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The Dirichlet Energy of Mappings with values

into the sphere

Mariano Giaquinta, Giuseppe Modica, Jir{ Souéek

We discuss the relaxed functional of the Dirichlet energy. We
also prove partial regularity of minimizers and concentration of the
gradient on singular lines.

In [6][7] we have shown that, when dealing with variational
problems for vector valued mappings, and especially for mappings
with values into a manifold, the most natural setting is the one of
cartesian currents there introduced. In the special case of the Dirich-

let energy

D) = /Q | Du(z)[2 do

for mappings v from a bounded domain  of IR? into the unit sphere
52 of IR3, we were led to consider the parametric extension D(T')
over the class cart?!(£2,S%). The class cart>!(Q,S?) is defined in
[7], and can be characterized (by theorem 5.1 of [7]) as the class of
3-dimensional currents 7' in  x S? without boundary in 2 x S? for

which there exist a unique function ur € H»?(Q,S?) and a unique

This work has been partially supported by the Ministero della Pub-
blica Istruzione and by the European Research project GADGET.
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1-dimensional integer rectifiable current Ly in €2 such that
T = [Guz] + L7 x [S?]

where [G,,] denotes the rectifiable current integration over the

graph of ur, cfr. [7]. The parametric extension of D(u) is then given

by

1

(1) DT, Q) = ; / |Dur(z)[* dz + 47 Ma(L1) ,
Q

where Mgq(Lr) denotes the mass of the current Lz in Q.

Let ¢ be a boundary datum and assume, for the sake of sim-
plicity, that it is smooth, say C*°(812, S?). Suppose moreover that
¢ has degree zero on 012, then we can think of ¢ as the restriction
of a smooth function still denoted by ¢ and defined on some open
set DD Q. The Dirichlet problem amounts then to the problem of
minimizing D(T, Q) in the class

cart2!(§2, §%) := {T € cart>! (2, 52) | T = [G,] on (2\ Q) x 52}

The existence of a minimizer follows easily from the semicontinuity
of D(T, ) with respect to the weak convergence in cart>!({, §2) and
from the weak compactness of energy bounded sets in cart! (£, §2),
cfr. [7].

In [7] we conjectured that D(T,Q) is the relazed functional of
D(u) in cart?(Q, §2), i.e. that for all T' € cart%'(f, S?) there exists
a sequence of smooth functions {uz}, ux = ¢ on Q\ @, such that
[Gu.]—T and

D(T,Q) = lim D(u) ;

k— o0

consequently
D(T,Q) : = inf {likminfD(uk) | u smooth,u, = ¢ on 2\ 9,

2 -
@) sup D(ux) < +00, [Go, ]—T in cart®!(Q, 5?)}
k
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Recently F. Bethuel, H. Brezis, J.M. Coron [1] have considered a
different extension of D(u) on HL?(Q, 52) := { v € HY*(Q,8?) |u =
@ on 9N} given by

(3) F(u,Q) := %‘/n |Du(z)|? dz + 4w L(u)

where L(u) is defined as
(4) .
L(u) == o Sup {/ﬂD(u)‘Dédw - /aQD(u)-nfd’}‘R} 5

T &0—R
ID€]loo <1

D(u) is the vector field
D(u) := (u-ug2 AUgs,U-Ups AUt , U~ Ugs AUg2)

and n denotes the outward normal to 9X2. They have shown that
F(u,Q) is the relaxed functional of D(u) on HL?(Q, §2).

The aim of this paper is twofold. First we shall show that
F(u,Q) in (3) is the restriction of our functional D(T') to suitable
currents. This provides an integral representation of F(u,f) and
gives a precise geometric meaning to the term L(u) in (4). Secondly
we shall prove our conjecture, i.e. that (2) holds.

If T is a minimizer of the Dirichlet problem, then one easily sees
that up is weakly harmonic. But T has to be stationary also with
respect to variations of the domain parameters; this yields an extra
equation expressing the energy conservation law, which gives at once
a so-called monotonicity formula. We shall then show that, relying
on the regularity theorem of R. Schoen and K. Uhlenbeck [9], the
monotonicity formula allows us to prove easily a partial regularity
theorem for the function ur associated to the minimizer T'.

We emphasize once more, cfr. [7] (see also [8]), that our mini-

mizers 7' have in general line singularities, that in the approximation
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by smooth maps show up as lines where the gradient concentrates.
This is precisely stated in theorem 6.

Let us state our results more precisely.

Given u € H}?(Q, %), we think of u as being extended on Q\Q
by ¢, i.e. as an element of HL? := {u € H'*(Q,5%) |u = ¢ on Q\Q}.
Consider the class of currents

[u] = {T € cart3!(Q,5%) | ur =u in Q, T = [G,]
on (2\9) x §2}
and set

D([u], Q) := %nin] (T,Q)

€[u

~ 1
F(u,Q) := F(u,Q) + 3 ,[6\9 |Dy(z)|? dz .

Theorem 1. Let u € HL*(Q, 5?)
(i) We have
Flu, ) = D], )

(ii) More precisely, there ezists a 1-dimensional rectifiable current

L with spt L C Q which minimizes M(L) under the condition
—0L x [S?] = O[G.]L (2 x S?) ;

moreover

and
(@) = ; /ﬁ \Du()|? dz + 4 M(L)

in particular

F(u,Q) = %/nlDu(:c)lgda:-f—47rM(L)
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Theorem 2. Let T € cart}'(Q, $2). Then there ezists a sequence
{ux} of smooth functions in Q, with u, = ¢ on Q\ Q such that

[Gu]=T  incart2!(Q,S?%)

and

l‘/;le,Lk(a:ﬂ2 dz—»’D(T,ﬁ)
2 Ja

Let T = [Gu,] + L1 x [S2] be a minimizer of D(T,Q) in
cart!(, S?). Consider the family of functions

_ urtity
lur + t9|

i
For ¢ € C(Q,R®%), spty C Q, and |¢| small we obviously have
[Gu.] + Lt x [S?] € cart%!(,S?). Thus we can conclude at once
that ur is weakly harmonic, i.e.
—AuT = ur IDuT|2 in ’D'(Q,IRs) .

We also have

Theorem 3. Let T = [Gu,] + Lt x [S?], Lt = 7(L,6,(), be a
minimizer of D(T,Q) in carti;l(ﬁ,Sz). Then for all ¢ € C1(Q,R?)
we have

/ (%]Duﬂz divep — Dol Dot DQW) do+
Q

+4W/<a<ﬁDa¢39dH1Lﬁ=0
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Set now for Bg(z,) CC Q2

1

Er =3 / |Dur(z)|* dz + 47 M(L7 L Bg(z,))
Br(z,)

d / our 9 / 2 1)
QR = — —|*dz + 4= — (¢, v)v|*0dH
R dR ( BR(zo) | BV | Bﬁnc IC (C ) |

Then an immediate consequence of (5) is the following
Theorem 4. Under the assumptions of theorem 8 we have
d (1 1
—(ZEp) = =
dR (R R> RO

1
=F
RUER

in particular

is increasing in R.

Theorem 4 in conjunction with the partial regularity theorem of

[9] easily yields

Theorem 5. Let T = [G,. ]+ L1 x [S?] be a minimizer of D(T, Q).
Then ur has locally Holder-continuous first derivatives in some open
set Q, C Q, moreover the possible singular set ¥ := Q\ Q, has

Hausdorff dimension not greater than one.

Theorem 6. Let {uy} be a sequence of smooth functions such that
[Gu]—[Gu] + L x [S?] in cart3}(Q,S?) and
D(ux, Q) — D(T, Q). Denote by e(T) the "energy density” of D(T),
1.e.

o(T) = 5|Dur 7 + 4xLa|
where ||L7|| = 6(z)H' L L. Then we have
(i) 3|Dux|*H? converge as measures to e(T).
(i) For all neighborhoods U of spt T, ;. converges to u strongly in
HL2(@Q\T, 5.

494



M. Giaquinta, G. Modica, J. Souéek

Remark 1. As shown in [7], we can also consider the Dirichlet
problem in © \ UX,{a:} where {a;} are points in €, prescribing T
on (€\ Q) x 82 and on each {a;} x S? as

3Tl_({a,'} X 52) = di [[{a,»} X 52]]

with d; integers, Y, d; = 0. A minimizer T = [Gy,] + L1 x [S?]
exists, and one easily sees that ur is a weakly harmonic mapping in
(2, as smooth variations do not vary the boundaries of T at {a;} x
S2. This way one may hope to find infinitely many weak harmonic
mappings with the same values on 052 by solving different Dirichlet’s
problems. Unfortunately it is not clear that the ur corresponding
to different singularities at the a;’s are different, as the boundary
condition can be realized as boundary of Ly x [S?]. In [1] it is
shown, by means of a refined energy argument, that this procedure
in fact produces infinitely many distinct weakly harmonic mappings
with the same boundary value on 9.

Remark 2. As shown in [7], we can also consider the following weak

Dirichlet problem: minimize
D(T,Q) = % / |Duz(z)[? de + 4r Ma(Lz)
Q

among T = [Gy,] + L1 X [S?] € cart>'(Q, 5?) with ur = ¢ on 09.
In this case ¢ need not be of degree zero on 9€2. Of course ¢ might
have no smooth extension in 2.

As previously, set for u € HL*(2, 5?)
[u] := {T € cart>(Q, 5?) | ur = v in Q}

and define
D([u],) := min D(T,Q)

TeE[u]
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Then one can show that the above minimum is realized by a current
T, = [Gu] + L, x [S?] and that

F(u,Q) = % /ﬂ |Du(z)|? dz + 47 Mq(L,) = D(To, Q)

where F is the functional considered in [1] and given by

Flu,0)= 1 / | Du(a)[? dz + L(u)
Q
with

L(u) := sup D(u) - D¢ dz

£:0—-IR N
[[1D€lloo <1
£€=0 on 80

Remark 3. We observe that with the notations of [7], theorem 2
implies that
cart?}((3,5%) = Cartl?*(Q, 5%)

Remark 4. Suppose that up—u in H;’Z(Q,Sz) and that L(u) > 0.
Denote by A the set of 1-dimensional rectifiable currents L with
spt L C Q such that

—0L x §* = 9[G,JL (@ x S%) and M(L) = L(u) .

Foreach L = 7(L£,0,t) € A we denote by e(T') the "energy density” of
the current T := [G,]+L x [S?]i.e. e(T) := {|Dul>* H3+6 (H L L).
We clearly have
(i) If #A = 1, then A = {L} and [G,. ]—T = [G.] + L x [S?],
3| Dul* — e(T)
(i) If #A > 1, then there exists a decomposition of the sequence

{ur} into sequences {vfc“)}

{w} = |}

a€A
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and a family of rectifiable 1-dimensional currents {L{(®},c4 such
that for all a € A,

[G ] = T = [Gu] + L™ x [S?]
k

and 1|Du{M2H? — e(T°).

Thus while the weak convergence in H* and the functional F(u) do
not distinguish among different minimizers with the same ur, our
functional D(T') and the weak convergence in cart®!(§2, $2) does it:
a typical situation is the one of two dipoles with degrees +1 pre-
scribed on the opposite edges of a square in Q.

Proof of theorem 1: First we observe that if T = [G,]+Lr x [S?]
belongs to [u] then spt Ly C Q.

(1) We claim that L(u) < M(Lr) for all T € [u]. Let n € C°(Q,R?)
with ||dn|| , g < 1 and denote by 77 any extension of n with compact
support in €. Since ¢ is regular then divD(u) = 0 in 0\ so

ﬁD-Dndm— D-und}(?:ﬁD-Dﬁdz
a o9 Q

On the other hand, compare (7]

\/_:D -Dnpdz = T4 ([[Gu]]L’fr#wsz) (dﬁ) =
Q
=my (O[G )L 7*ws:) (§) = — 4n Lr(d7)
and (i) follows since spt Lt € Q.
We shall now prove that
(i) There exists T' € [u] such that Mg(L7) = L(u), i.e. D(T,Q) =
F(u,ﬁ) and obviously this concludes the proof of theorem 1.

According to the result of [1], let {ux} C H:;z(ﬁ,S2) be a sequence
of smooth functions such that

up—u in H2(Q, %)
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and
3 [ 1Dus(a)P de — Flw, ).
Q

Passing to a subsequence, we have that [G,,] converge weakly in
cart%!(, S?) to some T € [u] and from the semicontinuity of D,

compare (7]
D(T, Q) < likminf’D(IIGu,,]],ﬁ) =

liminf % /~ |Dui(z)|? dz = F(u, Q)
Q

k— o0

q.e.d.

Proof of theorem 2: We shall now show that every 7" which be-
longs to cart?,;l(ﬁ,sz) can be approximated weakly and in energy
by currents whose singular part is given by a finite number of dis-
joint segments, the conclusion then follows from the approximation

theorem of [1], theorem 2. We shall split our proof into several steps.

(A) First assume that OLr is rectifiable, i.e. that 8L is a finite
combination with integer coefficients of points in Q, and actually in
2,

k k
oLy = [p:] - [Ai]
=1 i=1
and that

ur € C* (5 \ U{pi} U {ni}>

(i) Approzimation by polyhedral chains. Using the approximation
theorem of Federer [5], for all ¢ > 0 we can find a polyhedral chain
P. and a diffeomorphism ¢, : IR® — IR® such that spt P, is contained
in an e-neighborhood U, of spt Lr, spt P. C U(spt Lt), and

Lipge , Lip¢;' <1+e€, ¢.=idon R®\ Uc(spt L)
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M(P, — pep L) + M(OP. — p40LT) < €

From the rectifiability of 0P and 8L, it follows that OP, = ¢exOLT.
Since spt L7 is a finite number of points, we can also find a diffeo-
morphism 7, : IR* — IR? such that ¥(¢.(Q)) = Q, ¥ = ¢ = idanq,
Ye = id on spt P, = spt p40L7 and Lip e, Lipyp7t <1+ ce. If
we now move the vertices of P, which are not in 9P, by . we finally
find a new polyhedral chain P, with spt P, C €, spt P. C Uce(spt Pe),
&P, = OP. and clearly the currents

T :=[Gu]+ P x [S?], ue(z) = ur(ve(¢e(x)))

converge weakly for € — 0 to T and D(T;, Q) — D(T, Q).

(ii) Approzimation by non autointersecting and density 1 polyhedral
chains. Let T € [G.,.] + P x[S?] € carta’l(ﬁ,ﬁ), P polyhedral,
spt P C © and ur € C®(Q \ spt 9P). We have

P= Z ﬂ(ni,Pi)ﬂ

where (n;,p;) is the oriented segment joining n; to p;, (the points n;,
respectively p;, are not in general distinct). We claim that we can
reorder the indeces ¢ in such a way that if p; ¢ OP then p; = n;41.
In fact, if n; € OP and there exist some n; = p;, we rename n; as
71 and we consider (721,p1), p1 := p;. If there exists n; # 7, with
n; = p1, we rename n; as s and we continue this way until we are
able to find points n; different from the ones already choosed; this
process, clearly finishes in a finite number of steps and the final Py we
find obviously must belong to dP. Once the construction has been
carried out for all n; € OP, we start with any n; (if any is left) and we
repeat the construction until we come back to some py = n; (observe
that this must happen since we have already used all n; € 0P, thus

all p; € dP) and we continue this way. Observe that as a result
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of our construction on each point of 9P chains either start or finish.
Clearly we can now slightly move the py = 1441, which do not belong
to 8P, in such a way that the new P, = 41 belong to Q2 and are
distinct, the segments (7k, D) do not intersect in Q \ sptdP and
finally P := ¥, [(7:,5;)] C Uc(spt P). We therefore conclude that
we can find a sequence of finite polyhedral lines P(*) (which are either
closed or start and finish on OP) without autointersections such that
oP*) = gp, P(K) P and M(P(¥)) » M(P). We emphasize that
on each point of AP lines of P(¥) either all start or all finish.

(iii) Adding small dipoles. Let T = [G.] + P x [$?] € cart%!(, S?)
where P is a polyhedral chain as in the conclusion of (ii) and ur €
C>(Q \ sptdP). Let zg € Q\ sptdP and € be a positive small
number. We claim that for all z; in B(xg, ), 6 small, there exists
v e C=(Q\ (sptdP U {zo} U {21})), v = u on Q\ B(zo, ) such that

1

1 / IDv(z)2de < / \Du(z)? de + €
2 B(Io,&) 2 B(Il):é)

deg (v,z9) = —deg(v,z1) =1

In fact if 6 is sufficiently small, the oscillation of v on dB(zy,6)
is small, thus we can extend smoothly u to B(zp,6) as ¥ with
4 = constant on B(zo,8/2) and with 3 [g, 5 |Di(z)|* dz small.
Applying to B(zg,8/2) the dipole construction of [4], the claim fol-
lows.

Of course, if 2o = pr = nry1 ¢ OP, we can moreover require
that ; € (ng41,Pk+1), and obviously the current T = G.] +
[(z1,20)] x [S?] belongs to cart?! (€, S%) and

D(T, B(zo,6)) < D(T,B(z0,6)) + 2€

We now apply the previous construction near every point p; =

nr+1 ¢ OP and we find points fix41 € (Nr41,Pr+1) and v smooth
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outside of spt P and {px | px ¢ OP} U {7x | x ¢ OP} such that
T :=[G.] + P x [$?] € cart}!(Q, 5?)
ﬁ = Z [[(-ﬁk7—ﬁk)]]
k

D(T,Q) < % ./5 |Dur (z)|? dz + 47 Mz (P) + ce
Decompose now spt P into its convex components C, and ob-
serve that for e small the e-neighborhoods U.(C4) of C, are disjoint.
Clearly either C, is a segment or is a finite union of segments which
all start (or finish) in some z¢ € spt dP. Thus C, is a minimal con-
nection in U.(C,). Applying theorem 2 of [1] on each U, (C,) the
proof of our theorem is completed under the extra assumption (A).

(B) Let T = [G.] + L x [S?] be a generic element of cart}!(Q, ).
From [2] we know that

RS = { v e HY(@,5%) | 3a:} C Q finite, u € C°(@\ {a,-})}

is dense in HL?(Q, 5?). We claim that for all v € R there exists a
1-dimensional rectifiable current L, ., in IR® with spt L, ., C © such
that

0Ly, x [$7] = O[G.] - O[G.]

M(Lu,) = L(u,v) :=
(6) sup (AD(U)-Dg dz -/s;D(v)'ngz)

&:R3 R
ID€lloo <1

We postpone the proof of the claim, completing first the proof of the
theorem. For all € > 0 we can find v € R such that ||u —v||m <€
and we extend v by ¢ on Q; according to the claim, we also find L, ,
satisfying (6). In particular, compare [1], we have

M(Lu,0) < ¢ (|| Dull2 + [|Dv][12) || Du — Dvl| 2 < ce
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Consider now the current
T := [G,] + (L + Lu,) x [S?].
We have
AT L (0 x §?) =
A[G,]L (Q x §?) + (8L 4+ 8L,,,) x [S?] =
A[G,]L (Q x 8?) + 8L x [S*]+
A[G.]L (2 x §?) - 9[G,JL (2 x §%) =0

thus T € cart}'(Q, $2) and

te)

D(T,Q) < D(T, Q) + 4n(1 + c)e

But T satisfies the extra assumption in (A), as &(L + Ly,,) x [S?] =
I[G,]L (2 x S?), thus the proof is easily completed.

Finally let us prove our claim. Let {ux} be a sequence in RZ> such
that {ux} converge strongly in H* to u (and we extend uy by ¢ on Q).
Denote by L the 1-dimensional rectifiable currents with spt L C Q

such that
0Ly, x [S?] = —0[G., ] (9 x S?)

M(Ly,) = L(u)
which exist by theorem 1; by lemma 4 of [1] there exist 1-dimensional
rectifiable currents L'}, with spt L', C € such that
ALy, x [S?] = 0[Gu.] — 9[G.]
M(L'%) = L(ux,v)
Obviously sup, Mg(L'x) < +oo, thus, passing to a subsequence,

L'y, — L', where L' is a 1-dimensional current with spt L' C .
From the semicontinuity of M and theorem 1 of [1] we also get

M(L') < likminfL(uk,v) = L{u,v);
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moreover, since 9[G,,]|—8[G.] (as up — wu strongly in H') and
hence 8L',—0L, we have

OL' x [S?] = 0[G.] - 9[G.]-

As in theorem 1, one can also prove that M(L') > L(u,v), hence
we deduce that M(L') = L(u,v). It remains to prove that L’ is
rectifiable. Consider the rectifiable currents Ly := Ly + L'x. we
have 8Ly x [S2] = —9[G,]L (2 x S2) thus, by the closure theorem,

passing to a subsequence, 1~Lk converge weakly to a rectifiable current
L. From

T =[Gu, ]+ Le x[S?)] — T=[G.]+Ix[SY]
and [G,,]—[G.], we deduce that Ly—L, i.e.
y=Iy-L, - I'=L-1
As I’ and L are rectifiable, the claim is proved.

g.ed.

Proof of theorem 3: Set ¥,(z) := z + t¢(z). For |¢| small ¥, is a
diffeomorphism of €2 into 2. Set now

Ut(f'?,y) == (\I’t(m)ay) Ut(x) = u(\I,t_l(m)) S Q) ye S2
Obviously U; € H%(Q, S2), U; = ¢ on 99 and 74 ([G.]) = [Gu.]-

Thus from the minimality of T' we deduce

d d [1 2
0= aD(ﬂt#T)lt:o T {5 |DU,(z)|” dz + 47TM(‘I’t#L)}
Q |t=0

Now from

%/ﬂww(x)]?dx: %/ﬂ|Du(:c)D\I/{1(\Ift(x))|2detD‘I!t“l dz

Du-D¥; (%) = Du(l - tDy +o(t?)) ,t > 0
det DU, = 1+ tdive + o(t?)
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we deduce

dl1 2
EE/QIDUt(m)' d"”l =
t=0
1 2 3 7 i B
= 5|Du| divy) — Dau’ Dgu’ Doyp” | dz
0

From [10] p.78 we get

d

GMESD) = [ (ale)Gale) Dav(2) 0(2) ! L £(2)

g.e.d.

Proof of theorem 4: Choosing in (5) ¥(z) = (z — zo)n(r), where

T = |z — zo| and 7 is a smooth function in [0, R] with n(0) = 1,
n(R) =0,0 < n(r) <1, we find
1

/ |Dul?(n + ') dz + 47r/ (n+rn)0(z)d(H'LL) =
2 J Ba(zo) Br(zo)

= / ' |u .| dz + 47r/
Bn(zo)

¢ = ((v)vP0d(H! L L)
Br(zo)

by choosing a sequence of ’s which approach the characteristic func-
tion of (0, R) we then conclude

1 / \ d (1 )
= |Du(z)|*de — R— (—/ | Du(z)| d:c) -
2 Br(=o) dR \2 Br(zo)
+ 4 M(L L Br(zo)) - 4WR£ M(L L Br(zo)) =
d du
= R— — > dz+
dR Br(zo) ld’l’|

+4wRi 1€ — (¢, v)v|?0d(H L L)
dR J By (a0)

from which the result follows at once.

q.e.d.
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Proof of theorem 5: Assume that for some point £y € {2 and some
R, R < dist(zo,0) we have

1 2 4r
(7) — |Dur|* dz + — M(Lt L Bgr(zo)) < €

R JBa(z0) R
where ¢ is positive and small. we claim that LL Bgjs(z¢) = 0.
Otherwise there would exist T € Bgr/2(zo) such that

Consequently, for p small enough we would have, using the mono-

tonicity formula,

tr< = [ |DugPde+ EM(LrLB,®E) <
2p JB,(3) p

1
— ID’LLT|2 dz +
Bry2 ()

8
— M(Lr L Brp2(3)) <

1 |Dur|? dz + 8—TrM(LTL_BR(a:0)) < 2¢g

R JBa(z0) R

a contradiction. We now deduce that if (7) holds, then ur is an en-
ergy minimizing harmonic map in Bgr/2(zq), thus if € is sufficiently
small, ur is regular thanks to the regularity result of [9]. The the-
orem is then proved since (7) holds on a set of Hausdorff dimension

not greater than one. This follows as

1

= |Dur|?dz — 0  H' ae.
R Br(zo)

while the density of L is zero except at most on a 1-dimensional set.

q.e.d.
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Proof of theorem 6: Passing to a subsequence we have

e([Gui]) — 1o

For all ¥ € CJ(), ¥ > 0 consider now the functional defined in
cart2(Q, §%)

£@) = [¥a)e)

We know from [7] that £ is lower semicontinuous with respect to the

convergence in camtf,;l(ﬁ, 5?), thus we conclude that
o(T)(%) < liminf £(ui) < po(¥)

ie. e(T) < po- AsD(ux, Q) — D(T, Q) we then get (1o —e(T))(Q) =
0, i.e. po = e(T). This concludes the proof of (i). The claim in (ii)
then follows easily.

q.e.d.
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