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SOME REMARKS ON BOUNDED AND UNBOUNDED WEAK
SOLUTIONS OF ELLIPTIC SYSTEMS

Ridiger Landes

The result of LadyZenskaya on global bounds for weak solutions of elliptic equa-
tions is carried over to certain quasilinear elliptic systems in diagonal form. A
generalization of De Giorgi’s example shows that there are unbounded weak solu-
tions for systems with only “small” deviation from the diagonal form.

INTRODUCTION
On a bounded domain © C RN we consider the quasilinear elliptic system

(E) A(u) + B(u) =0,

M N
where the leading operator A(u) is of the kind 2 Z Diafl-‘(z, u, D(u)) D’ uy
£=1i,j=1
and the perturbation B(u) is given by b"(m,u,D(u)),J k=1,--- M.

As it is well known, a weak solution of a single elliptic equation is bounded
in L*°(§2) provided the coefficient functions are subject to a set of “natural” con-
ditions, cf. [4,10]. On the other hand, in 1968 De Giorgi presented an example of
an unbounded weak solution of a linear elliptic system satisfying the set of natural
conditions when transferred in a straightforward manner from elliptic equations
to elliptic systems cf. [1,2,3].

The system of this example is of the form

N
Dup+ Y Di(BH(2)Di(ue)) =0, k=1,--,N.
t,i,j:l

As we shall point out in the last section of this note, there are unbounded weak
solutions for systems of this kind even if the coefficient functions bff become arbi-

trarily small in the L*°(2)-norm. In our examples the L*°-bound on bfj‘ is linked

227



LANDES

with the dimension of the space. We have to admit high space dimensions to get the
bound small. However, in addition to the L°-bound the ratio |55/ (z)|(|6:;6ke]) ™
also becomes small uniformly in z. Here |.| is the euclidean norm in RN, and
0i;6xe are the coefficients of the Laplacian.

These examples indicate that in general we can expect L*°-bounds only for
systems in diagonal form. On the other hand, we shall show that LadyZenskaya’s
result on global bounds can be transferred to certain quasilinear systems in diago-
nal form. Our proof is based on the estimates of |D(|u|)|? rather than |D(u)| and
is restricted to the Sobolev spaces H!"?(Q) with p > 2. A different approach has
been used by Meier in [8]. However, despite greater technical efforts the bounds
from below on the perturbation are not more general than those given here. For
p < 2 the problem seems to be still open. The theory of [8], too, yielded global
bounds only for differential operators in H'?(Q2), p > 2.

Finally we remark that our examples also show that a somewhat more general
notion of a solution than the weak solution does not provide uniqueness even for
linear uniformly elliptic systems; cf. [9], too.

The author is indebt to Professor M. Meier for additional references and

helpful remarks on an earlier version of this paper.

1. BOUNDED SOLUTIONS

The following hypotheses are similar to [4], p. 286. For sake of a less technical
presentation, we do not assume another integrability property for the weak solution
as the one provided by the Sobolev imbedding Theorem.

For any n € RM, ¢ € RY, ¢ € RMY and almost all z € Q we assume

N
() Y aisle,n, O 2 PR - (1 + InlP e (2),

i,j=1

M
(B) 30 (am O 2 {1+ WP )eae) + (1 + nlP)es() 1P,
k=1
where v > 0 and ¢, are functions in L™ (), ¢ = 1,2, 3. The exponents €, r, and
B., t =1,2,3, are subject to the following inequalities:
(i) 0<e< M%ﬁ:ﬂ (or equivalently (1 —¢€) > NT_;';Z .

(i) r. > &, for +=1,2
N : p—1 Np N : p=1
3 > saey if e < o and r3 > G N—0i=p) = i if € > ==

(i) 0< A <g(l—-3L) 0SB <g(l-3)-1 0<Bs<gll-e-3)-1;

where ¢ = NA,—Lp'
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Remark: We assume that the domain is smooth enough for the Sobolev imbedding
theorem to hold. Hence we consider the case 2 < p < N only.

Since we are dealing with unbounded solutions, we have to specify the notion
of a weak solution. In order to do so, let us first introduce the following notations.
We write

(Aol = [ S S 0o, u, D(w) D ucDipuds,

k,=11,53=1
and

M
(Bl = [ 3w Dw)puds,
k=1

for a measurable set { C 2, whenever the integrals on the righthand sides are
finite. We omit the index { in case Q = Q.

DEFINITION 1. A function u in H!(2) is called a distributional solution of (E)
if

- M N
(i) the functions ZZa z,u, D(u))D?uy and b%(z,u, D(u)) are in L'(Q)
=1 j=1

fO_Ea_lll—l Nak:]-v"',M;
(i) (A(x), @) + (B(u), 9) = 0, for all ¢ € C5(8).

A function u in Hl"’(Q) is called a weak solution of (E) if

(iii) the functions Z Za {(x,u, D(u))D’ug and b*(z, u, D(u)) are in L?' (f2) and
=1 j=1
LY(Q) respectively, for alli = 1,---,N; k=1,---,M; p' = -&;

-1
(iv) (A(u), )+ (B(u), @) = 0, for all ¢ in HIP(Q)N L,

Using (B) an easy approximation argument shows that we can use a weak

solution u as testfunction in iv). Hence we have

THEQOREM 1. Suppose that (A) and (B) are satisfied for a number p > 2 and
suppose that a weak solution u of (E) has finite norm in L*°(9f2), then u is

bounded in L*°(§2). More precisely we have ||u||co,0 < C, where C is depending
on p, N,M, |Q'a”u”m,am”u”q’€’ v, B, ”‘Ptllr.s t=1,2,3.

Proof: Let u% be defined by u® = u, if |u| < 6, and by u% = Gﬁ, if |u| > 6, then
u

Diul) = [D'uk — Ju|"2up Zu(D'ul] for |u| > 6, cf. [6]. For p > 2 we have
=1

ID(|u)I? < (ZID"uI2 cos” %)| D(u)[P~* < | D(u)/P,

i=1
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M
with cosy; = ZugDiul(lullDiul)_l. For |u| > 6 this yields

=1
|D(Ju)|P < |D(u)|P~2[(1 - 2

0 N .
2 .12 2 o
RPID + S D cos? 3

=1
M N
S0 Y aii(erw D) DIurDi(uk ~ uf) + M(1+ [ul*)ea).
k=1i,j=1
On the other hand, for |u| > max{6,1} we have
0
—B(z,u,D(u)) - (u—v’) < 55(1 - m)lD(U)l” +Clipa|ul*! + pglulfo+1] =,

Let P® = {z € Q| |u(z)| > 8} are the level sets of |u|; testing the differential

]

equation with u — u’ we obtain

3 ~
D(|u|)|Pdz < / u|P . dz,
[ 1paras <3 [

for § > max{1,||ull,00}; where By = B1, B2 = P2 +1, B3 = (Bs +1)1i;, and
Y, € L* with s, =r,, for ¢=1,2 and s3 = r3(1 — €). Hence we have

/ fulPpdz < Cllull2 [l ( / luldz)E < C( / (Ju] — 0)%dz)? + 7| PO |2 ],
P P pe

where o, = L;nl?gfs{o,ﬂl -p}, & =p(1-2L— %L)—l, 0<¥ < I—VI!f;, and

3

L= max {¢.}. Invoking Theorem 5.1 p. 73 in [4] we conclude that u is a bounded

function as stated.

COROLLARY 1. Suppose that u is a distributional solution of (F), and suppose
that ||u|lco,0n and ||u||, are bounded. Then (A) and (B) imply that ||u|/c,q is

Remarks: 1) The fact that u can be used as a test function is very often provided
by the existence theory, even for strongly nonlinear problems, cf. [7]. Furthermore
this property also is crucial in the uniqueness theory, cf. [5] and the discussion in
the next section.
2) In our context the bound from below used in [8] for the perturbation reads as
follows:

n- B(z,n,&) > —v*[|€|P + C|n|? + f], with * < v and f € L™ (Q).

An easy computation gives

(A(u), u = u) + (B(u),u —u®) > (v - 7°) /n |D(w)[P2(1 — %)ID(u)lz

N
9 . .
e > 1Dl cos® i) = (1 + [ul® )1 + (1 + [u|% )} )da.
=1
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Since ¢ > p we have that ¢} and §; are subject to the above restrictions on the

data. Consequently this bound can be incorporated in our theory.

Examples: 1) In the case of A(u) = —Au, we are able to admit perturbations
B(u) of the type B(u)x = |D(u)|Pg(u)ug + C|D(u)|?, p < Mr%lﬁz, provided ¢
is a real valued function satisfying g(n)n-n > p> —1 for some real number p.
2) Let us consider the functional H(u) = / h(u)|D(u)|Pdz, p> 2,

Q

where h: BRM — R is a continuously differentiable function. If a critical value
u € HY?(Q) of the functional is bounded at the boundary then u is bounded in
the whole domain, provided there is a positive number 7 such that

n-grad h(n) > —7 and inf{h(n)|n € BM} > .
The system of Euler-Lagrange equations of the functional H is given by

p div(h(u)|D(u)|P~2grad ug) + |D(u)|Phe(u) =0, k=1,--- M,
with hp denoting the partial derivative of h with respect to the k-th variable.

3) For examples in differential geometry we refer the reader to [8].

2. UNBOUNDED WEAK SOLUTIONS

Let us consider De Giorgi’s functional

t
J(u) = j |D(u)|? + [a div u + biD(u)z—]zdz,
B(0,R) |z

|z

where u is a function from RY into RN, N >3, and a and b are positive numbers.
B(0, R) is the ball with center 0 and radius R. Actually De Giorgi is dealing with
a=N—-2and b= N in[1].

The system of Euler equations for this functional is given by

t
—Lap(u)r = Auk + a Dk[a div u + b_x_D(u)Ii;_ll

(2.1) Izl t
z z z
+ b div[zy —(a divu+b—D(u)—)] =0, k=1,---,N.
=2 ERRE
Note that the coefficient functions are given by afj‘ = aff + ,!‘j‘, where afjl =

T;Te

R hence (2.1) can be written as
T

5,‘_,'5,;(, and ,3,’;‘ = XikXjt, with Xje = a6j[ +b

N
_Lab(u)k = E Df(afijul) =0,k=1,---,N.

i,7,0=1

We need the following generalization of the Lemma in De Giorgi’s note.
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LEMMA 2. Suppose that u is twice continuously differentiable and it is satisfying
the Euler equation in B(0,R)\{0}. If u is in HY for P > 25, then u is
a distributional solution of (2.1). If, in addition, u is in H1?(Q), then u is a weak

solution.

Proof: Let g be any test function in C§°(B(0, R)); as in [1] we consider the approx-
imations g,(z) = (1 — p(nz))g(z), where p is a smooth function identical one in
RVN\B(0,1) and identical zero in B(0, ;) say. Since the sequence g, is bounded in
the spaces_ H 1’q(B(O R)) for any g < N, the sequence D(g,) converges weakly to
D(g) in Lr/v- 1, and hence u is a distributional solution. In case u € HV%(B(0, R))
we obviously have that u is a weak solution.

THEOREM 2. Let f: (0,R) — R be a twice differentiable function; then
u(z) = zf(|z|) is a solution of the Euler equation (2.1) in B(0, R)\{0} only if
F(T) = 1™ + o™,

with my/, = —3(N F /N2 — 48), where # = ((a+b)*+1)"(N — 1)(b+ Na)

and c¢; and c, are constants in R.

Remark: Note that we always have N2 — 48 > 0, since the function p(a) =
N%*((a+b)?+1)—4 b(N —1)(b+ Na) has its minimum value N? at a = b(1 — ).

Proof of Theorem 2. Straightforward differentiation yields
Azef(lz])) = ze[(N + 1) (lz])]z] 7 + £(l=])],
div(zf(|z])) = Nf(lz]) + f'(|z])l=],

t X el
= D(zf(|e])) o = Y DI f(lz)=F(lz]) + £'(J2)le],
Jt=

|z lz| A= =

DX(of(lz]) + F(Izl)l2]) = z&l(o + DF (JeDlz| =+ f(I2]),
div[zk,—jl—z(af(ul) + f'(I2))le])]
= ok [(N = Do f(lz])le|~2 + (N + o) f'(lz)lz]=* + f"(lz])].

Because of the Euler equation (2.1) we have

0 = axl((a-+ b + 1)(F"(Ja]) + (¥ + 1)f (eDlal 1) + BN — 1)(b+ Na)f(JaDla] 7,
for k = 1,---, N, and hence, as a necessary (and sufficient) condition on f, we
obtain the Euler Differential Equation

prn) +ol D g0

with @ = (N 4+ 1) and 8 = ((a + b)?2 + 1)"'b(N — 1)(b + Na). Its characteristic
equation is given by m? + (a — 1)m + 8 = 0, which proves Theorem 2.
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As an immediate consequence of this proof and Lemma 2, we have

COROLLARY 2.
i) For my = —3(N—+/N? — 4p), the function u(z) = z|z|™ is a weak solution
of (3.1). If \/N?2 —48 < N — 2, then this weak solution is unbounded.
ii) For my = — (N +/N? — 48), the function u(z) = z|z|™ is a distributional
solution of (2.1) if /N2 -4 < N — 2.

COROLLARY 3. Consider the Dirichlet problem
Lop(u) =0 in B(O,R);  ulyp.n(Z) = 2.

For /N? — 438 < N — 2, there is at least one unbounded weak solution given by
u(z) = zlz|™ R™™,

and there are infinitely many distributional solutions

v(z) = z(c1|z|™ + co]z|™2)(c1 R™ + c2R™2)71, ¢1,c0 € R.

Remarks: 1) We have my = —3(N — N(J/AN =12 +1) ) fora= N -2 and
b= N. The function u(z) = z|z|™ is the counter example presented by De Giorgi
in [1].

2) Note that the nonuniqueness of the distributional solution is obtained for a
linear operator satisfying (Lq.p(u) — Las(v),u — v) > ||D(u — v)||3. Hence, it is
crucial in the uniqueness theory to assume that the solution can be used as a
test function. As the above example indicates, this assumption cannot be omitted

without substitutional hypotheses.

Finally we point out that we can choose the nondiagonal part “small” com-
pared to the Laplacian if the space dimension is large. Because of the equality

N? —4f — (N —2)? = 2=1(1 — b2(N — 3)], we have

LEMMA 3. Let a=b and N >4 , then /NZ—4f < N — 2 for all b with
b> X

R ks. 1) Choosi =b=—+=
emarks. 1) Choosing a = b D

k,£,i,5 < N.

2) Regarding A = (;;6x¢) and B(z) = (B (z)) as vectors in BY" we have |A| = N

and |B(z)| < b3(N + 1), for @ = b. Therefore the ratio ]%f\n — 0, as N — oo, if
1
N-1°

we have Iﬂ,’;’(a:)| < N—‘:; for all 1 <

for example a = b =
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