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ON RINGS ADMITTING ORDERINGS AND
2-PRIMARY CHAINS OF ORDERINGS OF HIGHER LEVEL

Eberhard Becker and Danielle Gondard

Introduction

It was the notion of the real spectrum of a ring, in-
troduced by Coste and Roy, cf. [9] , that made the
meaning of orderings in real algebraic geometry even more
apparent than it was already done by Artin's solution of
the 17th problem of Hilbert. Technically, the real spec-
trum pulls back to a ring the orderings of all appropriate
residue field of its prime ideals. Thus, the real spectrum

may be seen as a notion globalizing the local studies of

orderings.

The first author extended the ordinary Artin-Schreier
theory of orderings to what is called the theory of or-
derings of higher levels, cf. [ 11,[ 3 ]. By definition,

a subset P < K, K a field, is called an ordering if

P+Pcp,p-Pcp,Kcp,-1¢ P,K"/px cyclic (P*=P\(0}).

Later on, in the study of real closures of higher level,
it turned out that one also has to consider chains (Pn)nﬂNo
of orderings of higher level in fields, cf. [17]. The defi-

nition will be given in the first section.

It is quite tempting to search for the role of or-
derings and chains of orderings of higher level in real

algebraic geometry. This present paper provides a ring-
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theoretic foundation. In analogy with the real spectrum
we pull back orderings and chains of orderings of higher
level from the various residue fields k(p) = quot(A/p) to
the ring A itself. This paper contains several results
about the existence of orderings and chains of orderings on
rings as well as about the number of such structures on a
given ring. As an application we derive a Nullstellensatz
over certain fields. We have refrained from defining and
studying a corresponding real spectrum of higher level.
Such higher level spectra are presently the subject of
investigations by several people including the authors, cf.
[L61,[ 7] e. g. These approaches have to be compared and
studied in detail and will be published in due time. The

plan of this paper is as follows:

1. Orderings and chains on fields
2. Orderings on rings

3. SpecT and T-radicals

4. o-chains on rings

5. SpecT'Ol and (T,a)-radicals

6. A Nullstellensatz

1. Orderings and chains on fields

The definition of an ordering P in a field K was already
given in the introduction. According to [2 , (2.3)]

we have

Proposition (1.1): The following statements are equivalent.

i) K admits an ordering of level n,
ii) -1 ¢ zk*%,
iii) -1 ¢ IK%, i. e. K is formally real.

In this proposition we have used the following notation

N
2A2m={x|x=§ x2™ for some N ¢ N,Xp,...,Xy € A}

1
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where A is any commutative ring.

If P is an ordering of K of level n then [K" : Px]IZn.
One obtains [K  : P ] = 2s with s|n. The number s is called
the exact level of P. The orderings P of level 1 are just
the usual orderings of a field K, i. e. they are charac-

terized by the axioms
P+Pcp,P-PcP,PN-P={0},PU-P=K.
Orderings with levels a power of 2 are called 2-primary.

As indicated in the introduction, the study of real
closures relative to higher level orderings led Harman to
the introduction of chains of orderings, cf. [17]. In this
paper we confine ourselves to chains of 2-primary or-
derings. Additionally, for the purposes of this paper there
is no need to turn to N. Schwartz's reformulation of the
notion of a chain, cf. [20]. Following Harman, a sequence
(Pi)izo of orderings of higher levels is called a 2-prima-
ry chain if the following conditions are satisfied:

i) PO,P1 are distinct orderings of level 1,

ii) for every i 2 2, Pi is an ordering of exact level
2i—l
’
iii) for every i 2 1:
P, U-P, = (P;_; NP) U-=(P,_; NPy.

In[12], [ 13] the following result was proved:

Proposition (1.2): A field K admits a 2-primary chain iff
there exists a € K such that (K,a) satisfies

i) the axioms of commutative fields,
ii) for every m 2 1, the axiom
_ .2 2
Vx1Vx2...me - (-1 = X3 + .. + xm)

(i. e. K is formally real)
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iii) for every m 2 1, the axiom

2 4
4 v =
XpeeoVx (a X, + ... + X

This result leads to the idea to fix an element a € K
and study chains in relation to the chosen element a. From

now on, "chain" will always mean "2-primary chain".

Now, let o € K be given. A chain (Pi)izo is called an
a-chain if a? 4 P, holds. By combining [ 2 ] with [17 1, we
arrive at the following result.

Proposition (1.3): Let K and o € K be given. Then the

following statements are equivalent.

i) (K,o) satisfies the axiom i)-iii) in (1.2),
ii) K admits an a-chain,

iii) K admits an ordering P of exact level 2 such that

a2 £ P.

Proof. i) = iii) By [ 2, (2.18)] we would get a® € zk? if
iii) is not true. iii) = ii) By [17,(1-4)],given an ordering

P of exact level 2 there is a chain (Pi)iao with P = P2.

4

ii) = 1i) In particular, o § P2, hence a2 £ LK™,

As an example we may consider K = Q(t). It is readily
checked that Q(t) admits a t-chain.

2. Orderings of higher level on rings

Beginning with this section we generalize the concepts
and results of the last section to the setting of rings.
All rings considered here are commutative and have a unit.
If p is a prime ideal of the ring A then k(p) := quot(A@ )
is called the residue field of p. A subset P © A is called

an ordering of level n if the following conditions are

satisfied:

66



BECKER-GONDARD

(2.1) i) pPp+Pcp, P -pPcp, a%lcp,
ii) P N -P =p is a prime ideal of A,
iii) if xy?™® € P then x € Por y € P n -P,
iv) P :={_ I a2l
finite 1 _
ordering of level n of k(p) (where p =p +p).

Elai € k(p), p € P} is an

If n =1 then i) - iv) can be replaced by the axioms

i)' pP+Pc P, P-Pcp, PU-P=A,

ii)' P n -P is a prime ideal of A

as it is readily checked. Thus, our general definition

coincide with the usual one in this case, cf. [ 9 1.

Note also that P ={1:§H p € P, s € A\ g} holds.
5

As in the case of orderings of level 1 there is an alter-
native definition. To derive it let m : A - A/p + k(p)
denote the canonical homomorphism. If P is an ordering of
level n in A then P = 7 1 (B). Conversely, if g is a prime
ideal and P' an ordering of level n in k(p) then, by
setting P := n-l(P'), we get an ordering of level n in A
satisfying P = P'. Therefore, an ordering of higher level
can also be thought of as a pair (p,P), p € Spec A, P an
ordering of higher level in k(p). If it is convenient we
will switch from one definition to the other.

A subset T € A is called a semiring of level n if (2.2)

is satisfied:
2N
(2.2) T+ T T, T+ TC< T, A c T.
If, additionally,

(2.3) -1 ¢T

holds then T is called a preordering of level n.

Then, as usual, we have
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Proposition (2.4): Let T be a semiring of level n in A.

Then the following statements are equivalent:

i) -1 ¢ T,
ii) there exists an ordering P of level n in A with
T < P,

Proof: ii) = i) is clear. i) = ii) Consider the multipli-
cative semigroup S = 1 + T. Choose by Zorn's lemma a prime
ideal p subject to g N S = @ and maximal with this property.
Next pass over to T := —%—lt € T, s €A\p}. If -1 ¢ T

then there is an ordering P o T, P of level n by [ 2, 1.5].

Then set P = 7+ (F) to get an ordering as wanted. If -1 ¢ T

2n

we find x + t € p for some x £ p, t € T. The maximality

of P shows the existence of y € A with 1 + t = yx mod g for
some t € T. Then

(1 + t)2n =1+ t' = yanZn mod g, t' €T
leading to 1+(t'+y2nt) = 0 mod p: a contradiction.
Corollary (2.5): The following statements are equivalent:

i) A admits an ordering of level n,
ii) -1 ¢ za?",

iii) -1 ¢ za2,

Proof. (2.4) and (1.1) give the result.
If T is a preordering of level n in a field then T is
the intersection of all orderings P o T by [ 3 ]J. In our more

general situation we can prove the following result in the

2-primary case.
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Proposition (2.6): Let T be a semiring of level n = 2™ in

A and a € A. Then the following statements are equivalent:

i) a € P for all orderings P of level n with T < P,

ii) at = a2nk + t' for some t,t' € T, k € N.

Proof. ii) = i) Assume a £ P, P = (§,P). Then pass over to

k(p). We get a2nk o T ¢ P%, hence at € PX and a € P im-

plying a € P. i) = ii) If a is nilpotent then a2nk+1 =0
for some k. Hence 0 = a - a2nk = a4nk and ii) is verified.
Next, let a be non-nilpotent. In A, consider the semiring

- t -
T, = {—xlt € T, k €¢ N} of level n. If -1 € T_ then

al(aznk + t) = 0 for some 1,k € N, t € T. Clearly, we may
assume 1 = 2nl'. Hence, -1 € Ta implies a2nk + t = 0 for
some k € N, t € T. Thus, the claim is proved in this case.
Next assume -1 ¢ Ta' By (2.4) there is an ordering P' o Ta'
Its contraction P = {a ¢ Al% € P'} is readily seen to be

an ordering over T where the prime ideal p = P n -P is the

contraction of p' = P' n -P'.a £ p as %isaunitinAa, more-
over P = P' in k(g) = k(p'). From our assumption we get that

% € P' for all orderings P' > Ta' Thus we are facing a
similar condition but, this time, the element in question
is a unit. It is therefore enough to prove the following

assertion:

(*) if a is a unit then, under the hypothesis of i),
it follows that at = 1 + t' holds for some
£, " € T.

Namely, applying (*) to the above situation Aa’Ta'%' we
find, t,t' € Ta such that % -t =1+ t'. Pulling this back
to A we get at = a2nk + t' for some t,t' € T, k € N.

To prove (*) we first note that there is r € N with
a2t ¢ T, Using this the proof proceeds by induction on r.

If r = 0 then a ! ¢ T because of a 1 = (a—1)2na2n—1. Hence
a - a-1 =1 + 0, and the claim is proved. Now assume that
(*) is proved for r -= 1 2 0. As a2t = (az)zr_1 € T then by
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induction hypothesis a2t =1+ t' for some t,t' € T.

Raising this relation to a 21_1—th power we find for every

l €N t,t' € T (depending on 1) such that azlt =1+ t'
holds.

z t.(—a)i all t.€ T}.
finite 1 I i
If -1 ¢ T[-al then by (2.4) there is an ordering P © T with
-a € P. By assumption also a € P. As a is a unit this im-

Consider the semiring T[-al :={

plies -1 € P : a contradiction. Hence -1 € T[-al, i. e.
-1 = F(az) - aG(az) for some polynomials F,G with
coefficients in T - for short: T-polynomials F and G.

So far we have shown the existence of an identity

(**) 1 + F(azl) = aG(aZl), F,G T-polynomials in the
case 1 = 1. The general case is done by induction

on 1.

If 1 + F(a2l™l) = aG(azl-l) is assumed then pick an identi-

ty azl_lt =1+ t' from above. Now we have

(a217132k . g2171p o 421k 4 1)
(a2l 1y2k+1 . 2171y _ 21l (k+l) ¢,

Hence, after multiplying the identity 1+ Pla2t™y mag(aZl™h)
by a2t™l . ¢ we get an expression

1 + t' + F'(azl) = aG'(azl)

with T-polynomials F',G'. Thus, the claim is proved for the

exponent 21.

Since a2f ¢ T we finally arrive at a relation at=1+t"'

as desired, where t,t' € T.
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3. SpecT and T-radical

By T we still denote a semiring of leveln, n arbitrary.

Let a be any ideal of A. Following [ 5, p. 81] we set

2nk

radpa = {f € A|f + t € a for some k € N, t € T}.

We call radTa the T-radical of a. By [ 5, (2.4) ] we know
that radTa = N p, P ranging over all prime ideals subject
to radTp = p, a € p. In particular, radTa is an ideal that

is T-radically closed, i. e. radT(radTa) = radTa.

An ideal a is called T-convex if the assumption

t+t' € a, t,t' € T" always implies t,t' € a.

Proposition (3.1): Let p € Spec A be given. Then the

following statements are equivalent:

i) g is T-convex,
ii) radTp = g,
iii) there is an ordering P © T such that p = P N -P.

Proof. 1i) f>ii) clear, ii) = iii) If not then
E——It €T, s €A\pl}. This means s? + t ¢ p

yielding s ¢ radTp, s £ p. iii) = i) Assume t + t' € p,
t,t' € T. Passing over to k(p) and P O T we find t + t' =0.
From t,t' € P we derive t = t' = 0, otherwise -1 ¢ P. Hence,
t,t' € p.

According to the last result we set

SpecTA = {p € Spec Alp =P N -P for some ordering P> T}.

Remark (3.2): From above we know that

rad.,(0) = {f € Alfznk + t =0 for some k € N, t € T}. In
the case n = 2m, this also follows from (3.1) and the last
section: if f2nk + t = 0 then by (2.6) £ ¢ P n -P for all
P o T, conversely, if £ € P n -P for all such P's then
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either f is nilpotent or -1 € Te. In either case one finds

a relation f2nk + t = 0.

Remark (3.3): In the literature, in the case of T = ZA2 the
radical rad,a= {f ¢ A|f2k + Zaf € a for some k € N,

a; € Al is called the real radical of a, sometimes denoted
by r-rad a. Set DR ZAzn

result:

. Then we have the surprising

r-rad a_ = radzn(a) for all n € IN

To prove this it is enough to show that r-rad g = g is
equivalent to radzn(p) = p, for every prime ideal p and
n € N. By (3.1) we have to consider the following
statements:

i) k(p) admits an ordering of level 1,

ii) k(p) admits an ordering of level n.

Now, [ 2 , (2.3)] shows them to be equivalent.

4. a-chains on rings

In accordance with the axiomatic approach described in
the first section we fix a € A and look for pullbacks

(Pi)ieN of 2-primary chains (Pi)iGJNO in some residue fields

k(p) subject to a2 ¢ ?2. We therefore define a 2-primary
a-chain in A to be sequence of 2-primary orderings (Pi)ieJNo
such that

i) p o= P0 n —Po = Pi n —Pi for all i E.NO,
2

ii) a® ¢ Pz, (Pi)i€N0 is a 2-primary chain in k(g).
Since, as stated in section 1, every ordering 52 of
exact level 2 belongs to a 2-primary chain we have the

following result:

Proposition (4.1): A admits a 2-primary a-chain iff A admits
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an ordering P of level 2 with a2 £ P.

Hence, one has to study the existence of orderings P of
level 2 subject to a? £ P. To this end one must consider
the quotient ring A, and the contraction and extension of
orderings. If P' is an ordering of level n in A, then, as

already remarked in the proof of (2.6), its contraction

P:=P' NA:={ac€aldep)
is an ordering of level n in A with p' = P' N -P' contracting
to p=P N -P and P = P' in k(p) = k(p'). Moreover, a fg.

Conversely, if an ordering P of level n in A is given with

o £ PN -P =g then its extension

i e s= [P
B = P {02nk|pep,kem}

is an ordering of level n in A, whose contraction is just

P. One readily verifies that contraction and extension

constitute bijections, inverse to each other, between the

set of all orderings of level n in A, and the set of those

in A satisfying a ¢ P N -P.

Let in this section T denote a semiring of level 2. We

will assume that o is not nilpotent, otherwise there cannot

exist P of level 2 with a2 £ P. Set

_ (.t
T, = {_a‘lklt € T, k € N}.

Ty is again a semiring of level 2: the extension of T to

A,- With these notations and assumptions we have:

Proposition (4.2): Contraction and extension yield bi-

jections between the following two sets:

i) {P|P ordering of level 2, T < P, a? ¢ B},
ii) {P'|P' ordering of level 2, T, - azTa c p'}.
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Proof. If P belongs to the set in i) then Ta cp', -a2 (3

where P' = Pa is the extension of P. Thus Ta - azTa c pP'.

Conversely, if P=P' NA, Ta - azTa c P' then a2 £ P since
otherwise the unit %r = a2 of A, would satisfy -02 € p'

leading to -1 € P'.

Consequently, with the help of (2.4), we can now
characterize the existence of a-chains. To this end we

call the semiring T an o-preordering if it satifies

(4.3) i) -1 £ T (i. e. T is preordering),

ii) vk e n o%K¥2 g p _ o2,

Proposition (4.4): The following statements are equivalent

i) T is an a-preordering,
ii) A admits an 2-primary a-chain with T © P2.

Proof. By (4.2) and (2.4), the negation of the statement
in ii) is equivalent to the statement "-1 € Ty = azTu"
(note that To = azTa is a semiring since T and T, are of
level 2). The latter statement is directly seen to be
equivalent to the existence of k € IN such that

adk¥2 ¢ o _ 429,

Remark (4.5): As R. Berr pointed out to us, if o is a unit

in A then i), ii) can be equivalently expressed by

-1 ¢ T - azT.

In the absolute case T = ZA4, the last proposition

specializes as follows:

Corollary (4.6): i) A admits a 2-primary a-chain iff both

conditions are satisfied:

1) -1 ¢ za?,

2) for all k € N a relation az(a4 .

k 4, _ :
+ Xai) = Zbi is

impossible.
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ii) If o is a unit then A admits a 2-primary oa-chain iff

-1 is not a sum of the following type Zag - aZ(Zbg).

Proof. All follows from (4.4) in view of (2.5) and the
last remark (4.5).

5. SpecT’a and (T,a)-radical

We are keeping the notations and assumptions of the
last section. As in section 3 we want to investigate the
ideal theory related with a-chains. Given any ideal a < A
we denote by a' = 2A its extended ideal and if b < A, is
given then b N A denotes its contraction to A. We now set
for an ideal a < A:

(5.1) radT,aa := (radT (a')) n A.

—a2
0" Ty
Using the description of general T-radicals in section 3

we first obtain:

2

(5.2) rad; a = {a € A[(aa)4k + t - a“t' € a for some
’

k €N, t,t' € T}.

We call radT o the (T,a)-radical of a. From the general
’
theory, quoted in section 3, it follows that radT ol is a
’
(T,a)-radically closed ideal. Moreover, from radT.a'=l1pb
2
p' € Spec Aa’ radT.p' = p', where T' = Ta - o Ta’ we

derive the following result:

Proposition (5.3): radT 3 =N g,y ranging over all
’

(T,a)-radically closed prime ideals p D a.

The proposition (3.1) can be generalized as follows:

Proposition (5.4): Let p € Spec A be given. Then the

following statements are equivalent:
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i) rad, B = 7,
r
ii) there is a 2-primary a-chain (Pi)iEJNO in A such
2 =
that T P2' a” f P2 and § = Pi n -Pi for all
i EZNO.
Proof. This follows from (4.2), (3.1) and the identity

(b nA)' = b for every ideal h of A.

Motivated by this result and in analogy to section 3 we

set
SpecT’aA = {p € Spec A|rad p=pl.
T,
In the case of T = ZA4 we simplify notation and set
radaa := radT ey SpecaA = SpecT'aA. Thus, for every
4
p € Spec A

radap =g iff k(p) admits a chain with 32 £ 32,

and we have rad a = n p.
a pESpec®A

In the next section, we will apply this last result to

obtain a certain Nullstellensatz.
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6. A Nullstellensatz

The principles behind the proof of the following Null-
stellensatz are well known. One first derives an abstract
version of it like radaa = Np, radap = p. In the next step
one exploits model theoretic properties of the various
residue fields k(p). The general method of this approach is
displayed in [8 ], [21], but see also [5], [ 7 1, [10] for

more concrete versions.

In this section, K denotes a chain-closed field [17],
[20] 121, [ 13]. Recall that we are only dealing with 2-
primary chains. Thus K admits a unique chain (Pi)izo’ up
to the order of P0 and Pl’ but allows no faithful extension
of this chain to algebraic extensions K g L. According to
[ 31, these chain-closed fields are characterized as
follows: they admit a henselian valuation with real closed
residue field (of level 1) with odd-divisible value group
I' such that [T : 2I'] = 2.

2

If K is chain-closed and a € K with a” ¢ P, is specified

we call K a-chain-closed.
The model theory of chain-closed fields is developed in
[18] and [ 11 ], the latter paper giving special attention to

a-chain-closed fields. One has

Proposition (6.1): Let K and L be a-chain-closed fields

where K © L. If K has a unique henselian valuation with

real closed residue field then K { L (in ordinary field

language added by a constant "a").

We are now ready to state and prove the Nullstellensatz.
Let K be as above, a an ideal in K[X] := K[Xl,...,xn] and

set as usual

{x ¢ K'|vf € a : £(X) = 0}
{f € KIX]|vx € W : £(x) = 0}

VK(a)
IK(W)
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where W c K™. Recall
radaa = {f € K[i]l(af)4k + Zgi - a22h§ € a for some

k €N, g;,hy € K[X1}.

Theorem (6.2): Let K be an a-chain-closed field with a

unique henselian valuation ring having a real closed residue
field. Then, for every ideal a < K[X],

IKVK(a) = radaa.

Remark: Using a much more complicated description of the
radical this Nullstellensatz can also be deduced from[ 5 1].
In the above given form it is also proved in [7], however

the approach presented here is more ringtheory-oriented.

Proof of 6.2: We use [ 5 , (2.1)], but [10] may be applied
as well. Thus, IKVK(a) = Ng, p ranging over all prime ideals

g such that K is existentially closed in k(p). Hence, we
have to show that this latter property is equivalent to
radap = p. Assume first radap = pg. By (5.4) we get that k(p)

admits an a=-chain (§i) Let L denote a real closure of

i20°
this chain, cf. [17]. From (6.1) we derive K { L which im-
plies that K is existentially closed in k(p). Conversely,
we now assume K to be existentially closed in k(gp). From

(1.3) one derives that k(p) admits an a-chain which, in

view of (5.4), implies radap = p. Thus, we have shown
IKVK(a) = Ng, radap = p. Hence, by (5.3), the chain is
proved.

In the remaining part of this section we are going to
study the conditions under which the above Nullstellensatz
holds. The counterexample in proposition (6.4) is based on
ideals of A. Prestel he communicated to the first author

several years ago.

We first turn to the case of one indeterminate.
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Proposition (6.3): Let K be an arbitrary o-chain-closed
field and a any ideal of K[Xﬂ . Then

IKVK(a) = radaa.

Proof: Following the proof of (6.2) one has only to show
that radap = p implies K = k(p). Hence, assume radap =5.
In the present case, k(p) is a finite extension of K ad-

mitting an a-chain (51)i This chain extends the unique

20"
chain of K. As K is chain-closed we get K = k(p).

Proposition (6.4): Let K be a chain-closed field admitting more

than one henselian valuation ring with real closed residue
field. Then for all n>2 there is an ideal a in K[Xl,...,xg
such that

IKVK(a) ? radaa.
Remark: Quite generally we have IKVK(a) =) radaa since every
maximal ideal m belonging to a point x € VK(a) satisfies

rad. m = m.
(o]

Proof of 6.4: It is sufficient to treat the case n = 2, the

general case follows by extending the suitable ideal from
K[Xl,X2] to K[Xl,...,
remark] the hypothesis amounts to A # {0} where A is the

Xn]. According to [ 5 , section 4,

largest divisible convex subgroup of the value group

r = v(Kx) belonging to A(PZ) which in turn is the smallest
henselian valuation ring with a real closed residue field.
Hence, we may choose t € K such that v(t) > 0, v(t) € A and
we consider the polynomial f£(X) = (1 + X2)(t2 + Xz). We
claim that £(x) € K *
use of the fact that the valuation v is henselian with a

real closed residue field. If v(x) < 0 then f(x) = x4 - €

for all x € K. To prove this we make

where € is a unit and a square in K - note K is pythagorean.

The above cited property of v implies € = n4, n € K, hence

f(x) € Kx4. If 0 < v(x) < v(t) then f(x) = x2 - €, € aunit.

Since A is convex and A © 2l we see x = y2 - N, N a unit.
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Hence, f(x) = y4 - w, wa unit. As above, this implies
f(x) ¢ KX4. In the remaining case v(t) < v(x) we get

f(x) = t2 - €, € a unit, and, using v(t) € A < 2T, we have
f(x) = s4 - n, n aunit. Then again f(x) ¢ Kx4

As a consequence we derive that the polynomial
g(x,Y) = (1 + xz)(t2 + x2) = a2Y4 has no zero in K since
a2 ¢ K4. Thus, setting p = (g), we have IKVK(p) = K[X,Y].
In contrast to this we will show radap = p. Hence, the

Nullstellensatz (6.2) does not hold.

First note that p is a prime ideal since g is irreducible.
Therefore, by (5.4), we have to show that k(p) admits an
ordering P' of level 2 with a? ¢ P'. One has K(X) < k(p).
The valuation v on K can be extended to K(X) by setting

w(Zajxj) = min{(v(aj),j)laj # 0} €T x z

where I' x Z denotes the lexicographic product with Z as the

smaller factor. Since v(a) + 2I generates I'/2l we derive

r < z/ = <G(Xa'1)> x <w(o)>

4 (TxZ)

where w(y) := w(y) + 4(I x Z). Therefore we find a charac-
ter n : T x Z2 > p(4) = {¢ ¢ Clc4 = 1} satisfying!wNXa—l =1,
nw(a) = i. Following [ 4 Jthis leads to the construction of
an ordering Po on K(X) of level 2 subject to Xa-l € PO’

-2 € .. Next, let (L,P) be a real closure of (K(X) ,Pg) .

From 0 g w(X) < w(t) we get f£(X) = X2 - € with

€ € Py N zx(x)fi gs 130 & g, ZKéx)2 c 112 = 12 and Pnr?=14
as well as (Xa 7)“€P n L° = L~ we obtain

f(X) = X2 - g = az . a4. Hence, g(X,a) = 0, and k(p) can be
embedded into L. Set P' = P n k(p), then @ ¢ P', and

radap = p follows.

Remarks: i) In the last proof K is not existentially closed
in k(p) which is the function field of the hypersurface

g =0. By [ 7 Jor [18] this is equivalent to the fact that

the Jacob ring of k(p) (relative to P') does not extend the
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Jacob ring of K. It is exactly this fact observed by

A. Prestel several years ago. ii) Even if the chain-closed
field K does not meet the hypothesis of (6.2) there are
Nullstellensdtze of the type

21k

Ievel(a) = {f € K[xl,...,xnllf + s € a for some

k €N, s € S}

where S is a certain semiring, cf. [ 5 , (4.9)]; here K has
to be a generalized real closed field of level 1. In the
2-primary case (this amounts to 1 = 2}, R. Berr has found
nice generators of S, cf. [ 7 ]. To derive these more
general Nullstellensdtze one has to study the behaviour of
the Jacob ring under field extensions. As a consequence, a
ring theoretic approach as presented in this paper will
hardly work in case one has to consider the Jacob ring. At
least, one needs the relative setup of R-algebras, R a
certain ring, and a ring theoretic version of the notion of

the Jacob ring.
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