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NONSTANDARD ARITHMETIC OF ITERATED POLYNOMIALS

MASAHIRO YASUMOTO

Let K be an algebraic number field of finite degree and f(X,T") a polyno-
mial over K. For each ¢(X) € Z[X], we denote by E(¢p) the set of all integers
a with ¢™(a) = ¢™(a) for some m # n. In this paper, we give a condition
for a polynomial ¢(X) € Z[X] to satisfy the following; If for n € N, there
exist 7 € K and a € Z — E(¢p) such that f(r, ¢"(a)) = 0, then there exists
a rational function g(X) over K and k € N such that f(g(T), ¢*(T)) = 0.

1. Introduction

Let ¢(X) be a polynomial with integer coefficientsand a an integer.
In this paper, we are concerned with the sequence of integers,

a, p(a), p(p(a)), p(p(p(a))), ... ,¢"(a),... (n€N).

Let (X) = X + k where k is an integer, then the sequence ¢"(a) =
nk+a (n € N) is an arithmetical progression. In this case, the following
theorem is known.([1],[6],[7])

THEOREM. Let K be an algebraic number field of finite degree and
f(X,Th,...,Tn) be a polynomial over K. If for every m arithmeti-
cal progressions P; (1 < i < m) of inlegers, there exist integers
ti€ P, (1<i<m)and anr € K such that

f(T,tl,... ,tm) = 0,
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then there ezists a rational function g(T1,...,Ty) over K such that

flg(Ty,-.., Tm), T, ... , Tm) = 0.

If o(X) = cX, then the sequence ¢"(a) = ac™ (n € N) is a geo-
metrical progression. In the previous paper [8], we proved the following
theorem by using iterated enlargements.

THEOREM. Let K be an algebraic number field of finile degree and
f(X,T1,...,Tm) be a polynomial over K.  Assume there exist
€1,-..,¢m € K other than 0 and roots of unily such that for any m
inlegers ny,... ,Ny,, there exists an r € K with

flr, ey o) =0,

Then there exists a rational function g(T1,...,Ty) over K and m in-
tegers kq,... ,kpy not more than d such that

F@(Ty,... , Tn), TR, ... TEm)y =0

where d 13 the X -degree of f(X,Th,... ,Tm).

Next we consider a polynomial ¢(X) of degree at least 2 which does
not satisfy the following condition.
(I) There exist polynomials Y(X), ®(X) and ¥(X) over K such that

g-c.d.(deg(p), deg(¥)) =1, deg(¥) > 2 and p(2(X)) = (¥ (X)).

Polynomials satisfying the condition (I) are characterized by Ritt[4]
and Fried[2, Theorem 3]. Our purpose of this paper is to prove the the
following theorem similar to above theorems.

THEOREM 1. Let f(X,T) be a polynomial over an algebraic number
field K of finite degree. Assume that p(X) = cX? + h(X) € Z[X] is
a polynomial of degree atl least 3 which does not satisfy the condition
(I) where deg(h) < d—3 and c # 0. If for any n € N, there ezists an
a €Z— E(p) and r € K such that

f(r,¢"(a)) =0,

then there ezist a rational function g(T) over K and k € N such that

flg(T), *(T)) = 0.
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In Theorem 1, the assumption that ¢(X) does not satisfy the condi-
tion (I) cannot be eliminated. For example, let us consider ¢(X) = X3
and f(X,T) = X% — T. Then ¢(X?) = X% = ¢(X)? satisfies the
condition (I). On the other hand, for any n € N, f(a*,¢"(a?)) =
(a")? — (a2)®" = 0. But for any k € N, there is no rational func-
tion g(X) such that f(g(X),¢F(X)) = g(X)? — X% = 0. We will
prove Theorem 1 by using nonstandard method and no proof of The-
orem 1 without nonstandard method is known. It is also not known
wether Theorem 1 can be generalized for polynomials f(X,T1,...,Tn)
of many variables.

2. Proof of Theorem 1

Let *K be an enlargement of an algebraic number field K of finite
degree and ¢t € *K — K. We assume the reader is familiar with non-
standard arithmetic(c.f.[5]). Let §2; denote the algebraic closure of K (%)
within * K. First we state a proposition which will be proved later and
show how Theorem 1 follows from it.

PROPOSITION 1. Let ¢(X) be as in Theorem 1. Then for every s €
*N — N and every a ¢ E(y),

Q<p’(a) = U I{(Soa_i(a))'
1€EN

[Proof of Theorem 1] By the assumption of Theorem 1, there exists
s€*N —-N,a€*Z —*E(p) and z € *K such that

f(z,¢°(a)) = 0.

By Proposition 1, 2 € K(¢* ¥(a)) for some k € N. Let g(X) be a
rational function over K with z = g(¢*¥(a)). Then

fg(e**(a)), ©*(¢**(a))) = 0.

Since s —k € *N — N and a ¢ E(yp), then ¢*~¥(a) € *Z — Z, hence

©*~*(a) is transcendental over K, therefore

flg(T), o5(T)) =0
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as contended.

3. Algebraic extensions in *K

Now we turn to the proof of Proposition 1. In the following, we
assume as in Theorem 1 that ¢(X) = cX? + h(X) € Z[X] is a polyno-
mial of degree at least 3 which does not satisfy the condition (I) where
deg(h) < d —3 and ¢ # 0. First let us recall the nonstandard proof of
the theorem of Siegel and Mahler.([5]) A prime divisor of K is defined to
be an equivalence class of nontrivial valuations of K. Let V be the set
of all prime divisors of K and *V its enlargement. An element p €*V
is called an arithmetical prime. Let F' be an algebraic function field of
one variable over K which is included in *K. By a functional prime
P, we mean an equivalence class of nontrivial valuations of F' which is
trivial on K. A functional prime P is called exceptional if there exists
an z € F C *K such that P is a pole of z and z admits standard
arithmetical primes only in its denominator. For example, let z be
a nonstandard algebraic integer. Then z admits archimedean primes
only in its denominator. Since the set of all archimedean primes in V
is finite, it is not enlarged, in other words, every archimedean prime in
*V is standard. Therefore every functional prime which is a pole of z is
exceptional. In their paper[5], A. Robinson and P. Roquette proved the
following nonstandard equivalent of the theorem of Siegel and Mahler.

THEOREM 2 ([5, Theorem 1.1,5.4 and Remark 5.6]). Assume that there
s a nonstandard x € F which admits standard primes only in ils de-
nominator. Then F is a rational function field. If P; (1 <i < m) are
distinct exceplional functional primes, then

f: deg(P;) < 2.

i=1

The next lemma is easy to prove and has been proved in [10], so we
omit its proof.

LEMMA 1 ([10, Lemma 2]). Let Q (resp. R) be the polar prime (resp.
the zero prime) of = in a rational function field K(z). Let t € K(z).
(1) If [tloo = dQ for some d € N, then t = t(z) for some polynomial
Y(X) € K[X] of degree d where [t]oo denotes the polar divisor of t.
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(2) Letd > m > 0. If [f]oo = mR+(d—m)Q, then there is a polynomial
Y(X) € K[X] of degree d such that t = y(z)/z™ and (0) # 0.

The following well known theorem is used to prove Proposition 1.

THEOREM 3. Let K be a field and let ®(X) be a polynomial over K
such that g.c.d.(char(K) = 0,deg(®(X))) =1 or char(K)=0. If L and
M are fields intermediate between K(X) and K(®(X)), then

[LNM : K(®(X))] = gecd.([L: K(®(X))], [M : K(®(X))]
and
[K(X): L-M] = gecd([K(X) : L], [K(X) : M]).

For the proof of Theorem 3, refer to [3, Theorem 3.6] or [7, Theo-
rem 5.
[Proof of Proposition 1] Let s € *N — N and a ¢ E(p). Let y € *K
be algebraic over K(p*(a)). We are going to prove y € K(¢°*~*(a)) for
some ¢ € N. Assume otherwise, then

[U Ko@) = U K(@*(a)] > L

€N 1€EN
Let dy be the left side of the above inequality and let k € N be such
that dy = [K(y,¢* ¥(a)) : K(¢*~*(a)))]. Let t; = p*~*¥-(a) and let
P; be the polar prime of ¢; in the rational function field K(¢;). Since
¢(X) is a polynomial of degree d, we have P; = [tiloo = [@(ti41)]o0 =
dltit1]eo = dPit1.

’/dy//l{(tn-i-l) y) = K(z)

K(tns1) dn
P b K=K
K(t) d

d

’/dy,/K(to,y) = K(zo)
K (to)

Since ¢(X) € Z[X] and a ¢ E(p), we get t; € *Z — Z, hence P; is
exceptional. Let F' be a finite algebraic extension of K(¢;) within *K.
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Then every extension of P; in F is also exceptional([5, Lemma 6.1]).
Therefore by Theorem 2, we have to consider the following three cases;
(i) Po has a unique extension @; of degree 1 in K(#1,y).
(i1) Pp has two extensions @1, R; of degree 1 in K (11, y).
(iii) Pp has a unique extension of degree 2 in K (¢, y).

First we consider the case (i). Let Qo be the restriction of @, to
K(to,y). Then Qo is an exceptional prime of degree 1 and a unique
extension of Py in K(to,y). Hence Py = dyQo = dP, = ddyQ,. By
Theorem 2 and Lemma 1, there exist zg € K(to,y), 21 € K(t1,y)
and polynomials #(X), ®(X) and ¥(X) of degree dy,dy and d respec-
tively such that [zo]eo = Qo, [Z1]eo = @1, K(t0,y) = K(20), K(t1,y) =
K(z1), to = ¥(z0), 20 = ¥(z1) and t; = ®(z;). Hence we have
to = Y(¥(z1)) = ¢(P(z1)). Since z; is transcendental over K, we
get Y(¥(X)) = ¢(P(X)). Since deg(¥) = dy > 1 and we are assuming
that ¢ does not satisfy the condition (I),

g.c.d.(deg(¢p), deg(¥)) > 1.

Then by Theorem 3,

[K(to,y) N K(t1) : K(to)] = g.c.d.(deg(y),deg(¥)) > 1.

Therefore,

dy = [ K(¢*7*(a),y) : U K(¢*7(a))]

ieN 1EN
= [U K(ti,y) : U K(:)]
€N €N

< [K(to,y) : K(to,y) N K(t1)]
< [K(to,y) : K(to)] = [K(¢* *(a),y) : K(¢* ¥(a))] = dy,

this is a contradiction.
Next we consider the case (ii). Since Pj is a unique extension of Py
in K(t1), @1 and R; are extensions of P;. Then

P1 = (dy — m)Ql + le

for some m € N with 0 < m < dy. Without loss of generality, we may
assume dy —m > m. Let n € N be such that d” > dy. Since @, and R,
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are exceptional, by Theorem 2 @, (resp. R;) has a unique extension
Q' (resp. R') of degree 1 in K(tp41,y). Then P,y is the restriction of
Q' and R' to K(tp41). Since P = d" P41, Q1 = d"Q' and R, = d"R/,
we have

Poy1 = (dy —m)Q'+mR'.

By Theorem 2, there exists a z € K(t,41,y) such that K(z) = K(tp41)
and [z] = R’ — Q' where [z] denotes the principal divisor of z. Since
[t1]leo = P1 and [t1]eoc = Pn41, there exist, by Lemma 1, polynomials
¥1(X) and ¥(X) of degree dy such that

Lt )
1 — z,in ) n+l — om .

On the other hand, since [z1] = R; — @1 = d®(R' — Q') = d"[2], there
is a b€ K such that z; = bz% and b # 0, hence

'ﬁ(z)) _ Pi(z1) _ P1(bz¥)

tr = ¢"(tag1) = <P"( pr o = pmymd
1

Since z is transcendental over K, we have

D ('p)((—),{,,l) = $i1(6X7) (1)

Let ¥(X) = rX% 4+ A(X) where A(X) is a polynomial of degree less
than dy. Let k = deg(A(X)). Since p(X) = e¢X?+ h(X) with deg(h) <

d — 3, we have ¢*(X) = "X ¥ + pu(X) for some polynomial u(X) with
deg(p) < d™ — 3. Let j = deg(u). Then

d

On the other hand,

d a .
. (rX v+A(X)> = x4 g(x)
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for some polynomial (X)) with deg() = dy(d"—1)+k. Sinced"—2 > j
and dy — m > m, we get

dy(d® +5) | dy(d" —J)

deg(6) = dy(@ - 1)+k > LTI > DIy g
> md" +dyj — mj.

Hence
memd'(Pn (‘b)((i(n)) — bmrd"chd,d" +£(X) (2)

for some polynomial £{(X) with deg({) = deg(f) = dy(d™ —1)+ k. Since
d" > dy and k < dy, we have

(dy —1)d" < deg(é) < dyd".

Combining equations (1) and (2), we get a contradiction because any
monomial in ¥;(bX?") is of degree id® for some i € N.

The case (iil) can be reduced to the case (ii) by taking a quadratic
extension of K. This completes the proof of Proposition 1.

Remark. In order to generalize Theorem 1 for polynomials
f(X,Th,...,Tm) of many variables it is necessary to prove that the
number k in Theorem 1 is bounded by a constant which is determined
by the degree of f(X,T) and independent from its coefficients. For
example, if we can prove k < deg(f), then Theorem 1 can be general-
ized by the same way as in [8]. But the proof of Theorem 1 gives no
information about the number k.
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