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CURVATURE PROPERTIES OF 6-PARAMETRIC ROBOT
MANIPULATORS

Adolf Karger

The Lie group C, of all orientation preserving congruences of the
Euclidean space E3 ﬁ%s a natural invariant pseudo-Riemannian structure
determined by the’Klein quadratical form of its Lie algebra.In the paper
we connect the acceleration properties of a g-parametric robot manipu-
lator with the properties of the Levi-Civita connection and its curva-
ture tensor of the pseudo-Riemannian structure of Cé.The paper is a con-
tinuation of [3].

Aknowledgement.The paper was partially supported by the Zentrum flr
Praktische Mathematik at the Technische Hochschule Darmstadt.

1.Introduction

A pseudo-Riemannian manifold M is a manifold equipped with a nonde-
generated scalar product < , 7> in each tangent space Tx,xe M (all
structures are C™° structures).

Let F(M) be the set of all functions on a manifold M, J(M) be all
vector fields on M.An affine connection on M is a mapping / :

EM x EM—>FM):(X,Y) > VY,uhich is F-linear in the first
variable,R-linear in the second variable and

Vy(£Y) = £V,Y + X(£)Y  for feF.
For any connection Y/ we have the torsion tensor

TXLY) = Wy - VX - [X,Y)
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and the curvature tensor
Ryy = V[x,\(] - Vy Vy -V, Yy

On any pseudo-Riemannian manifold M there exists a unigue symmetric
connection such that the parallel displacement preserves the scalar
product (see [1] ,p.48).

This connection is called the Levi-Civita connection of the pseudo-
Riemannian manifold,let us denote it V .Then we have

WABE VM - ¥,V (T=0,the symmetry condition),

X LV,W> = <VXV,W > o+ KV, VXW > (the covariant derivative
of the scalar product is zero),for X,V,W from ¥wm).

The Levi-Civita connection is determined by the Koszul formula

2V, X2 = VLKWX D + W LXVD - X KV, WD - v, [w,X]> +

(1
<W,IX,VI> + X, Lv,wl> .
If xi,i=l,...,n,is a local system of coordinates,we define the
Christoffel symbols of the connection by
-k =9 (2)
inxj = [ Xovhere X " ox;
Let us define
- _ —m
hyy = <XX> I_ij,k = ke (3)
The Koszul formula yields
.« O 2, -9 (4)
2 Mg = & Mkt 57 ik~ o My
i J k
For any two independent vectors v and w from Tx we define
Qlv,w) = <v,vy < w,w> - Lv,w >2.
Then we can define the sectional curvature for non-degenerate
2-planes by < vav,w > -
K(V,W) = —m)—— .
We define the components of the curvature tensor by
m
R XX, = R..X .
Xin k ijk"m
The Ricci tensor is defined by its components as Rij= R?jm and it will

be denoted by Ric(X,Y).In an orthonormal basis Ei in the tangent

space TX the Ricci tensor is given by
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m
. - _ _*
Ric(X,Y) = %fm < RXEmY,Em> ,where € = <Em,Em> = = 1.(6)
Finally,the scalar curvature S is defined by S= hinij = hin‘i‘jk,

in an orthonormal basis we obtain S =22 K(Ei’Ej)' N
i<y

2.The Cartan connection of C,

Let G be a Lie group.An affine connection on G is called left inva-
riant iff V| X(LgY) = Lg VyY for all g from G.Left invariant
g

connections on Lie groups were characterized by K.Nomizu (see [l],p.92)
in the following theorem:

There is a 1-1 correspondence between the set of all left invariant
affine connections V on G and the set of all bilinear maps

: g x g—>g,given by o(X,Y) = [V';(—V]e ,
where g is the Lie algebra of G,X,Y € g and X denotes the left inva-
riant vector field on G determined by X€ g.The following are equivalent:
a) x(X,X) =0,
b) The geodesic line starting at e with the tangent vector X at e is

a one-parametric subgroup of G.

A left invariant connection on G is called invariant iff it is
invariant with respect to right translations of G (which means that the

map o must be AdG invariant).

Example. The map o (X,Y) = k [X,Y] for keR defines an invariant
affine connection on any Lie group G.For this connection we have

T(X,Y) = (2k-1) [X,Y], Ryy = -k(k-1)ad [x,v].

Special cases are:

a) k=0 and k=1.They are the so called (+) and (-) connections with
R=0.They define the so called left and right parallelism,which was
used by W.Blaschke.

b) k = 1/2.Then T = 0 and R = (1/4)ad.This connection is called the

Cartan connection.

Let Cé be the group of all orientation preserving congruences
of the Euclidean space E3 and L be its Lie algebra.lLet further R3 be
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the ordinary 3-dimensional Euclidean vector space with the standart sca-
lar product (x,y) and vector product x x y.Then L can be considered as
the algebra of all pairs X = (y;z) of ordinary vectors y and z with
the Lie bracket

Dl = 052, 03203 = Gypx vgs vyx 25+ 2y % ).

Vectors X = (y;0) from L form a subalgebra of L which is isomorphic
with the Lie algebra of the Lie group SO(3).The Lie bracket is then the
ordinary vector product, [Xl’XZ] = (x;x %93 0).

LEMMA 1.Let G be a connected Lie group
IThen a left invariant affine connection
on 6 is invariant iff
[z, &< (X,1)] = o ([2,X],Y) + & (X,[Z,Y]) (8)

Proof .The necessary condition is obvious.To prove the converse,we

ad Z

use the formula AMexpZ-=e '

ad Z

where e is the usual exponential of a mapping.From (8) we derive

m . .
(ad D" (X,Y) = 2_ (D)  ((ad )X, (ad 2)™HY)
i=0
and the rest follows.

LEMMA 2. The invariant connections on $S0(3)

Proof.We have Z x o¢ (X,Y) = &X(Z x X,Y) + x(X,Z xY).
For X=Y=Z we obtain Xx ¢ (X,X) = 0,0 (X,X)= a(X).X.We substitute
Y for X and X xY for Z in (B) to obtain
XeY)x g (X,X) = X ((XxY) X, X) + L(X,(XxY) xX).
This yields
a0OXZY + (X, V)a00X = X2(X (X,Y) + ok(Y,X)).
Now we interchange X and Y,multiply by Y2 and by X2 and subtract.
Wle obtain

(YZa(x) - OGYaXAY = ((X,V)a00) - X%a(M))YAX = 0.
Let X and Y be linearly independent.Then

Y2a(x) - (X,Y)a(Y) = 0 and (X,)a(X) - x%a(Y) = 0,
so a(X) = 0.This follows &K(X,Y) = -x(Y,X).Let us write
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X (X,Y) = a(X,Y)X + b(X,Y)Y + c(X,Y)Xx Y.Then for Z = X xY we obtain
Xx ¥)x X (X,Y) = 0, = (X,Y)= c(X,Y)XxY and we see easily that
c(X,Y) = const.

Let us define the following map D:L —> L:(y;z) —=> (0;y).Then D is
an Ad C, invariant linear map,0 = 0 and D[X,Y] = [0X,Y].

«(X,Y) = (kE + rD)[X,Y],
where E is the identity map, k,reR.

Proof .Consider L as the 3-dimensional Lie algebra over dual numbers,

7= kE+zD,k,r€R, X = x; + Dx, for X € L,x;,x,€ R°.The Lie bracket
becomes the D-extension of the ordinary vector product.lLet us write

x (X,Y) = @ (X,Y) + D!v(X,Y) for the real and dual part of the
mapping & .Then
[zl, @(xl,yl)+D r(xl,yl)] =@(zlx xl,y1)+P (x,2) % ¥+~ (2) % x,y7 )+
yTxl,zlx yl)).
LEMMA 2 yields o((xl,yl) = (k+rD)x1x yp,E is left out.
By similar arguments we obtain
c((x1+Dx2,y1+Dy2)=(k+rD)x1x y1+(p+qD)x2x yl+(m+nD)xlx y2+(t+sD)x2x Yos

where k,r,p,q,m,n,s,t are real numbers.For Z = Dz we obtain from (8)
t=s=m=p=0,q=n=k and the statement follows.

COROLLARY of the THEOREM 1.The o
symmetric connection on Cg is the Cartan

Proof .We must have &(X,Y) - «(Y,X) = [X,Y].Therefore 2k-1+2rD=0
and k=1/2,r=0.

On C6 we have two Ad C6 invariant quadratical forms:

a) The Killing form B(X,X) = (y,y),
b) the Klein form <X,X > = (y,z),where X = (y;z).

The Klein form on L is a pseudo-Riemannian scalar product with
signature (+++---).By it C6 obtaines the structure of a pseudo-Rieman-
nian manifold with Ad C6 invariant scalar product.Such Lie groups are
called pseudo-Riemannian Lie groups and they have the following proper-
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ties (see [2],p.304):Let G be a connected Lie group with left and
right invariant (pseudo-Riemannian) metric tensor < , > .Then
a) the map g —->g_l is an isometry of G,
b) <x,v,z1> = <[x,¥),z> ,
c) the Levi-Civita connection is the Cartan connection,
d) all geodesic lines are translates of one-parametric subgroups.
This means that a pseudo-Riemannian Lie group is a pseudo-Rieman-
nian symmetric space.
We have for any pseudo-Riemannian Lie group:
a) Let the 2-plane generated by X and Y be non-degenerated.Then
1 <[x,v],[x,yl>
T X XSV, Y7 -ZX,YOZIX,Y>
b) Ric = -(1/4)B,where B is the Killing form of g.

K(X,Y) =

Proof .We have to show that Vz(ﬁ(X,Y)) = 0 for any Z€ ¥(G),where
‘72 denotes the covariant derivative with respect to‘] .We have

(VD06 = - HVX N - HG Y, + 2 n).

The last equation is F-linear and so it is enough to verify it for left
invariant vector fields.But then we have ?RX,Y) = const.,Z(ﬁkX,Y))=U

and  FOVLX,Y) + WGV ) = 5 (HZ, XD, + HXGLZ,YD) = 0
as H is Ad G invariant.

So far we have shown that C6 is a pseudo-Riemannian symmetric space
of index 3.We know that the parallel displacement preserves both the
Killing and Klein forms and this means that the parallel displacement
preserves the angular velocity and the pitch of a motion.Further,the
geodesic lines are translates of one-parametric subgroups.One-paramet-
ric subgroups are screw-motions,rotations and translations.There exist
three types of geodesic lines,(+,-,0),according to the sign of the
Klein form.The (+) geodesic lines are right handed screw motions,(-)
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geodesic lines are left handed screw motions,null geodesic lines are
rotations for nonzero Killing form and translations if the Killing form
is zero.We know that the Ricci tensor is given by the Killing form,which
means that C6 is not an Einstein space.

THEOREM 2.A 2-plane generated by vectors
X,YeL with pitch v),vy,distance d and angley
is non-degenerated iff

4y ViV - (d sing + (v +v2) CDS(P) £ 0.
For such a plane it 1is

sin ¢ [(vl+v2) sing - d cos(p]

K(X,Y) =
bv v, - [d sin @ +(v +v,)cos tp]

IThe scalar curvature S of C, is zero

Proof.let the 2-plane be determined by two screw motions given by vec-
tors X=(x;z), Y=(y;t).We may suppose (x,x)=(y,y)=1.Then <X,X > =
(x,2) = vq is the pitch of X,the axis of X is given by the vector
X =(x;z-v1x) and similarly for Y. < X,Y > =(1/2)((x,t)+(y,z)).For the
distance d and the angle ¢ of the two axes we obtain
cos p = (x,y), dsin @ = 2 <X;,Y, 2 = (x,t)+(y,z)-cos @ (vy+v,).

This yields
<X,YD = (1/2)[d sin ¢ + (v1+v2)cos ¢l ,

RyyX,Y > =(1/8) <[X,Y1,[X,Y]> = (1/4)sin @ [(v;+v,)sin g -d cos pl.

For the scalar curvature we use (7).Let e ,i=1,2,3,be the canonical
ba51s of R} Then we obtaln an orthonormal ba51s of L given by vectors
C = (ey; £ e;),where £=%1a < XC ,XJ 7 = (U/DE+E, )8
Further we aobtain

K(xii,xfe) 0 K(X Xd,) = (1/8)€ €,(€ +E,) for i£).This yields
K(X£,X_£) = 0, K(xe,xg) =€/2and S = 0.

3.Application to 6-parametric robot manipulators

Let us have a 6-parametric robot manipulator,determined by vectors

Xl""’xé from L. By definition it is the mapping g:Ré—? C6 given by
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the rule g(ul,...,ue) = gl(ul). . .gé(us),where we denote gi(ui) =
exp (u;X;),see [3).Let us suppose that vectors X]»-.-sXg are linearly
independent in L.Then the mapping g is a local system of coordinates
around 0 in R® (see for instance [1] or [3]).In this local system of

coordinates Upseeeplg We have the following
LEMMA 35.Let a 6-parametric robot manipula-
tor be given by independent vectors
Xip.-Xg from L.Let us denote Yl_Ldg%J
ihen g
- ] "l _l
Y, = (Adg,~. ... .Adgiiq)X;.

3y .
Va_ (&l—j-) = (/D€L [Y.,Yj]

ijg-i
bui

k
M5y Y = (W2 55ly,v, 0,

where there is no summation over i and j
and
for 1i<j
€ij ~ 0 for 1i=]
-1 for i2>]

Proof . Vectors Xl""x6 form a basis of L.The tangent vector %IT'
at the point g(ul,...,u6) is given by the matrix 1
gy(up). ... .051Cu; )05 (ydgy 1 (ug ). o gelug).
Let us compute the coordinates of the vector
) ; ; . _
TP with respect to the basis LgXi at the point g = g(ul,...,ué).

+ Let us write

- J - :
Bui miLng,where my are functions of ul,..‘,ué.The left translation

to the unit element e of Cé yields

3 - =1 -1 _ _ 3
Lg_l(s—q) = Ad 9g - --- .Ad 9541 Xi = Yi = my Xj.

The derivative with respect to uy yields
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Yy L. My
Su—j = 0 for ng,ﬁﬂvi,vj] for 3> i.

Further we obtain

L = 4 = x s =

o B of 3 _
mim V7Lgx“(LgX6) + mi(LgX&)(mj).LgXp =

Amk
o« B o 6 - | =
(1/2m? [L oL Xg] +(L X)) ()L g (1/2)L9[Y1’Yj]+aui Lg%
Yy

Lg((l/Z)[Yi,Yj] +au‘i ) = (1/2) Ly sy [Yi,Yj] and this finishes the
proof .

Let us denote 95 = B(Yi’Yj)’ hij = < Yi’Yj > .This means that
hij are coefficients of the metric tensor of Cé and gij are (up to a

constant factor) coefficients of the Ricci tenmsor in coordinates

ul,...,u6,which are the joints coordinates of the robot manipulator.
The geometrical meaning of coefficients gij and hij is the follo-

wing:Let an actual position of the robot manipulator be given by vec-

tors Yl,...,Y6€ L,which correspond to rotational axes pl,...,p6.Let ¢ij

be the angle between P; and pj’dij be the distance of P; and pj.Then

gj5 = €08 §; 5, hij = (1/2)dijsin wij'

i)
For Christoffel symbols F;j,m defined by (3) we have
rij,m = (1/2) €4 <[Yi,Yj],Ym> . (13)

To see it,we multiply (12) by Ym and we aobtain
k _ =k _ _
Ti3<Vie¥a” = Mighn = [ipom = /2 &5 <[Y30Y35) Y0 >
As the metric tensor hij is Ad C6 invariant,we have

< [Yi,Yj] o> <Yi,[Yj,Ym]7. (14)
(14) yields

Cigom€iy =(1/2)<[Yi,Yj'],Ym> =1/ <[¥;,%,0.Y, 7 =€y, l‘jm,i ,
The Christoffel symbols F' therefore have the following proper-

ij’m
ties:
a) rij’m = l_ji’m,’
b) |_;j’m = 0 if two of the indices i,j,m are equal,
c) for i<j<m we have rij’m = - rim’j = rmj’i and the Koszul
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formula (4) yields in this case

[iym = W2 (353 hin

because hi is a function of Ujise-oUn only.

The equations of geodesic lines are

2
d uy i du. du
= (15)
] Jk E_J'H?"
The multiplication by him yields
d2ui du. duk
=7 Min 7 lon alar =0 (16)
LEMMA 4.Let u=u;(t)be a curve on a 6-parame-
metric robot manipulator g(u,...,u).Then
this curve is 2 translate of a one-para-
metric subgroup 1iff
2
du. du.
. Z; [ vy dgh e - L4
i=
Proof.Let g(t) = gl(u (t)) .. -g4(u (1)) be a curve on the robot

manipulator.Then g(t) is a translate of a one-parametric subgroup iff
g_l(t)g'(t) = Y = const.Computation yields
6

Y= 2_ Y.u. = const. (18)
i=4 b i &

The derivative of (18) yields (17).
Remark.If we multiply (17) by Y, ,we obtain immediately equations of
geodesic lines (16).This is something we already know,as the geodesic
lines are translates of one-parametric subgroups.(18) is a first inte-
gral of (17),the vector Y is given by initial conditions.The geodesic
lines of the Levi-Civita connection are therefore in this case determi-
ned by l.order differential equation -which is also to be expected.

(17) has two natural first integrals which are obtained by using
the Killing and Klein forms,they give the angular velocity w and the
pitch v of the corresponding one-parametric subgroup by the formula

dui du. du. du.
9i; 9t Ot = 133?;_3—1 -

If t is the time,then the curve g(t) determines an actual motion of
the robot manipulator.Such a motion is a translation iff B(g¥3g¥) =
This means that all translations are solutions of the equation

gleu du = 0,or in an equivalent way,they are solutions of the system of
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3 Pfaffian equations DYidui = 0 (because for XeL we have B(X,X) = 0
iff DX = 0).

Similarly,the motion g(t) of the robot manipulator is rotational
(a rolling) iff it satisfies the eguation hijduiduj = 0.

The singular set of the robot manipulator is given either by the
equation det(hij) = 0 or by theéequation det(Yl,...,Yé) = 0,because
it is the set of all points in R™,for which the axes of the robot mani-
pulator are linearly dependent.

Further,for a 6-parametric robot manipulator we can define the volu-
me integral,as it is defined on any pseudo-Riemannian manifold:

Let LL be any (reasonably defined,for instance open or closed) set
in R®.Then we define

V(g,{LL) =jl_[|det(hij)|% du;...dug.

V(g,{l ) is of course left and right invariant,which means that it does
not depend on the choice of the matrix representation of the motion of
the robot manipulator.V(g,fl ) is a measure for reaching ability of the
robot manipulator if parameters change in (0 .If Q is a maximal set in
which g is a 1-1 mapping,we obtain the volume of the whole manipulator.

Remark .We have defined g5 = B(Yi’Yj)’hij = <.Yi,Yj3> .This expression
is not very convenient for direct computation of gij and hij'AS forms
Band <, > are Ad C, invariant,we have B(Yi’Yj) = B(Adei’Adej)
E?r any g from C, and similarly for < , 7 .Let us define

Y; = Ad(g,g59,)Y; -Then

1
AT R
Y] = Adgg X;,Y, = Adgj

1 ~ 7 ~

Adgé Xp,Y3 = X 5 = Adg,X,

Y, = AdgaAdgsxs.
Vectors ?; can be computed with reasonable effort and from them we

obtain 9; and hi

J J

4.Velocities and accelerations

Let g(t) be a space motion given by its matrix representation g(t)
by the formula G(R) = R.g(t),where R is an orthonormal frame in the
effector space EB’R is an orthonormal frame in the base space E3 of the
robot manipulator.Then for the trajectory A(t) of a point A = RX from
E3 we have ﬁ(ﬁ) = g(RX) = Rg(t)X = RX(t),where X are coordinates of A
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in R and X(t) are coordinates of A(t) in R,so X(t) = g(t)X.For the
velocity of A at the instant t at the place X = X(t) we obtain

vy = 9 (DR = g" (g L.
So if j)l is the velocity operator,we have Vy = l)lX with

Q=g (gD el
The velocities at the instant t are given as velocities of the
instantaneous motion of the motion g(t),which is in general a screw
motion determined by the vector .111 from L.The angular velocity v
is given by the Killing form B,the pitch Y5 is given by the Klein form:

- 2 _
=8(02,,0), vy -<_(21,.Ql7 .
The instantaneous axis is determined by.&ll itself.

The acceleration ay of A at X is given by
. . ’ o ! 2
a, =vy = (07 = Qox+ Qx=¢ 2, + QDx.
The operator 112 of the acceleration is therefore given by the formula

n, - o)+ Q%

Let now parameters uj of the robot manipulator be given as func-
tions of time t,u; = u, (t) Then we obtain an actual motion of the robot
manipulator.Let dul/dt vl be the angular or translational velocity
of the i-th joint of the robot manipulator.Then

6

ﬂl § Z.v* ,where Z; = Ad(gy...g;_)X-

We observe that B(Zi’zj) = B(Yi’Yj) and similarly for the Klein form,
as they are Ad Cé invariant.This means that for the instantaneous
angular velocity of the motion of the effector of the robot manipulator

2

we have v~ = g.jvivj and vov2 = h.jvlvJ for the instantaneous pitch.

For the angle {t of the instantaneous axis with the i-th axis of
the robot manlpulator we have v cos J; 94 vJ for the distance D

i3
of the instantaneous axis from the i-th axis we have

vz(Disin J} + V Vv cos 9}) = Zhi.vJ.
Moreover,the instantaneous motion is a translation iff B( 111, 121) = 0.

For the acceleration we have 172 = Ili +_§l§,where

q:

1° Zi'vi + Zi(vi)'.We splitt the acceleration operator into 3 parts:
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I ! _ i _n2
G]. - zlv ’ @2 - Zla ’ 03 = _Q- E]
i

where (v}) = a' is the angular or translational acceleration of the

i-th joint of the robot manipulator.

@2 is an velocity operator for angular velocities equal to ai,
@3 is the centrifugal acceleration,which is easy to understand,and so
the only unknown part of the acceleration operator is 6% = Zivl.
Computation yields
Eﬁ = (1/2) Eij[Zi,ZA]vivj.
Let us write 91 = kak.Then
[@l’zr-'I = <Zk’zr> - rij’kvivj'

This means that mkhkr = r-ij’k vivj and multiplication by the inver-
. kr k _ k ij
se matrix h to hkr leads to the formula m" = r-ijv v,
This yields the expression
= R
91- rijvak, (19)

which connects the acceleration properties of the motion of the robot
manipulator to the properties of the Cartan connection of the symmetric
pseudo-Riemannian space 86.

As Rijk’m = (1/4) < (_Yi,Yj],[Yk,Ym]7 ,we have also

i g kom
i3 Em Rijk’m vivivive, (20)

5.An example

To give an example for illustration,we shall choose a very simple
type of a robot manipulator to compute components gij,hij,the Christo-
ffel symbols and to show some other applications (without having any
practical realization on mind).

Let us suppose that all the links of the robot manipulator are
rotational (this follows hii = 0);the parameter uy is the angle of rota-
tion (which follows 94 = 1).For the sake of convenience we shall denote
by the same letter the axis of the robot manipulator and its correspon-

ding vector from L.
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As the starting position of the robot manipulator we take the posi-
tion with all axes parallel to the (xz) plane.lLet these axes be Xl""’
X6.By an axis of two straight lines X and Y (X # Y) we mean the straight
line,which intersects both of them under right angles.If X and Y are not
parallel,then the axis is determined by the vector [X,Y] € L,in the
case of parallel lines we take any such line.

Let us denote by o(i and di the oriented angle and distance of
lines Xi and Xi+l,respective1y. Aj be the oriented distance between
axes of lines xj_l,xj and Xj,Xj+l.Then the constants o(i,di,i=1,...,5
and A.,j=2,...,5,determine the robot manipulator uniquely (after some
simple agreements).

As our example we choose the robot manipulator,for which o(i =T/2,
d; =0 for i=1,...,5and A, = A, =0, D3 #0, Ag#0.The ortho-
normal frame in E3 is chosen in such a way that Xl is the x-axis.

For the motion of the robot manipulator we shall write
glup,...5ug) = gy Cup). .. g (ug),where g; (u;)= (1 , 0 )

t5Quy),p (uy)d

is the matrix of the rotation around the axis Xi'

We obtain h = (1, 0, 01, *7'2 = 02,-52,0
D,Cl ,—Sl 52: CZ’U
U,sl » Cp 0,0 ;1

and similarly for the others;we write simply ¢y for cos uy and s; for

sin u, .We have also

t, = (1-04)A3 - (1-c)(As-B9)
-54A3 —56(A5‘A3)
0 0

remaining translations are equal to zero.
~
For Y.1 we obtain

Vl = fc, ;0 ,Yy= [0 ;0 ,73= -1;0),
=S,C3; 0 -S33 0 0;0
~S5S33 0 Cs; 0 0;0
'74 = 0; 0 5 75 = Cys 0 . 76 = -5455;-A55405
0;- 45 ~S45 O ~¢4855 O3¢5~ Ageycs
-1; 0 0 ;A354 cs; Asc,55- Assg
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9;57 [ 1 i 1 €215993189C*595,C3,  Oy¢
0 5 1 , 0, “C3, S35, 1C3C5*+5C, S
-C, , 0 s A4y 8 . -G, s 5455
5,83 » ~C3 , 0, 1, 0 »  Cg
CyC4+S9C3S,, S35, » Cy» 0, 1 y 0
916 18305¥55C, 86,885, <65y 0, 1
where 91¢ = 59C3C4S5 ~ 5753Cg - C,8;Sq.
hij=(l/2) 0 , 0 , 0O ,5203A3,~525354A3, hig
0 , 0 , 0O ‘SBAB’ c38, By, hy,
0 , 0 , 0 , 0 , 0 ,s,4<:5A5
5203A3 , S3A3 , 0 , 0 , 0 , 854
-525354A3,0354A3, 0 , 0 ; 0 , O
hig 0 Mg s5CsBgsshs 0,0
where

hig = A5(525355'CZS4C5+52030405) -63(520305+52530455)
hog = Bs5(530,057c385) + Bs(c3e,s5-5505).

To compute the Christoffel symbols I it is enough to consi-

ijk
der the case i< j<k,because the symbol is zero if two indices are
equal and we have rij’k = - rik’j = rjk’i‘In this oase we have
rij’k & (1/2)(8hik/auj).For instance we obtain

4[5y = 003850 4 [ 005 = -0p353,85.
_ 2 2 2.
Further,det(hij) = (1/64)(545205A3A5)
For the volume function of this robot manipulator we have

V() = (1/8)A§A5_O_j SZCSSZ dQL,

where D_C R6 is the domain of parameters uj - {L must be chosen in
such a way that the map g:_.O.—-'? C6
set.To compute the whole volume V of the robot manipulator we have to

is one to one on an open and dense

find a maximal domain £ on which g is 1-1 mapping.To find such a domain
we have to solve the "inverse" problem for the motion of the robot
manipulator - for given position of the effector we have to find corres-
ponding angles of rotation ui,i=l,...,6 and look for domains,where the

solution is unique.
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We would like to solve the equation g(u ""U6)=9(V1"“’V6)
for given u; and unknown v .Let us denote g (v ) = éi and similarly
for 7 and t;.As 96 gs(v ) and 96(u )96 (v ) gs(ué—vé),because
95 is a one- parametrlc subgroup,we may suppose 96 = e and substitute

Ug-Vg = W instead of Ug .Let us denote k = —ASZSB .Then we obtain the
following equations:

CgiS¢g, 0 (c,~1)+(1+)(1-cy) = 84_- 1
~Sg1Cgs 0 54Cs - (1+k)56 ?425
6 ,0r,; 1 ~5,Sg -5;Sg

The solutions are:

a) cos w = 1,sin w = 0 Cy = C4» Sy = Sy, Cg = Cs, Sg = Sg,

)
(c4+k)2 g 2(c +k)s
b’°°5”=—2—2—z Si”w“‘W’
(c +k) +5,Cs (04+k) +5,Cx
C, =C4» S, =S, Cg = - Cs, Sg = Sg.

This shows that we can choose
€ (0,T), Ug € (0,2m), u6€ (O,w).

If u,,ug,u, are fixed,then u) € (0,2m), u, € (0,2T), us € (o,mT),
as they are Euler angles on S0(3).

For the volume V of the robot manipulator we obtain
wo/H14ALP ror 21 and

@/HT G057 tor | £1.

Vv

"

The sinqular set of the robot manipulator is given by the equation
$,5,C5 = 0 with obvious solutions.

Translations (motions of the effector with zero angular velocity)
are given by equations
czdul + du3 - 4du5 * SASSdué =0,
5253du1 - CBUUZ + du4 - Cst6 =0,
5203du1 - c:}du4 + SBSadUS + c4ssdu6 = 0,
which have the following 3 independent integrals:
(0254—520304)55 + 5,540c = Ky
(904 #5035, )0+ (098, 75,C3C4 005545535554 = Ky,
(515254+s1czc3ch—c153c4)55—(slczs3+clc})c5 = Ky,
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where Ki are integration constants.

Now we shall write down the system of differential equations for
the screw-motion of the end effector around a chosen axis Z given by
Z = (pl,pz,pB;pa,pS,pé)e L.Let us denote by a;= dui/dt the angular
velocity of the i-th link.Then we obtain

0231-a3+c435-5435b6 = CuY+5,552,
~S9C381-538,-8,85-C; Sgby = ~5,4¥+C,CeZ,
-525331+0332—aa+c5b6 = 857,
-Ass[‘csb6 = C,ms,Con+s,55(q,~ Bs2),
-A3a4-cs(A5c4-A3)b6 = -54m+cacsn+cass(q6-A52)+ A3ssz,
Ass,a5-55(A - Aye, )b = son-cglqg- Asz)- Aysyy-c,c5 Bz,
where
Bg = 8gP3s ¥ = P1Cg P84, Z = PiSHoCe, M = PyCeUsSe, M = 0yS.+a3C,,
Qg = Pyl 5-A)-pg, a5 = p3(Ag-Ag)epg
As an application we shall consider a simpler case,the case for
which Py =03 =Py = Qg = 0.Then a, = 552/05, a,=0,s0 u,= const.,
ag = —}42/05 + y, where ,u=(k+ca)/34, Cos Ug = (v -)Ay)/z,where
y

const. ,k=const.
Further we obtain
Cqg = ) +wCy)/sy, 8,w are constant, w= (1+c,k)/s,k,which yields

(sg_-(g +t.)02)2)"‘-.52du2 = (c,- Ms,)(Y —}ay)'lz2

du6,
du, = (c,- ps,)(§ +wc,)s;2 220y - pyddu
1 = (4= M5y /3y YR
This shows that ug and u, can be computed by integration,finally
_ -1,.2 2
dug = z(v -py) “(2°-(Y -py)?) dt.

As an another application we shall write the equations for plane
motions of the effector in a plane perpendicular to the axis X6.In this
case we have P1=Po=Pg= 0,so y=2=q,= 0.We obtain the following equations
ags,Cg + 8,C4S5 = 0, 8152(0305+53C455) - az(c3c4ss-5305) =0,

8485 = 8)(C)5,C5-5)03C,C58y5355) + 85(C355-93C,C5) - a35,Cc-

To express components r gk we need the matrix h'J inverse to hij'

_ _ 2 2 iy _
Lot &= (det h.lj) = SQCSSZABAS.Theﬂ htd = ZAB/S.
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0 ,0 ,—c35455A5 ,0334205A5 ,—535465[35 ,0

0 ,0 ,-52535455A5,528384C5A5,52840305A5,U

—55c354A 5 —52535435A 5,~2Msg Ms,Co N ,5254A 3

0354051k5 ,52535405£55 Ms,C ,0 ,0 ,0

,-s3sac5A5,3254c}c5A5 N 0 ,0 ,0

0 ,0 ,szsaA3 ,0 ,0 ,0
where

M =Ag(e,e58,-50,)+ Bysy, N = Ag(syss-0,558,05)- Assyeyss-

By matrix multiplication we now obtain the components rl.k of the
Levi-Civita connection and we are able to express the components of the
relative acceleration DZ.For instance the contribution %2 of 92
from the first two links of the robot manipulator (u3,...,u6 are cons-
tant) is:

12
@2 = vV,o(C,yY +Y3)/2s,,

where Vi and v, are angular velocities around Xl and X2,respective1y.
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