

Werk

Titel: Nonstandard arithmetic of iterated polynomials.

Autor: Yasumoto, Masahiro

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0066 | log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

NONSTANDARD ARITHMETIC OF ITERATED POLYNOMIALS

MASAHIRO YASUMOTO

Let K be an algebraic number field of finite degree and f(X,T) a polynomial over K. For each $\varphi(X) \in \mathbf{Z}[X]$, we denote by $E(\varphi)$ the set of all integers a with $\varphi^m(a) = \varphi^n(a)$ for some $m \neq n$. In this paper, we give a condition for a polynomial $\varphi(X) \in \mathbf{Z}[X]$ to satisfy the following; If for $n \in N$, there exist $r \in K$ and $a \in \mathbf{Z} - E(\varphi)$ such that $f(r, \varphi^n(a)) = 0$, then there exists a rational function g(X) over K and $k \in \mathbb{N}$ such that $f(g(T), \varphi^k(T)) = 0$.

1. Introduction

Let $\varphi(X)$ be a polynomial with integer coefficients and a an integer. In this paper, we are concerned with the sequence of integers,

$$a, \varphi(a), \varphi(\varphi(a)), \varphi(\varphi(\varphi(a))), \ldots, \varphi^{n}(a), \ldots (n \in \mathbb{N}).$$

Let $\varphi(X) = X + k$ where k is an integer, then the sequence $\varphi^n(a) = nk + a \ (n \in \mathbb{N})$ is an arithmetical progression. In this case, the following theorem is known.([1],[6],[7])

THEOREM. Let K be an algebraic number field of finite degree and $f(X, T_1, \ldots, T_m)$ be a polynomial over K. If for every m arithmetical progressions P_i $(1 \leq i \leq m)$ of integers, there exist integers $t_i \in P_i$ $(1 \leq i \leq m)$ and an $r \in K$ such that

$$f(r,t_1,\ldots,t_m)=0,$$

then there exists a rational function $g(T_1, \ldots, T_m)$ over K such that

$$f(g(T_1,\ldots,T_m),T_1,\ldots,T_m)=0.$$

If $\varphi(X) = cX$, then the sequence $\varphi^n(a) = ac^n$ $(n \in \mathbb{N})$ is a geometrical progression. In the previous paper [8], we proved the following theorem by using iterated enlargements.

THEOREM. Let K be an algebraic number field of finite degree and $f(X, T_1, \ldots, T_m)$ be a polynomial over K. Assume there exist $c_1, \ldots, c_m \in K$ other than 0 and roots of unity such that for any m integers n_1, \ldots, n_m , there exists an $r \in K$ with

$$f(r, c_1^{n_1}, \ldots, c_m^{n_m}) = 0.$$

Then there exists a rational function $g(T_1, \ldots, T_m)$ over K and m integers k_1, \ldots, k_m not more than d such that

$$f(g(T_1,\ldots,T_m),T_1^{k_1},\ldots,T_m^{k_m})=0$$

where d is the X-degree of $f(X, T_1, \ldots, T_m)$.

Next we consider a polynomial $\varphi(X)$ of degree at least 2 which does not satisfy the following condition.

(I) There exist polynomials $\psi(X)$, $\Phi(X)$ and $\Psi(X)$ over K such that g.c.d. $(\deg(\varphi), \deg(\psi)) = 1$, $\deg(\psi) \geq 2$ and $\varphi(\Phi(X)) = \psi(\Psi(X))$.

Polynomials satisfying the condition (I) are characterized by Ritt[4] and Fried[2, Theorem 3]. Our purpose of this paper is to prove the the following theorem similar to above theorems.

THEOREM 1. Let f(X,T) be a polynomial over an algebraic number field K of finite degree. Assume that $\varphi(X) = cX^d + h(X) \in \mathbf{Z}[X]$ is a polynomial of degree at least 3 which does not satisfy the condition (I) where $\deg(h) \leq d-3$ and $c \neq 0$. If for any $n \in \mathbb{N}$, there exists an $a \in \mathbf{Z} - E(\varphi)$ and $r \in K$ such that

$$f(r, \varphi^n(a)) = 0,$$

then there exist a rational function g(T) over K and $k \in \mathbb{N}$ such that

$$f(g(T), \varphi^k(T)) = 0.$$

In Theorem 1, the assumption that $\varphi(X)$ does not satisfy the condition (I) cannot be eliminated. For example, let us consider $\varphi(X) = X^3$ and $f(X,T) = X^2 - T$. Then $\varphi(X^2) = X^6 = \varphi(X)^2$ satisfies the condition (I). On the other hand, for any $n \in \mathbb{N}$, $f(a^{3^n}, \varphi^n(a^2)) = (a^{3^n})^2 - (a^2)^{3^n} = 0$. But for any $k \in \mathbb{N}$, there is no rational function g(X) such that $f(g(X), \varphi^k(X)) = g(X)^2 - X^{3^k} = 0$. We will prove Theorem 1 by using nonstandard method and no proof of Theorem 1 without nonstandard method is known. It is also not known wether Theorem 1 can be generalized for polynomials $f(X, T_1, \ldots, T_m)$ of many variables.

2. Proof of Theorem 1

Let *K be an enlargement of an algebraic number field K of finite degree and $t \in {}^*K - K$. We assume the reader is familiar with non-standard arithmetic(c.f.[5]). Let Ω_t denote the algebraic closure of K(t) within *K . First we state a proposition which will be proved later and show how Theorem 1 follows from it.

PROPOSITION 1. Let $\varphi(X)$ be as in Theorem 1. Then for every $s \in {}^*\mathbf{N} - \mathbf{N}$ and every $a \notin E(\varphi)$,

$$\Omega_{\varphi^{s}(a)} = \bigcup_{i \in \mathbf{N}} K(\varphi^{s-i}(a)).$$

[Proof of Theorem 1] By the assumption of Theorem 1, there exists $s \in {}^*\mathbf{N} - \mathbf{N}, a \in {}^*\mathbf{Z} - {}^*E(\varphi)$ and $x \in {}^*K$ such that

$$f(x, \varphi^s(a)) = 0.$$

By Proposition 1, $x \in K(\varphi^{s-k}(a))$ for some $k \in \mathbb{N}$. Let g(X) be a rational function over K with $x = g(\varphi^{s-k}(a))$. Then

$$f(g(\varphi^{s-k}(a)), \varphi^k(\varphi^{s-k}(a))) = 0.$$

Since $s - k \in {}^*\mathbf{N} - \mathbf{N}$ and $a \notin E(\varphi)$, then $\varphi^{s-k}(a) \in {}^*\mathbf{Z} - \mathbf{Z}$, hence $\varphi^{s-k}(a)$ is transcendental over K, therefore

$$f(g(T), \varphi^k(T)) = 0$$

as contended.

3. Algebraic extensions in *K

Now we turn to the proof of Proposition 1. In the following, we assume as in Theorem 1 that $\varphi(X) = cX^d + h(X) \in \mathbf{Z}[X]$ is a polynomial of degree at least 3 which does not satisfy the condition (I) where $\deg(h) < d-3$ and $c \neq 0$. First let us recall the nonstandard proof of the theorem of Siegel and Mahler. ([5]) A prime divisor of K is defined to be an equivalence class of nontrivial valuations of K. Let V be the set of all prime divisors of K and *V its enlargement. An element $\mathfrak{p} \in {}^*V$ is called an arithmetical prime. Let F be an algebraic function field of one variable over K which is included in *K. By a functional prime P, we mean an equivalence class of nontrivial valuations of F which is trivial on K. A functional prime P is called exceptional if there exists an $x \in F \subset {}^*K$ such that P is a pole of x and x admits standard arithmetical primes only in its denominator. For example, let x be a nonstandard algebraic integer. Then x admits archimedean primes only in its denominator. Since the set of all archimedean primes in V is finite, it is not enlarged, in other words, every archimedean prime in *V is standard. Therefore every functional prime which is a pole of x is exceptional. In their paper[5], A. Robinson and P. Roquette proved the following nonstandard equivalent of the theorem of Siegel and Mahler.

THEOREM 2 ([5, Theorem 1.1,5.4 and Remark 5.6]). Assume that there is a nonstandard $x \in F$ which admits standard primes only in its denominator. Then F is a rational function field. If P_i $(1 \le i \le m)$ are distinct exceptional functional primes, then

$$\sum_{i=1}^m \deg(P_i) \le 2.$$

The next lemma is easy to prove and has been proved in [10], so we omit its proof.

LEMMA 1 ([10, Lemma 2]). Let Q (resp. R) be the polar prime (resp. the zero prime) of x in a rational function field K(x). Let $t \in K(x)$. (1) If $[t]_{\infty} = dQ$ for some $d \in \mathbb{N}$, then $t = \psi(x)$ for some polynomial $\psi(X) \in K[X]$ of degree d where $[t]_{\infty}$ denotes the polar divisor of t.

(2) Let d > m > 0. If $[t]_{\infty} = mR + (d-m)Q$, then there is a polynomial $\psi(X) \in K[X]$ of degree d such that $t = \psi(x)/x^m$ and $\psi(0) \neq 0$.

The following well known theorem is used to prove Proposition 1.

THEOREM 3. Let K be a field and let $\Phi(X)$ be a polynomial over K such that g.c.d. $(\operatorname{char}(K) = 0, \operatorname{deg}(\Phi(X))) = 1$ or $\operatorname{char}(K) = 0$. If L and M are fields intermediate between K(X) and $K(\Phi(X))$, then

$$[\,L\cap M\,:\,K(\Phi(X))\,]\,=\,\mathrm{g.c.d.}([\,L\,:\,K(\Phi(X))\,]\,\,,\,\,[\,M\,:\,K(\Phi(X))]$$
 and

$$[K(X) : L \cdot M] = \text{g.c.d.}([K(X) : L], [K(X) : M]).$$

For the proof of Theorem 3, refer to [3, Theorem 3.6] or [7, Theorem 5].

[Proof of Proposition 1] Let $s \in {}^*\mathbf{N} - \mathbf{N}$ and $a \notin E(\varphi)$. Let $y \in {}^*K$ be algebraic over $K(\varphi^s(a))$. We are going to prove $y \in K(\varphi^{s-i}(a))$ for some $i \in \mathbf{N}$. Assume otherwise, then

$$\left[\bigcup_{i\in\mathbf{N}}K(y,\varphi^{s-i}(a))\ :\ \bigcup_{i\in\mathbf{N}}K(\varphi^{s-i}(a))\right]\ >\ 1.$$

Let d_y be the left side of the above inequality and let $k \in \mathbb{N}$ be such that $d_y = [K(y, \varphi^{s-k}(a)) : K(\varphi^{s-k}(a))]$. Let $t_i = \varphi^{s-k-i}(a)$ and let P_i be the polar prime of t_i in the rational function field $K(t_i)$. Since $\varphi(X)$ is a polynomial of degree d, we have $P_i = [t_i]_{\infty} = [\varphi(t_{i+1})]_{\infty} = d[t_{i+1}]_{\infty} = dP_{i+1}$.

Since $\varphi(X) \in \mathbf{Z}[X]$ and $a \notin E(\varphi)$, we get $t_i \in {}^*\mathbf{Z} - \mathbf{Z}$, hence P_i is exceptional. Let F be a finite algebraic extension of $K(t_i)$ within *K .

Then every extension of P_i in F is also exceptional ([5, Lemma 6.1]). Therefore by Theorem 2, we have to consider the following three cases;

- (i) P_0 has a unique extension Q_1 of degree 1 in $K(t_1, y)$.
- (ii) P_0 has two extensions Q_1, R_1 of degree 1 in $K(t_1, y)$.
- (iii) P_0 has a unique extension of degree 2 in $K(t_1, y)$.

First we consider the case (i). Let Q_0 be the restriction of Q_1 to $K(t_0,y)$. Then Q_0 is an exceptional prime of degree 1 and a unique extension of P_0 in $K(t_0,y)$. Hence $P_0 = d_yQ_0 = dP_1 = dd_yQ_1$. By Theorem 2 and Lemma 1, there exist $x_0 \in K(t_0,y)$, $x_1 \in K(t_1,y)$ and polynomials $\psi(X)$, $\Phi(X)$ and $\Psi(X)$ of degree d_y , d_y and d respectively such that $[x_0]_{\infty} = Q_0$, $[x_1]_{\infty} = Q_1$, $K(t_0,y) = K(x_0)$, $K(t_1,y) = K(x_1)$, $t_0 = \psi(x_0)$, $x_0 = \Psi(x_1)$ and $t_1 = \Phi(x_1)$. Hence we have $t_0 = \psi(\Psi(x_1)) = \varphi(\Phi(x_1))$. Since x_1 is transcendental over K, we get $\psi(\Psi(X)) = \varphi(\Phi(X))$. Since $\deg(\psi) = d_y > 1$ and we are assuming that φ does not satisfy the condition (I),

$$g.c.d.(deg(\varphi), deg(\psi)) > 1.$$

Then by Theorem 3,

$$[K(t_0, y) \cap K(t_1) : K(t_0)] = \text{g.c.d.}(\deg(\varphi), \deg(\psi)) > 1.$$

Therefore,

$$d_{y} = \left[\bigcup_{i \in \mathbb{N}} K(\varphi^{s-i}(a), y) : \bigcup_{i \in \mathbb{N}} K(\varphi^{s-i}(a)) \right]$$

$$= \left[\bigcup_{i \in \mathbb{N}} K(t_{i}, y) : \bigcup_{i \in \mathbb{N}} K(t_{i}) \right]$$

$$\leq \left[K(t_{0}, y) : K(t_{0}, y) \cap K(t_{1}) \right]$$

$$< \left[K(t_{0}, y) : K(t_{0}) \right] = \left[K(\varphi^{s-k}(a), y) : K(\varphi^{s-k}(a)) \right] = d_{y},$$

this is a contradiction.

Next we consider the case (ii). Since P_1 is a unique extension of P_0 in $K(t_1)$, Q_1 and R_1 are extensions of P_1 . Then

$$P_1 = (d_y - m)Q_1 + mR_1$$

for some $m \in \mathbb{N}$ with $0 < m < d_y$. Without loss of generality, we may assume $d_y - m \ge m$. Let $n \in \mathbb{N}$ be such that $d^n > d_y$. Since Q_1 and R_1

are exceptional, by Theorem 2 Q_1 (resp. R_1) has a unique extension Q' (resp. R') of degree 1 in $K(t_{n+1}, y)$. Then P_{n+1} is the restriction of Q' and R' to $K(t_{n+1})$. Since $P_1 = d^n P_{n+1}$, $Q_1 = d^n Q'$ and $R_1 = d^n R'$, we have

$$P_{n+1} = (d_y - m)Q' + mR'.$$

By Theorem 2, there exists a $z \in K(t_{n+1}, y)$ such that $K(z) = K(t_{n+1})$ and [z] = R' - Q' where [z] denotes the principal divisor of z. Since $[t_1]_{\infty} = P_1$ and $[t_1]_{\infty} = P_{n+1}$, there exist, by Lemma 1, polynomials $\psi_1(X)$ and $\psi(X)$ of degree d_y such that

$$t_1 = \frac{\psi_1(x_1)}{x_1^m}, \qquad t_{n+1} = \frac{\psi(z)}{z^m}.$$

On the other hand, since $[x_1] = R_1 - Q_1 = d^n(R' - Q') = d^n[z]$, there is a $b \in K$ such that $x_1 = bz^{d^n}$ and $b \neq 0$, hence

$$t_1 = \varphi^n(t_{n+1}) = \varphi^n\left(\frac{\psi(z)}{z^m}\right) = \frac{\psi_1(x_1)}{x_1^m} = \frac{\psi_1(bz^{d^n})}{b^mz^{md^n}}.$$

Since z is transcendental over K, we have

$$b^m X^{md^n} \varphi^n \left(\frac{\psi(X)}{X^m} \right) = \psi_1(bX^{d^n}) \tag{1}$$

Let $\psi(X) = rX^{d_y} + \lambda(X)$ where $\lambda(X)$ is a polynomial of degree less than d_y . Let $k = \deg(\lambda(X))$. Since $\varphi(X) = cX^d + h(X)$ with $\deg(h) \le d-3$, we have $\varphi^n(X) = c^n X^{d^n} + \mu(X)$ for some polynomial $\mu(X)$ with $\deg(\mu) \le d^n - 3$. Let $j = \deg(\mu)$. Then

$$\deg\left(X^{md^n}\mu\left(\frac{rX^{d_y}+\lambda(X)}{X^m}\right)\right) = md^n + d_yj - mj.$$

On the other hand,

$$X^{md^n} \left(\frac{rX^{d_y} + \lambda(X)}{X^m} \right)^{d^n} = r^{d^n} X^{d_y d^n} + \theta(X)$$

for some polynomial $\theta(X)$ with $\deg(\theta) = d_y(d^n - 1) + k$. Since $d^n - 2 > j$ and $d_y - m > m$, we get

$$\deg(\theta) = d_y(d^n - 1) + k > \frac{d_y(d^n + j)}{2} \ge \frac{d_y(d^n - j)}{2} + d_y j$$

 $\ge md^n + d_y j - mj.$

Hence

$$b^{m}X^{md^{n}}\varphi^{n}\left(\frac{\psi(X)}{X^{m}}\right) = b^{m}r^{d^{n}}c^{n}X^{d_{y}d^{n}} + \xi(X)$$
 (2)

for some polynomial $\xi(X)$ with $\deg(\xi) = \deg(\theta) = d_y(d^n - 1) + k$. Since $d^n > d_y$ and $k < d_y$, we have

$$(d_y - 1)d^n < \deg(\xi) < d_y d^n.$$

Combining equations (1) and (2), we get a contradiction because any monomial in $\psi_1(bX^{d^n})$ is of degree id^n for some $i \in \mathbb{N}$.

The case (iii) can be reduced to the case (ii) by taking a quadratic extension of K. This completes the proof of Proposition 1.

Remark. In order to generalize Theorem 1 for polynomials $f(X, T_1, \ldots, T_m)$ of many variables it is necessary to prove that the number k in Theorem 1 is bounded by a constant which is determined by the degree of f(X,T) and independent from its coefficients. For example, if we can prove $k \leq \deg(f)$, then Theorem 1 can be generalized by the same way as in [8]. But the proof of Theorem 1 gives no information about the number k.

REFERENCES

- 1. DAVENPORT, H., LEWIS, D.J., SCHINZEL, A., Polynomials of certain special types, Acta Arith. 9 (1964), 107-116
- FRIED, M., On a theorem of Ritt and related diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55
- FRĪED, M., MACRAE, R. E., On the invariance of chains of fields, Illinois J. Math. 13 (1969), 165-171
- 4. RITT, J. F., Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66
- 5. ROBÍNSON, A., ROQUETTE, P., On the finiteness theorem of Siegel and Mahler concerning diophantine equation, J. Number Theory 7 (1975), 121-176

- 6. SCHINZEL, A., On Hilbert's irreducibility theorem, Ann. Polon. Math. 16 (1965), 333-340
- 7. ————, "Selected topics on polynomials," Michigan, 1982.
 8. YASUMOTO, M., Nonstandard arithmetic of polynomial rings, Nagoya Math. J. 105 (1987), 33-37
- , Hilbert's irreducibility sequences and nonstandard arithmetic, J. Number Theory 26 (1987), 274-285
- 10. , Algebraic extensions in nonstandard models and Hilbert's irreducibility theorem, J. Symbolic Logic 53 (1988), 470-480

Department of Mathematics College of General Education Chikusa-ku Nagoya 464-01 JAPAN

(Received September 23, 1987; in revised form November 27, 1989)