theta'\theta'} + \frac{1}{p-1} \psi_{\mu'\mu'} + N \frac{p-2}{p-1} \psi_{\mu'} = 0. \end{cases}$$
(11)

Clearly, these equations are valid for $0 < |\zeta'| \le \rho'$, in spite of the "local" derivation. Note that the last two equations have constant coefficients and are formal adjoints of each other.

4.3 C. Finding a solution base

A sufficient class of solutions to (10) will be needed, along with expressions for $z(\mu', \theta')$, or rather $z(q', \theta')$. Put $\varphi = F(\theta')G(\mu')$ and insert into the first equation (11). This gives

$$\begin{cases} F'' + \lambda' F = 0 \\ G'' - N(p-2)G' - (p-1)\lambda' G = 0 \end{cases}$$

where λ' is at our disposal.

The characteristic equation for G is

$$\alpha^2 - N(p-2)\alpha - (p-1)\lambda' = 0.$$

It turns out to be sufficient to consider the cases $\lambda' \geq 0$ and $\alpha < 0$.

Assume first that $\lambda' > 0$. Put $\lambda = \frac{\lambda'}{N^2} > 0$ and $\beta = \frac{-\alpha}{N} > 0$. Thus,

$$\beta^2 + (p-2)\beta - \lambda(p-1) = 0, \tag{12}$$

and

$$\beta = \frac{1}{2}(\sqrt{(p-2)^2 + 4\lambda(p-1)} - p + 2).$$

The following observations will be useful.

Lemma 1. Let p be fixed $(1 and consider the function <math>\beta = \beta(\lambda)$, for $\lambda > 0$. It is positive and strictly increasing, $\beta(1) = 1$, and for $\lambda > 1$ one has $1 < \beta(\lambda) < \lambda$.

Proof: The last statement follows by verifying that $\frac{d\beta}{d\lambda} < 1$ for $\lambda > 1$, and the rest is trivial.

The equation for φ is clearly satisfied by $\varphi = e^{-N\beta\mu'} \sin \sqrt{\lambda'} (\theta' - \theta_0)$, for any θ_0 . A corresponding ψ is easily found from (10):

$$\psi = Ke^{-\mu' \cdot \frac{\sqrt{\lambda'}}{K}} \cdot \cos \sqrt{\lambda'} (\theta' - \theta_0),$$

where $K = \frac{N\beta}{(p-1)\sqrt{\lambda'}} = K(\lambda')$.

This pair (φ, ψ) satisfies (10) for any $\lambda' > 0$ and any θ_0 . In terms of (q', θ') , this is

$$\begin{cases} \varphi = (q')^{N\beta} \sin \sqrt{\lambda'} (\theta' - \theta_0) \\ \psi = K(q')^{\frac{\sqrt{\lambda'}}{K}} \cos \sqrt{\lambda'} (\theta' - \theta_0). \end{cases}$$
(13)

Consider then the case $\lambda'=0$. Here, $F(\theta')$ is linear and $G(\mu')=A+Be^{N(p-2)\mu'}=A+B(q')^{N(2-p)}$. (Recall that $p\neq 2$). Only the two pairs

$$\begin{cases} \varphi = (q')^{N(2-p)} \\ \psi = N \frac{p-2}{p-1} \theta' \end{cases}$$
 (14)

and

$$\begin{cases} \varphi = N(p-2)\theta' \\ \psi = (q')^{N(p-2)} \end{cases}$$
 (15)

will be needed, besides (13).

Formulas for $z = z(q', \theta')$ connected to (13) will be needed later.

The relations $\frac{\partial z}{\partial \varphi} = \frac{e^{i\theta}}{q}$ and $\frac{\partial z}{\partial \psi} = \frac{ie^{i\theta}}{q^{p-1}}$ were found in [4], p. 90. Thus, the formulas $\frac{\partial z}{\partial \varphi} = \frac{e^{iN\theta'}}{(q')^N}$ and $\frac{\partial z}{\partial \psi} = \frac{ie^{iN\theta'}}{(q')^N(p-1)}$ hold here, at least locally.

For the solution couple (13), the chain rule easily gives

$$\frac{\partial z}{\partial q'} = i\sqrt{\lambda'} \ e^{iN\theta'} (q')^{N(\beta-1)-1} \left(\cos\sqrt{\lambda'} (\theta'-\theta_0) - i\frac{N\beta}{\sqrt{\lambda'}} \sin\sqrt{\lambda'} (\theta'-\theta_0) \right)$$

and

$$\frac{\partial z}{\partial \theta'} = \sqrt{\lambda'} e^{iN\theta'} (q')^{N(\beta-1)}$$

$$\cdot \left(\cos\sqrt{\lambda'}(heta'- heta_0) - irac{Neta}{(p-1)\sqrt{\lambda'}}\sin\sqrt{\lambda'}(heta'- heta_0)
ight)$$

for any $\lambda' > 0$. The formula for $\frac{\partial z}{\partial g'}$ suggests that

$$z = \frac{i\sqrt{\lambda'}}{N(\beta - 1)}e^{iN\theta'}(q')^{N(\beta - 1)}\left(\cos\sqrt{\lambda'}(\theta' - \theta_0) - i\frac{N\beta}{\sqrt{\lambda'}}\sin\sqrt{\lambda'}(\theta' - \theta_0)\right)$$
(16)

provided $\lambda' > 0$, $\lambda' \neq N^2$. (Then $\beta \neq 1$.) Routine calculations, using (12), show that (16) also gives the correct expression for $\frac{\partial z}{\partial \theta'}$. If $\lambda' = N^2$, then $\beta = 1$ and

$$\frac{\partial z}{\partial a'} = \frac{1}{a'} i N e^{iN\theta_0}. \tag{17}$$

Further formulas will not be needed. The expressions (13) and (16), for varying λ' , create "base vectors" to be used in Theorem 4.

Remark: The pair (14) is the "hodographic image" of the pair

$$\begin{cases} \varphi = \left(\frac{p-1}{p-2} r\right)^{\frac{p-2}{p-1}} \\ \psi = \frac{p-2}{p-1} \phi \end{cases}$$

for p > 2, and of the pair

$$\begin{cases} \varphi = \left(\frac{p-1}{2-p} r\right)^{\frac{p-2}{p-1}} \\ \psi = \frac{p-2}{p-1} (\phi + \pi) \end{cases}$$

for $1 . It is understood in this interpretation that <math>N\theta'$ is replaced by θ and $(q')^N$ is replaced by q. Analogously, the pair (15) is interpreted as the hodographic image of

$$\begin{cases} \varphi = (p-2)(\phi + \frac{\pi}{2}) \\ \psi = (p-2)^{p-2}r^{2-p} \end{cases}$$

for p > 2, and of the pair

$$\left\{egin{aligned} arphi &= (p-2)(\phi-rac{\pi}{2}) \ \psi &= (2-p)^{p-2}r^{2-p} \end{aligned}
ight.$$

for $1 . All this is easily verified. Clearly, these pairs <math>(\varphi(z), \psi(z))$ can be seen as nonlinear analogs of $\varphi = \text{Re log } z, \ \psi = \text{Im log } z, \ p = 2$.

Finally, the case $\lambda' = N^2$, i.e. with $\beta = 1$ and the relation (17), is related to *p*-harmonic functions of the form $\varphi = e^x f(y)$, constructed by T. Wolff in [23]. We omit the details.

4.4 D. Preliminary determination of $\varphi(q', \theta')$ and $\psi(q', \theta')$.

By construction, $\varphi(q', \theta')$ and $\psi(q', \theta')$ are 2π -periodic in the variable θ' , and belong to C^{∞} for $0 < q' \le \rho'$. Put

$$\begin{cases} \varphi(\rho',\theta') = A_0 + \sum_{m=1}^{\infty} A_m \sin m(\theta' - \theta_m) \\ \psi(\rho',\theta') = B_0 + \sum_{m=1}^{\infty} B_m \cos m(\theta' - \theta'_m). \end{cases}$$

We must show that $A_0 = B_0 = 0$.

Assume first that 1 .

In the first formula (13), put $\lambda' = m^2$ for m = 1, 2, 3, ...,

$$eta = eta_m = rac{1}{2} \left(\sqrt{(p-2)^2 + 4 rac{m^2}{N^2} (p-1)} - p + 2
ight)$$

and $\theta_0 = \theta_m$. Consider the function

$$H(q', \theta') = A_0 \left(\frac{q'}{
ho'}\right)^{N(2-p)} + \sum_{m=1}^{\infty} A_m \left(\frac{q'}{
ho'}\right)^{N \beta_m} \sin m(\theta' - \theta_m).$$

Now (11) implies that

$$L(\varphi) = \varphi_{\theta'\theta'} + \frac{(q')^2}{p-1}\varphi_{q'q'} + \frac{N(p-2)+1}{p-1}q'\varphi_{q'} = 0$$

in $\Omega' = \{(q', \theta') \mid 0 < q' < \rho'\}$ and $\varphi \in C(\overline{\Omega'})$. Clearly, the same holds for $H(q', \theta')$. Thus, $L(\varphi - H) = 0$ in Ω' and $\varphi - H = 0$ on $\partial \Omega'$. Further, $\varphi - H$ is periodic with respect to θ' . If $\varphi - H \not\equiv 0$, then $\varphi - H$ must have an interior maximum or minimum, which is impossible, because of $L(\varphi - H) = 0$. See [19], p. 61. Thus $\varphi \equiv H$ in Ω' .

Now $\psi(\rho', \theta^*) = \psi(\rho', \theta^* + 2\pi)$ for any θ^* , and it follows from (10) that $\int_{\theta^*}^{\theta^* + 2\pi} \varphi_{\mu'}(\cdots) d\theta' = 0$. Thus, $\int_{\theta^*}^{\theta^* + 2\pi} \varphi_{q'}(\rho', \theta') d\theta' = 0$, which gives $A_0 = 0$. Finally, ψ is determined from (10) and the condition $\psi(0, \theta') \equiv 0$.

This clearly gives

$$\psi(q',\theta') = \sum_{m=1}^{\infty} \frac{A_m}{(\rho')^{N\beta_m}} \cdot K_m(q')^{\frac{m}{K_m}} \cos m(\theta' - \theta_m),$$

where $K_m = \frac{N_{\beta}m}{(p-1)m}$. Using (12), one easily verifies that $\frac{m}{\beta_m} = N(p + \beta_m - 2)$. This gives the result

$$\begin{cases} \varphi(q', \theta') = \sum_{m=1}^{\infty} A_m \left(\frac{q'}{\rho'}\right)^{N\beta_m} \sin m(\theta' - \theta_m) \\ \psi(q', \theta') = \frac{N(q')^{N(p-2)}}{p-1} \cdot \sum_{m=1}^{\infty} A_m \frac{\beta_m}{m} \left(\frac{q'}{\rho'}\right)^{N\beta_m} \cos m(\theta' - \theta_m). \end{cases}$$
(18)

Note that $\lim_{m\to\infty} \frac{\beta_m}{m} = \frac{\sqrt{p-1}}{N}$. Further, $N(p+\beta_m-2)>0$ for all m. Clearly, both series converge uniformly for $0 \le q' \le \rho'$.

Assume then that 2 .

In this case one determines ψ first, and then φ , in a similar way. The pair (15) is used instead of (14). The result is a representation of $\varphi(q', \theta')$ and $\psi(q', \theta')$ of the same form as above.

Remark. Since $\varphi(\rho',\cdot) \in C^{\infty}$ and φ is periodic in θ' , the Fourier coefficients $A_m = O(m^{-k})$ for any integer $k \geq 1$. Also, the growth of $\{\beta_m\}_1^{\infty}$ is quite regular; $\frac{\beta_m}{m} \to \frac{\sqrt{p-1}}{N}$. Because of this, convergence questions related to (18) will not offer any difficulties.

4.5 E. Completion of the proof

Put $\lambda' = m^2$ and $\theta_0 = \theta_m$ for $m = 1, 2, 3, ..., m \neq N$, in (16) and get

$$Z_{m}(q',\theta') = \frac{im}{N(\beta_{m}-1)} e^{iN\theta'}(q')^{N(\beta_{m}-1)} \left(\cos m(\theta'-\theta_{m}) - \frac{iN\beta_{m}}{m} \sin m(\theta'-\theta_{m})\right). \quad (19)$$

Also recall equation (17) for the case $m=N, \lambda'=N^2$. It is clear from subsections C and D that the sequence $\{\beta_m\}_1^{\infty}$ is positive and strictly increasing. Further, $\beta_N=1$. Thus, the exponents $N(\beta_m-1)$ in (19) are different and negative for m=1,2,...,N-1.

Take δ_1 and δ_2 such that $0 < \delta_1 < \delta_2 < \rho'$ and consider

$$z(\delta_2, heta') - z(\delta_1, heta') = \int_{\delta_1}^{\delta_2} rac{\partial z}{\partial q'} (q', heta') dq'.$$

Equations (18) have the form

$$\varphi(q',\theta') = \sum_{m=1}^{\infty} \varphi_m(q',\theta'), \ \psi(q',\theta') = \sum_{m=1}^{\infty} \psi_m(q',\theta').$$

Further, $\frac{\partial z}{\partial q'} = \frac{\partial z}{\partial \varphi} \frac{\partial \varphi}{\partial q'} + \frac{\partial z}{\partial \psi} \frac{\partial \psi}{\partial q'}$, $\frac{\partial \varphi}{\partial q'} = \sum_{m=1}^{\infty} \frac{\partial \varphi_m}{\partial q'}$ and $\frac{\partial \psi}{\partial q'} = \sum_{m=1}^{\infty} \frac{\partial \psi_m}{\partial q'}$ for $\delta_1 \leq q' \leq \delta_2$, with uniform convergence. Thus,

$$\frac{\partial z}{\partial q'} = \sum_{m=1}^{\infty} \left(\frac{\partial z}{\partial \varphi} \frac{\partial \varphi_m}{\partial q'} + \frac{\partial z}{\partial \psi} \frac{\partial \psi_m}{\partial q'} \right) = \sum_{m=1}^{\infty} \left(\frac{e^{iN\theta'}}{(q')^N} \frac{\partial \varphi_m}{\partial q'} + \frac{ie^{iN\theta'}}{(q')^{N(p-1)}} \frac{\partial \psi_m}{\partial q'} \right)$$

for $\delta_1 \leq q' \leq \delta_2$. Using (16), (17) and (19) this gives

$$rac{\partial z}{\partial q'} = \sum_{\substack{m=1 \ m
eq N}}^{\infty} rac{A_m}{(
ho')^{Neta_m}} \cdot rac{\partial}{\partial q'} ig(Z_m(q', heta') ig) + rac{A_N}{(
ho')^N} \cdot rac{iN}{q'} e^{iN heta_N},$$

i.e.

$$\begin{split} &z(\delta_2,\theta')-z(\delta_1,\theta')=\\ &=\sum_{\substack{m=1\\m\neq N}}^{\infty}\frac{A_m}{(\rho')^{N\beta_m}}\big(Z_m(\delta_2,\theta')-Z_m(\delta_1,\theta')\big)+\frac{A_N}{(\rho')^N}iN\log\frac{\delta_2}{\delta_1}e^{iN\theta_N}. \end{split}$$

Write this relation as

$$z(\delta_2, \theta') - z(\delta_1, \theta') = \sum_{m=1}^{N-1} \cdots + \frac{A_N i N}{(\rho')^N} \log \frac{\delta_2}{\delta_1} e^{iN\theta_N} + \sum_{m=N+1}^{\infty} \cdots$$

Here, the last sum contains positive powers of δ_1 and δ_2 , and is clearly bounded when $\delta_1 \to +0$. The first sum contains negative powers of δ_1 , δ_2 with different exponents. The left-hand side is bounded when $\delta_1 \to +0$. It

follows immediately that $A_m = 0$ for m = 1, 2, ..., N. (Compare (19).) Let $\delta_1 \to +0$ and conclude that

$$z(\delta_2, \theta') = \sum_{m=N+1}^{\infty} \frac{A_m}{(\rho')^{N\beta_m}} Z_m(\delta_2, \theta'). \tag{20}$$

This is clearly true for $0 \le \delta_2 \le \rho'$ and all θ' .

It only remains to show that $A_{N+1} \neq 0$. Let A_M be the first non-zero element in the sequence $\{A_m\}_{N+1}^{\infty}$. Choose θ_M so that $A_M > 0$. Then (19) gives, for the leading term in (20),

$$egin{split} & rgig(rac{A_M}{(
ho')^{Neta_M}}Z_M(\delta_2, heta')ig) = rac{\pi}{2} + N heta' - rgig[\cos M(heta'- heta_M) + \ & + rac{iNeta_M}{M}\sin M(heta'- heta_M)ig] \equiv \gamma(heta'). \end{split}$$

Let θ' increase from θ_M to $\theta_M + 2\pi$. Evidently, $\gamma(\theta')$ changes by $N \cdot 2\pi - M \cdot 2\pi$. Trivial estimates show that

$$\big|\sum_{M+1}^{\infty}\frac{A_m}{(\rho')^{N\beta_m}}Z_m(\delta_2,\theta')\big|\leq C\cdot\sum_{M+1}^{\infty}|A_m|\big(\frac{\delta_2}{\rho'}\big)^{N(\beta_m-1)},$$

where C is independent of δ_2 and θ' . But this quantity is clearly dominated by half the leading term of (20) if $\delta_2 = \delta_0$, small enough. Therefore, also $\arg z(\delta_0, \theta')$ changes by $(N-M)2\pi$, when θ' increases by 2π . Now the relation $\varsigma' = \overline{(G \circ \chi)(z)}$ gives $(N-M)2\pi = -2\pi$. (Recall from subsection A that G is univalent and χ quasi-conformal.) Thus M = N + 1. The results are collected in the basic theorem of this paper.

4.6 The representation theorem (Th. 4):

Consider a p-harmonic function φ in a domain $\Omega \subset R^2$ containing the origin. Let $1 , <math>p \neq 2$, and $\varphi \not\equiv$ constant. Suppose $\nabla \varphi = 0$ at z = 0 and denote by N the order of the critical point z = 0. Let $\omega(\tau)$ be that component of the open set $\{z \in \Omega : |\nabla \varphi(z)| < \tau^N\}$, which contains the origin. A stream function ψ exists in $\omega(\tau)$ if $0 < \tau \leq \tau_0$. Assume that $\varphi(0) = \psi(0) = 0$. Then there exists a ρ' , $0 < \rho' \leq \tau_0$, such that φ and ψ , considered on $\omega(\rho')$, admit a parametric representation as follows:

a) There exist scalar sequences $\{A_m\}_{N+1}^{\infty}$ and $\{\theta_m\}_{N+1}^{\infty}$ satisfying $A_{N+1} > 0$ and $A_m = O(m^{-k})$ for any k > 0, such that the formulas

$$\begin{cases} \varsigma' = q'e^{i\theta'} & (q' \ge 0) \\ z = \sum_{m=N+1}^{\infty} \frac{A_m}{(\rho')^{N\beta_m}} Z_m(q', \theta') \end{cases}$$

define a one-to-one bicontinuous mapping from $\{\zeta': |\zeta'| \leq \rho'\}$ to $\overline{\omega(\rho')}$. Here, as before

$$Z_m(q', \theta') = \frac{im}{N(\beta_m - 1)} e^{iN\theta'}(q')^{N(\beta_m - 1)} \left[\cos m(\theta' - \theta_m) - \frac{iN\beta_m}{m} \sin m(\theta' - \theta_m)\right]$$

and

$$eta_m = rac{1}{2} ig(\sqrt{(p-2)^2 + 4 rac{m^2}{N^2} (p-1)} - p + 2 ig).$$

The point $\zeta' = 0$ is mapped on z = 0.

b) The values of φ and ψ at $z = z(\zeta')$ are given by

$$\begin{cases} \varphi = \sum_{m=N+1}^{\infty} A_m \left(\frac{q'}{\rho'}\right)^{N\beta_m} \sin m(\theta' - \theta_m) \\ \psi = \frac{N}{p-1} (\rho')^{N(p-2)} \sum_{m=N+1}^{\infty} A_m \frac{\beta_m}{m} \left(\frac{q'}{\rho'}\right)^{N(p+\beta_m-2)} \cos m(\theta' - \theta_m). \end{cases}$$

The three series above converge uniformly for $|\varsigma'| = q' \leq \rho'$. Further, the value of $\nabla \varphi$ at $z(\varsigma')$ is $(\varsigma')^N = (q')^N e^{iN\theta'}$. Finally, observe that $\sum_{N+1}^{\infty} A_m \sin m(\theta' - \theta_m)$ is the Fourier series expansion of φ as a function of θ' on the level curve $|\nabla \varphi| = (\rho')^N$, i.e. on $\partial \omega(\rho')$.

Remark 1: For any $N=1,2,3,\ldots$ and any $A_{N+1}>0$ there certainly exists a p-harmonic function φ , defined in $\Omega=R^2$, corresponding to the given A_{N+1} and $A_m=0$ for all $m\geq N+2$. Such a function φ and the corresponding ψ have been specified and studied in some detail. They are of the form $\varphi=r^kf(\phi), \ \psi=r^lg(\phi)$. We refer to [2], pp 138-150, [4] and [5]. Observe the graphical presentations in [2], pp 154-156. (The integer m there is the same as M=N+1 here.) More information is given in Lemma 2, Section 5C.

Remark 2: Clearly, the theorem is valid and simplifies greatly for p=2, although this case was avoided at some step in the proof (subsection 4C). In this case, $\varphi + i\psi = f(z)$ is holomorphic and z is a holomorphic function of $\overline{\zeta'} = \sqrt[N]{f'(z)} = \sqrt[N]{\varphi_x - i\varphi_y}$ near some point z_0 , if z_0 is a zero of f'(z) of the N-th order. Therefore, $\varphi + i\psi$ is also a holomorphic function of $\overline{\zeta'}$ near $\zeta' = 0$ and can be expanded in a power series, just like z. The theorem produces the correct formulas for this.

5. Some consequences of the representation theorem

Certain implications of Theorem 4 deserve to be explained in some detail.

5.7 A. Behaviour of $|\nabla \varphi|$ near a critical point. Optimal exponents in Alessandrini's estimate.

Consider again the expansion $z(q',\theta') = \sum_{N+1}^{\infty} ...$. The modulus of the leading term is

$$\frac{A_{N+1}}{(\rho')^{N\beta_{N+1}}} \cdot \frac{N+1}{N(\beta_{N+1}-1)} (q')^{N(\beta_{N+1}-1)} h(\theta'-\theta_{N+1}),$$

where

$$h(\vartheta) = |\cos(N+1)\vartheta - \frac{iN\beta_{N+1}}{N+1}\sin(N+1)\vartheta|. \tag{22}$$

The expansion of $z(q', \theta')$ is uniformly convergent and the exponent $N(\beta_m - 1)$ is positive and strictly increasing with m. One easily finds (see the remark in subsection 4D) that

$$\lim_{q'\to+0}\frac{|z(q',\theta')|}{(q')^{N(\beta_{N+1}-1)}}=\frac{C}{(\rho')^{N\beta_{N+1}}}\cdot h(\theta'-\theta_{N+1}),$$

where $C=\frac{A_N+1(N+1)}{(\beta_{N+1}-1)N}>0$ and the convergence is uniform in θ' . But $(q')^N=q=|\nabla \varphi|$ and $(\rho')^N=\rho$, so that

$$\lim_{q' \to +0} \frac{|z(q', \theta')|}{|\nabla \varphi|^{\beta_{N+1}-1}} = \frac{C}{\rho^{\beta_{N+1}}} h(\theta' - \theta_{N+1}). \tag{23}$$

Corollary 1 of Theorem 4.

$$C_1|z|^{\frac{1}{\beta_N+1}-1} \le |\nabla \varphi| \le C_2|z|^{\frac{1}{\beta_N+1}-1}$$
 (24)

holds in a neighbourhood of the origin for suitable positive constants C_1 and C_2 . Further,

$$\beta_{N+1}-1=\frac{1}{2}\left[\sqrt{(p-2)^2+4(1+\frac{1}{N})^2(p-1)}-p\right].$$
 (25)

Recall that $N(\geq 1)$ is the order of the critical point and 1 . (Obviously, the corollary is correct also for <math>p = 2.)

G. Alessandrini [1] has proved interesting lower bounds for the gradient of a p-harmonic φ in a domain $\Omega \subset R^2$, too lengthy to be stated here. The bounds refer to a compact subset of Ω , and each critical point z_i contributes a factor $|z-z_i|^{Cm_i}$, where C>1 is a constant and $m_i\geq 1$ an integer. It follows from (24) that the best possible (i.e. smallest) exponent attached to a critical point of order N is $\frac{1}{\beta_{N+1}-1}$.

The following facts follow easily from (25): $\beta_{N+1}(p)$ is a strictly increasing function of p, for any fixed N, and strictly decreasing as a function of N, for any fixed p. (It is understood that p > 1 and $N \ge 1$.)

Further, $\beta_{N+1}(p)=2$ for N=1, p=2 and for N=2, p=9. Finally, $\lim_{p\to\infty}\beta_4(p)=\frac{16}{9}$. It follows that $\beta_{N+1}(p)>2$ if and only if N=1, p>2 or N=2, p>9.

The above observations, combined with (24), lead to the following:

5.8 Corollary 2.

Let p > 2. Then, in a neighbourhood of a critical point of order N = 1, grad φ can not satisfy a Hölder condition with an exponent greater than

$$\gamma(1,p) = \frac{2}{\sqrt{p^2 + 12(p-1)} - p} < 1.$$

Further, let p > 9. Then, near a critical point of order N = 2, grad φ can not satisfy a Hölder condition with an exponent greater than

$$\gamma(2,p) = \frac{2}{\sqrt{p^2 + 5(p-1)} - p} < 1.$$

5.9 B. Optimal Hölder continuity of the gradient of φ .

Consider again the function φ in Theorem 4, and recall from Section 2 that $\varphi \in C^{1,\alpha}$. The question is: for which α is $\nabla \varphi$ α -Höldercontinuous near z=0? Clearly one wants α as large as possible. Because of Theorem 4, the question is now reformulated: for which $\alpha>0$ are there constants C and $\rho^*>0$ such that

$$|(q_1')^N e^{iN\theta_1'} - (q_2')^N e^{iN\theta_2'}| \le C|z(q_1', \theta_1') - z(q_2', \theta_2')|^{\alpha}$$
(26)

for all (q_1', θ_1') , (q_2', θ_2') , satisfying $q_1' \leq \rho^*$, $q_2' \leq \rho^*$? The case where q_1' or q_2' is zero is covered by the previous subsection; see equation (24). It is no restriction here to assume that $0 < q_1' \leq q_2'$. Further, it is no restriction to assume $\rho' = 1$, so that

$$z(q', \theta') = \sum_{m=N+1}^{\infty} A_m Z_m(q', \theta').$$

The leading term here will first be analysed.

Apart from a constant factor $\neq 0$, it is

$$e^{iN\theta'}(q')^e[\cos(N+1)(\theta'-\theta_{N+1})-i\sigma\sin(N+1)(\theta'-\theta_{N+1})],$$

where $s = N(\beta_{N+1} - 1)$ and $\sigma = \frac{N\beta_{N+1}}{N+1}$ are positive. Clearly, it is no restriction to assume $\theta_{N+1} = 0$. (A change of θ_{N+1} simply means a twist in the z-plane). It will be sufficient to study the mapping $z_{N+1}(q', \theta') = (q')^s q(\theta')$, where

$$g(\theta') = e^{iN\theta'}[\cos(N+1)\theta' - i\sigma\sin(N+1)\theta'].$$

Define mappings $F_i: C \to C$, i = 1, 2, 3, by the formulas

$$\left\{egin{aligned} F_1(re^{iartheta})&=r^se^{iartheta}\ F_2(re^{iartheta})&=r|g(artheta)|e^{iartheta}\ F_3(re^{iartheta})&=rrac{g(artheta)}{|g(artheta)|}. \end{aligned}
ight.$$

Then $z_{N+1}(q',\theta') \equiv (F_3 \circ F_2 \circ F_1)(q'e^{i\theta'}).$

Clearly, $\left|\frac{\partial F_2}{\partial r}\right|$ and $\frac{1}{r}\left|\frac{\partial F_2}{\partial \vartheta}\right|$ are bounded, uniformly in r and ϑ . A similar statement holds for the inverse mapping, multiplication by $\frac{1}{|\varrho(\vartheta)|}$. Thus, F_2 is bi-Lipschitzian, i.e. there are positive constants K_1, K_2 such that

$$|K_1|z_1-z_2| \leq |F_2(z_1)-F_2(z_2)| \leq K_2|z_1-z_2|$$

for all z_1, z_2 .

Next, consider $F_3(re^{i\vartheta})$. It is trivial to verify that

$$\frac{d}{d\vartheta}(\arg g(\vartheta)) = N - \frac{1}{\frac{1}{\sigma(N+1)}\cos^2(N+1)\vartheta + \frac{\sigma}{N+1}\sin^2(N+1)\vartheta}.$$

But $\sigma = \frac{N\beta_{N+1}}{N+1}$, and $1 < \beta_{N+1} < \frac{(N+1)^2}{N^2}$, according to Lemma 1. Therefore, $\frac{1}{\sigma(N+1)} = \frac{1}{N\beta_{N+1}} < \frac{1}{N}$ and $\frac{\sigma}{N+1} = \frac{N\beta_{N+1}}{(N+1)^2} < \frac{1}{N}$. Thus $A = \max\left(\frac{1}{\sigma(N+1)}, \frac{\sigma}{N+1}\right) < \frac{1}{N}$, and $\frac{d}{d\vartheta}(\arg g(\vartheta)) \leq N - \frac{1}{A} < 0$. Let $\tau(\vartheta)$ denote the continuous branch of $\arg g(\vartheta)$ determined from $\tau(0) = 0$. Clearly, $\tau(\vartheta)$ is an odd function and $\tau'(\vartheta)$ is periodic, with period $\frac{\pi}{N+1}$. Further,

$$\tau(\vartheta) - N\vartheta = -\arg[\cos(N+1)\vartheta + i\sigma\sin(N+1)\vartheta].$$

Let ϑ increase from 0 to $\frac{\pi}{N+1}$ and conclude that $\tau(\frac{\pi}{N+1}) - \frac{N}{N+1}\pi = -\pi$, i.e. $\tau(\frac{\pi}{N+1}) = -\frac{\pi}{N+1}$. Hence, $\tau(\ell \cdot \frac{\pi}{N+1}) = -\ell \frac{\pi}{N+1}$ for any integer ℓ . In particular, $\tau(2\pi) = -2\pi$. The function $\tau(\vartheta)$ is a bi-Lipschitzian mapping of R^1 onto itself, and obviously $e^{i\vartheta} \to e^{i\tau(\vartheta)}$ defines a bi-Lipschitzian mapping of the unit circle onto itself. It follows that $F_3(re^{i\vartheta}) = re^{i\tau(\vartheta)}$ is a bi-Lipschitzian mapping, and consequently $F_3 \circ F_2$ also has this property. (Compare the argument for F_2 .)

In studying F_1 , we will use the following

Notation: $A(x,y,z,...) \approx B(x,y,z,...)$ means that there are positive constants C_1,C_2 such that

$$C_1B(x, y, z, ...) \leq A(...) \leq C_2B(...)$$

for all x, y, z, ... in question.

The elementary inequalities

$$\frac{1}{3}(\left|\frac{z}{|z|}-1\right|+1-|z|) \le |z-1| \le \left|\frac{z}{|z|}-1\right|+1-|z| \tag{27}$$

hold for $0 < |z| \le 1$. Therefore, $|z - 1| \approx \left| \frac{z}{|z|} - 1 \right| + 1 - |z|$.

Consider $F_1(q_j'e^{i\theta_j'})=(q_j')^se^{i\theta_j'}$ for j=1,2 and put $R=\frac{q_1'}{q_2'}$. Then $0< R \le 1$ and (27) gives

$$\begin{aligned} |F_1(q_1'e^{i\theta_1'}) - F_1(q_2'e^{i\theta_2'})| &= (q_2')^s |R^s e^{i(\theta_1' - \theta_2')} - 1| \\ &\approx (q_2')^s (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R^s) \\ &\approx (q_2')^s (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R). \end{aligned}$$

Since $F_3 \circ F_2$ is bi-Lipschitzian, it now follows that

$$|z_{N+1}(q'_1, \theta'_1) - z_{N+1}(q'_2, \theta'_2)| \approx (q'_2)^s (|e^{i(\theta'_1 - \theta'_2)} - 1| + 1 - R).$$
 (28)

(Recall that $z_{N+1}(\cdot) = F_3 \circ F_2 \circ F_1(\cdot)$.)

Similarly,

$$\begin{aligned} &|(q_1')^N e^{iN\theta_1'} - (q_2')^N e^{iN\theta_2'}| = (q_2')^N |(Re^{i(\theta_1' - \theta_2')})^N - 1| \\ &\leq N(q_2')^N |Re^{i(\theta_1' - \theta_2')} - 1| \approx (q_2')^N (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R). \end{aligned}$$

Note that the inequality here comes close to an equality, when $R \to 1$ and $(\theta'_1 - \theta'_2) \to 0$. A crucial question, coming from (26), is now: for which $\alpha > 0$ does there exist a C > 0 such that

$$C(q_2')^{s\alpha}(|e^{i(\theta_1'-\theta_2')}-1|+1-R)^{\alpha} \geq (q_2')^N(|e^{i(\theta_1'-\theta_2')}-1|+1-R)$$

holds for all θ_1', θ_2' and for all sufficiently small q_1', q_2' such that $0 < R = \frac{q_1'}{q_2'} \le 1$? The obvious answer is that C exists if and only if $s\alpha \le N$ and $\alpha \le 1$. Therefore, in the particular case where $A_m = 0$ for $m \ge N + 2$, it follows that $\alpha_{\max} = \min\left(\frac{1}{\beta_{N+1}-1}, 1\right)$. (See the remark of Th. 4.)

It remains to show that the result is the same in the general case. Recall that $z(q',\theta') = \sum_{N+1}^{\infty} A_m Z_m(q',\theta')$, and $A_{N+1} > 0$. Clearly, a relation like (28) also holds for $Z_{N+1}(q',\theta')$. Put $\Delta_m = Z_m(q'_1,\theta'_1) - Z_m(q'_2,\theta'_2)$ for any m. Next, $|\Delta_m|$ will be estimated from above, for $m \geq N+2$. Put $s_m = N(\beta_m - 1)$ and $g_m(\theta') = e^{iN\theta'} \left(\cos m(\theta' - \theta_m) - i \frac{N\beta_m}{m} \sin m(\theta' - \theta_m)\right)$, so that $Z_m(q',\theta') = \frac{im}{N(\beta_m - 1)} (q')^{s_m} g_m(\theta')$.

From now on, C denotes a positive constant independent of m, q_1' , q_2' , θ_1' and θ_2' , not necessarily the same every time it occurs. Since $\lim_{m\to\infty}\frac{\beta_m}{m}=\frac{\sqrt{p-1}}{N}$, it follows that

$$\left|\frac{im}{N(\beta_m-1)}\right| \leq C, \ \left|\frac{N\beta_m}{m}\right| \leq C \quad \text{and} \quad \max_{\theta'} |g_m(\theta')| \leq C.$$

Further,

$$\begin{aligned} |(q_1')^{s_m}g_m(\theta_1') - (q_2')^{s_m}g_m(\theta_2')| &\leq (q_1')^{s_m}|g_m(\theta_1') - g_m(\theta_2')| + \\ +|g_m(\theta_2')||(q_1')^{s_m} - (q_2')^{s_m}| &\leq (q_1')^{s_m}|g_m(\theta_1') - g_m(\theta_2')| + C(q_2')^{s_m}(1 - R^{s_m}). \end{aligned}$$

Elementary estimates give

$$|g_m(\theta_1') - g_m(\theta_2')| \leq C m|e^{i(\theta_1' - \theta_2')} - 1|$$

and $0 \le 1 - R^{s_m} \le C m(1 - R)$. Thus,

$$|(q_1')^{s_m}g_m(\theta_1') - (q_2')^{s_m}g_m(\theta_2')| \leq C m(q_2')^{s_m}(|e^{i(\theta_1'-\theta_2')} - 1| + 1 - R)$$

and

$$\sum_{N+2}^{\infty} |A_m \Delta_m| \le C(|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R) \cdot \sum_{N+2}^{\infty} m|A_m|(q_2')^{s_m}. \tag{29}$$

It is clear from above (see (28)) that

$$A_{N+1}|\Delta_{N+1}| \ge C_0(q_2')^{\delta_{N+1}}(|e^{i(\theta_1'-\theta_2')}-1|+1-R) \tag{30}$$

for some $C_0 > 0$. It is also evident that $S_m - S_{N+2} \ge \alpha m$ for $m \ge N+3$ and for some $\alpha > 0$. Since $m|A_m| \le C$, it is obvious that

$$\sum_{N+2}^{\infty} m|A_m|(q')^{s_m-s_{N+2}}$$

is bounded for (e.g.) $0 \le q' \le \frac{1}{2}$, and so

$$\sum_{N+2}^{\infty} m |A_m| (q_2')^{s_m} \leq C(q_2')^{s_{N+2}}.$$

Now (29) gives

$$\sum_{N+2}^{\infty} |A_m \Delta_m| \leq C(q_2')^{S_{N+2}} (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R),$$

and a comparison with (30) shows that

$$\sum_{N+2}^{\infty} |A_m \Delta_m| \leq \frac{1}{2} A_{N+1} |\Delta_{N+1}|$$

for $0 \le q_1' \le q_2' \le q^*$ and for some $q^* > 0$. It then follows that

$$|\sum_{N+1}^{\infty} A_m \Delta_m| \approx A_{N+1} |\Delta_{N+1}|$$

and therefore the best Hölder exponent for $\nabla \varphi$ is the same as in the previous case. The results will now be summarized in a basic theorem.

Theorem 5. Let 1 . For <math>N = 1, 2, 3, ... define the quantity $\gamma(N, p)$ by

$$\gamma(N,p) = \left\{ egin{array}{ll} rac{2}{\sqrt{p^2+12(p-1)}-p}, & ext{if $N=1$ and $p>2$} \ rac{2}{\sqrt{p^2+5(p-1)}-p}, & ext{if $N=2$ and $p>9$} \ 1, & ext{in all other cases.} \end{array}
ight.$$

Let $\varphi \not\equiv \text{const.}$ be p-harmonic in a neighbourhood of z_0 (two dimensions), and let z_0 be a critical point of order N. Then $\nabla \varphi$ satisfies a Hölder condition with the exponent $\gamma(N,p)$ in some neighbourhood of z_0 . Moreover, $\nabla \varphi$ can not satisfy a Hölder condition with a greater exponent than $\gamma(N,p)$ in any neighbourhood of z_0 .

Remark: $\gamma(N,p) < 1$ if and only if N = 1, p > 2 or N = 2, p > 9.

Corollary 1. The best Hölder exponent for $\nabla \varphi$, valid for any p-harmonic φ is

$$\alpha(p) = \begin{cases} rac{2}{\sqrt{p^2 + 12(p-1)} - p}, & \text{for } p > 2\\ 1, & \text{for } 1$$

Further, $\alpha(p)$ is strictly decreasing for $p \ge 2$ and $\lim_{p \to \infty} \alpha(p) = \frac{1}{3}$.

5.10 C. A converse of Theorem 4.

Now that the estimates (28) – (30) are available, one can easily obtain a converse of Theorem 4. Given $\rho'>0$, $N\geq 1$ and real sequences $\{A_m\}_{N+1}^{\infty}$, $\{\theta_m\}_{N+1}^{\infty}$, does there exist a corresponding p-harmonic function φ ? Let $\{A_m\}_{N+1}^{\infty}$ be a bounded sequence such that $A_{N+1}>0$. First, define $z=\sum_{N+1}^{\infty}A_m\ Z_m(q',\theta'),\ \varphi=\sum_{N+1}^{\infty}\cdots,\ \psi=\sum_{N+1}^{\infty}\cdots,\ exactly$ as in Th. 4, but with ρ' replaced by 1. Clearly, all three series converge uniformly for q' small enough. It is crucial to verify that the mapping $q'e^{i\theta'}\to z$ is one-to-one. The mapping properties of the leading term $A_{N+1}Z_{N+1}(q',\theta')$ are clear from the derivation of Theorem 5, and the estimates (28), (29), (30) are still valid. It is further evident that

$$\sum_{N+2}^{\infty} m|A_m|(q')^{s_m-s_{N+2}}$$

is bounded for $0 \le q' \le q'_0$, for some $q'_0 > 0$. (Recall that $s_m - s_{N+2} \ge \alpha m$ for $m \ge N+3$ and some $\alpha > 0$.) Thus, one still has

$$|\sum_{N+1}^{\infty} A_m \Delta_m| \geq \frac{1}{2} A_{N+1} |\Delta_{N+1}|$$

for $0 \le q_1' \le q_2' \le q^*$, for some $q^* > 0$. (Notation as before.) It follows that $q'e^{i\theta'} \to z$ is an injective mapping for q' small enough, and the image clearly covers a neighbourhood of z=0. The series for $z(q',\theta')$, $\varphi(q',\theta')$ and $\psi(q',\theta')$ stem from (13) and (16) in Subsection 4C and the systems (6) - (11) are therefore satisfied by construction. It is clear from the series for φ that $(q'\varphi_{q'})^2 + \varphi_{\theta'}^2 > 0$ for q' positive and small enough. (Again, domination by the leading term.) Next, Theorem 3 is applied, locally for small q' > 0. (The transition from (q',θ') to (q,θ) is trivial.) It follows that $\varphi = \varphi(z)$, $\psi = \psi(z)$ are p-harmonic and p'-harmonic, respectively, for $z \neq 0$ and small enough. The "singularity" at z=0 is clearly removable. Thus, the desired converse follows if $\rho' = 1$.

Consider then the case $\rho' \neq 1$. The relations

$$\begin{cases} z^* = \sum_{N+1}^{\infty} A_m Z_m(q'', \theta') \\ \varphi^* = \sum_{N+1}^{\infty} A_m (q'')^{N\beta_m} \sin m(\theta' - \theta_m) \\ \psi^* = \frac{N}{p-1} \sum_{N+1}^{\infty} A_m \frac{\beta_m}{m} (q'')^{N(p+\beta_m-2)} \cos m(\theta' - \theta_m) \end{cases}$$

represent a pair $(\varphi^*(z^*), \psi^*(z^*))$ of the desired type, as shown above, for q'' properly restricted. Now put $q'' = \frac{q'}{c'}$ and

$$\begin{cases} z = \frac{1}{(\rho')^N} \sum_{N+1}^{\infty} A_m Z_m(q'', \theta') = \frac{1}{(\rho')^N} z^* \\ \varphi = \varphi^* \\ \psi = (\rho')^{N(p-2)} \psi^*. \end{cases}$$

These formulas for z, φ and ψ agree with the formulas in Th. 4. On the other hand, $\varphi(z)$ is clearly obtained from $\varphi^*(z^*)$ by a homotethy, and $\psi(z)$ is obtained from $\psi^*(z^*)$ by homotethy + multiplication by constant. It follows that $(\varphi(z), \psi(z))$ is a pair as desired. Further details are left to the reader.

One should observe that the sequence $\{A_m\}_{N+1}^{\infty}$ in Th. 4 is $=O(m^{-k})$ for any k>0, whereas in the converse argument $\{A_m\}$ was only assumed to be bounded. The difference is due to the fact that the representation in Th. 4 holds up to $q'=\rho'$, whereas this need not be the case here. The following result has been proved:

Let $\rho'>0$ and let $N\geq 1$ be an integer. Let $\{A_m\}_{N+1}^\infty$ and $\{\theta_m\}_{N+1}^\infty$ be bounded real sequences and let $A_{N+1}>0$. Then the representation formulas in Theorem 4 define a p-harmonic function φ and a p'-harmonic stream function ψ , in some neighbourhood of z=0. Further, $\nabla \varphi=\nabla \psi=0$ at z=0. Consequently, Theorem 4 contains all information about the local behaviour of φ and ψ near a critical point.

5.11 D. Singular expansions for φ and ψ near a critical point.

Let φ and ψ be as in Theorem 4. Using that theorem and estimates from subsections 5A-B, we shall derive "singular expansions" for φ and ψ at z=0, of the form

$$\left\{ egin{aligned} arphi(re^{i\phi}) &= r^k f(\phi) + O(r^{k+\delta}) \ \psi(re^{i\phi}) &= r^\ell g(\phi) + O(r^{\ell+\delta}), \end{aligned}
ight.$$

for some $\delta > 0$. Here, $r^k f(\phi)$ is p-harmonic with $r^\ell g(\phi)$ a corresponding stream function, and thus p'-harmonic.

Choose r_0 such that Th. 4 is applicable for $|z| = r \le r_0$. Then also (24) holds. It is no essential restriction to assume that $\rho' = 1$.

For any $Q'=q'e^{i\theta'}$, with $q'\leq 1$, put $F(Q')=\sum_{N+1}^{\infty}A_mZ_m(q',\theta')$ and $G(Q')=A_{N+1}Z_{N+1}(q',\theta')$. Let z_1 be a variable point such that $0<|z_1|\leq r_0$. By Th. 4 there is a Q_1' with $q_1'\leq 1$ such that $F(Q_1')=z_1$. It is also clear from subsection 5B (the analysis of the leading term) that there is a $Q_2'=q_2'e^{i\theta_2'}$ such that $G(Q_2')=z_1$. It is further true (see (24)) that

$$C|z_1|^{1/s} \leq q_i' \leq C'|z_1|^{1/s}$$

for i = 1, 2 and for some positive constants C, C'. Here, as before, $s = N(\beta_{N+1} - 1) = s_{N+1}$. Trivial estimates give

$$|F(Q_1') - G(Q_1')| \le \sum_{N+2}^{\infty} |A_m Z_m(Q_1')| \le C(q_1')^{S_{N+2}}$$

and therefore

$$|G(Q_2') - G(Q_1')| = |F(Q_1') - G(Q_1')| \le C(q_1')^{S_{N+2}}.$$

But (28) implies that

$$|G(Q_2') - G(Q_1')| \ge C(\max_{i=1,2} q_i')^{S_{N+1}} (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R),$$

where $R = \frac{\min q_i'}{\max q_i'}$.

Consequently,

$$|e^{i(\theta_1'-\theta_2')}-1|+1-R \le C(q_1')^{S_{N+2}-S_{N+1}}.$$
 (31)

For any $Q' = q'e^{i\theta'}$, put

$$H(Q') = A_{N+1}(q')^{N\beta_{N+1}}\sin(N+1)(\theta'-\theta_{N+1}),$$

and

$$I(Q') = \frac{N}{p-1} A_{N+1} \frac{\beta_{N+1}}{N+1} (q')^{N(\beta_{N+1}+p-2)} \cos(N+1) (\theta'-\theta_{N+1}).$$

These are the leading terms in the expansions of φ and ψ , and Th. 4 gives

$$|\varphi(z_1) - H(Q_1')| \le C(q_1')^{N\beta_{N+2}}$$
 (32)

$$|\psi(z_1) - I(Q_1')| \le C(q_1')^{N(\beta_{N+2}+p-2)}$$
(33)

Further (compare subsection 5B),

$$|H(Q_1') - H(Q_2')| \le C(\max q_i')^{N\beta_{N+1}} (|e^{i(\theta_1' - \theta_2')} - 1| + 1 - R)$$

and

$$|I(Q_1') - I(Q_2')| \le C(\max q_i')^{N(\beta_{N+1}+p-2)} (|e^{i(\theta_1'-\theta_2')} - 1| + 1 - R).$$

Combination with (31) gives

$$|H(Q_1') - H(Q_2')| \le C(\max q_i')^{N\beta_{N+2}}$$

and

$$|I(Q_1') - I(Q_2')| \le C(\max q_i')^{N(\beta_{N+2}+p-2)}$$

Finally, the last two estimates will be combined with (32) and (33). Write $Q_2' = G^{-1}(z_1)$ and recall that $q_1' \approx q_2'$. We thus find

$$\begin{cases} |\varphi(z_1) - (H \circ G^{-1})(z_1)| \le C(q_1')^{N\beta_{N+2}} \\ |\psi(z_1) - (I \circ G^{-1})(z_1)| \le C(q_1')^{N(\beta_{N+2}+p-2)} \end{cases}$$
(34)

or, equivalently,

$$\begin{cases} |\varphi(z_1) - (H \circ G^{-1})(z_1)| \leq C|z_1|^{\frac{\beta_{N+2}}{\beta_{N+1}-1}} \\ |\psi(z_1) - (I \circ G^{-1})(z_1)| \leq C|z_1|^{\frac{\beta_{N+2}+p-2}{\beta_{N+1}-1}}. \end{cases}$$

It only remains to interpret the results obtained.

The following lemma reviews the basic facts concerning G(Q'), H(Q') and I(Q').

Lemma 2. Consider the mapping $G: C \to C$, given by

$$G(q'e^{i\theta'}) = A_{N+1}Z_{N+1}(q',\theta'),$$

with $Z_{N+1}(...)$ as in Theorem 4, and functions $(C \to R^1)$ given by

$$H(q'e^{i\theta'}) = A_{N+1}(q')^{N\beta_{N+1}}\sin(N+1)(\theta'-\theta_{N+1}),$$

and

$$I(q'e^{i\theta'}) = A_{N+1} \frac{N\beta_{N+1}}{(p-1)(N+1)} (q')^{N(\beta_{N+1}+p-2)} \cos(N+1) (\theta'-\theta_{N+1}).$$

Then G is a homeomorphism $C \leftrightarrow C$ such that the function $\varphi_0(z) = (H \circ G^{-1})(z)$ is p-harmonic on C, the function $\psi_0(z) = (I \circ G^{-1})(z)$ is p'-harmonic on C, and ψ_0 is a stream function of φ_0 . Further, $\varphi_0(z)$ and $\psi_0(z)$ are of the form

$$\begin{cases} \varphi_0(re^{i\phi}) = r^k f(\phi) \\ \psi_0(re^{i\phi}) = r^\ell g(\phi), \end{cases}$$

where k > 1, $\ell > 1$. Moreover, the functions $f(\phi)$ and $g(\phi)$ are real analytic and have parametric integral representations. Finally, $(\varphi_x + i\varphi_y)(z) = (G^{-1}(z))^N$ for all $z \in C$ and z = 0 is a critical point of order N for φ and ψ .

Proof: It is clear from section 5B (in particular the analysis of the leading term) that G is a homeomorphism $C \leftrightarrow C$. Thus, φ_0 and ψ_0 are defined and continuous on the whole z-plane. For $q' \neq 0$, i.e. for $z \neq 0$, H and H are locally well-defined functions of $qe^{i\theta} = (q'e^{i\theta'})^N$. The expressions for G, H, I are in complete agreement with [4], Th. 4, or [5], Th. 8, provided one chooses $\lambda = \frac{(N+1)^2}{N^2}$ and $\beta = \beta_{N+1}$ there. We are thus allowed to conclude that $\varphi_0(z)$ is p-harmonic, that $\psi_0(z)$ is p-harmonic, and that ψ_0 is a stream function for φ_0 , provided $z \neq 0$. The relation $(\varphi_x + i\varphi_y)(z) = qe^{i\theta}$ also follows from [4] or [5], and so

$$(\varphi_x + i\varphi_y)(z) = (q'e^{i\theta'})^N = (G^{-1}(z))^N.$$

Clearly, the "singularity" at z=0 is removable, so $\Delta_p(\varphi_0)=\Delta_{p'}(\psi_0)=0$ on C. It follows from $\varphi_x+i\varphi_y=(G^{-1}(z))^N$ that z=0 is a critical point of the order N. Finally, it follows from [4], Lemma 5, that φ_0 and ψ_0 have the form stated above. Concerning the parametric representations of $f(\phi)$ and $g(\phi)$ we refer to [4], Th. 2. (The assumption p>2 made there is no essential restriction at this moment). See also [2], Lemma 2. This completes the proof.

The next theorem is the final result of this paper.

Theorem 6. Let $\varphi \not\equiv const.$ be p-harmonic (1 in a neighbourhood of <math>z = 0. Let ψ be a stream function, and suppose that $\varphi(0) = \psi(0) = 0$. Suppose further that z = 0 is a critical point of order $N \ge 1$. Then there are "singular expansions", valid near z = 0:

$$\begin{cases} \varphi(re^{i\phi}) = r^k f(\phi) + O(r^{k+\delta}) \\ \psi(re^{i\phi}) = r^{\ell} g(\phi) + O(r^{\ell+\delta}) \end{cases}$$

where k > 1, $\ell > 1$ and $\delta > 0$. Further, $\varphi_0 = r^k f(\phi)$ is p-harmonic and $\psi_0 = r^\ell g(\phi)$ is p'-harmonic on C. Finally, ψ_0 is a stream function of φ_0 .

Proof: Combine Lemma 2 with the estimates (34) and (35). The theorem follows.

Remark 1: It is evident that $k=\frac{\beta_{N+1}}{\beta_{N+1}-1}$ and $\ell=\frac{\beta_{N+1}+p-2}{\beta_{N+1}-1}$. Moreover, one can choose $\delta=\frac{\beta_{N+2}-\beta_{N+1}}{\beta_{N+1}-1}$. Also, using (31) one easily shows that $\nabla \varphi(re^{i\phi})=\nabla \varphi_0(re^{i\phi})+O(r^{k-1+\delta})$, with the same δ . Observe also that $k-1=\frac{1}{\beta_{N+1}-1}$, i.e. (see subsection 5B) $\alpha_{\max}=\min(k-1,1)$, as expected. Remark 2: Singular expansions of a p-harmonic function φ near a corner of its domain of definition were obtained by P. Tolksdorf [20], [21] and M. Dobrowolski [11]. These results are valid in R^n . On the other hand, conditions on the sign of φ near the corner are needed. See also [4], Section 4 and Theorem 5, in particular Remark 1. Clearly, that theorem gives a

simultaneous singular expansion of φ and ψ , as in the above theorem.

During the preparation of this report the author was informed about recent work by T. Iwaniec and J. Manfredi: "Best exponents for p-harmonic functions on the plane". The work by Iwaniec and Manfredi contains a corollary, similar to but not identical with Corollary 1 of Theorem 5. (It does not follow, if p>2, from the work of I. and M. that $\alpha(p)$ itself is a valid Hölder exponent for $\nabla \varphi$.) I. and M. obtain very interesting results on the integrability of second-order derivatives of φ , by using the hodograph method in a form quite different from ours. They do not derive a representation for φ , and the corollary is the only overlap with the present work.

6. References

- Alessandrini, G.: Critical Points of Solutions to the p-Laplace Equation in Dimension Two. Bollettino U.M.I. (7) 1-A (1987), 239-246
- [2] Aronsson, G.: Construction of singular solutions to the p-harmonic equation and its limit equation for p = ∞. Manuscripta Mathematica 56 (1986), 135-158
- [3] Aronsson, G.: A stream function technique for the p-harmonic equation in the plane. Preprint 1986, No 3, Lulea University, May 1986
- [4] Aronsson, G.: On certain p-harmonic functions in the plane. Manuscripta Mathematica 61 (1988), 79-101
- [5] Aronsson, G., Lindqvist, P.: On p-harmonic functions in the plane and their stream functions. J. Differential Equations 74:1 (1988), 157-178
- [6] Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, New York 1953
- [7] Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics III. John Wiley & Sons, Inc., New York 1958
- [8] Bojarski, B., Iwaniec, T.: p-harmonic equation and quasiregular mappings. Preprint (SFB 72) 617 (1983), Universität Bonn
- [9] Diaz, J.I.: Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Pitman Publishing, London 1985
- [10] DiBenedetto, E.: C^{1+α} local regularity of weak solutions of degenerate elliptic equations. Nonlinear Analysis, Theory, Methods & Applications 7 (1983), 827-850
- [11] Dobrowolski, M.: On finite element methods for nonlinear elliptic problems on domains with corners. Springer Lecture Notes in Mathematics 1121, 85-103, Berlin-Heidelberg-New York 1986
- [12] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam 1976
- [13] Heins, M.: Complex Function Theory. Academic Press, New York 1968

- [14] Kichenassamy, S., Véron, L: Singular Solutions of the p-Laplace Equation. Math. Ann. 275 (1986), 599-615
- [15] Lewis, J.L.: Capacitary functions in convex rings. Archive for Rational Mechanics and Analysis 66 (1977), 201-224
- [16] Lewis, J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana University Mathematics Journal 32 (1983), 849–858
- [17] Manfredi J.: p-Harmonic Functions in the Plane. Proc. Amer. Math. Soc. 103:2 (1988), 473-479
- [18] Pelissier, M.C.: Sur quelques problèmes non lineaires en glaciologie. Thèse, Publ. Math. d'Orsay 110, 1975
- [19] Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs, 1967. (New issue by Springer Verlag 1984.)
- [20] Tolksdorf, P.: Zum Dirichletproblem für quasilineare Gleichungen in Gebieten mit konischen Randpunkten. Doctoral dissertation, University of Bonn, 1982
- [21] Tolksdorf, P.: Invariance properties and special structures near conical boundary points. Springer Lecture Notes in Mathematics 1121, 308-318, Berlin-Heidelberg-New York 1986
- [22] Véron, L.: Singularities of some quasilinear equations. To appear in Nonlinear diffusion equations and their equilibrium states (Editors: Ni, Peletier and Serrin), Springer Verlag
- [23] Wolff, T.H.: Gap series constructions for the p-Laplacian. To appear

Gunnar Aronsson Department of Mathematics Linköping University S-581 83 Linköping, Sweden

(Received May 29, 1989)