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SOME HOMOLOGICAL PROPERTIES OF COMMUTATIVE
SEMITRIVIAL RING EXTENSIONS

Erik Valtonen

Let R be a commutative ring with 1 and M an R-module. If ¢ :
M ®gr M — R is an R-module homomorphism satisfying ¢(m ® m') =
¢(m' ® m) and ¢(m @ m')m" = m¢(m' ® m"), the additive abelian
group R ® M becomes a commutative ring, if multiplication is defined
by (r,m)(r',m’) = (rr’' + ¢(m @ m'),rm’ + r'm). This ring is called the
semitrivial extension of R by M and ¢ and it is denoted by RagM. This
generalizes the notion of a trivial extension and leads to a more interest-
ing variety of examples. The purpose of this paper is to study RagM; in
particular, we are interested in some homological properties of RagM as
that of being Cohen-Macaulay, Gorenstein or regular. A sample result:
Let (R,m) be a local Noetherian ring, M a finitely generated R-module
and Im(¢) C m. Then RayM is Gorenstein if and only if either RaM is
Gorenstein or R is Gorenstein, M is a maximal Cohen-Macaulay module
and M = M*, where the isomorphism is given by the adjoint of ¢.

1. INTRODUCTION

Recall that the trivial extension RaM of a commutative ring R by an R-
module M is the additive abelian group R & M endowed with the multiplication
(r,m)(r',m’) = (rr',r'm + rm’) (r,7' € R,m,m' € M). This definition is due to
Nagata who introduced trivial extensions (under the name ‘idealization’) in order
to be able to handle primary decomposition of both ideals and submodules in an
unified way ([Na]). Since then trivial extensions have turned out to be quite useful
tools in commutative algebra and they have been a succesful ingredient in many
constructions. To mention a few examples, the Gorenstein rings with transcen-
dental Poincaré series given by Bggvad ([Bg|) are trivial extensions as well as the
rings with finite A-dimension n constructed by Roos ([Ro]); an other application
is the construction of Buchsbaum rings with prescribed local cohomology ([SV]).

The popularity of trivial extensions as a tool is partly explained by the precise

45



VALTONEN

and computable relation that there is between the homological properties of R
and M and of RaM. For example the Poincaré series of RaM, Pgraas, is a simple
function of Pr and Pyy.

The purpose of this paper is to study semitrivial extensions which are a nat-
ural generalization of trivial extensions (probably due to Reiten and Roos inde-
pendently). The idea is to allow a nontrivial multiplication of the elements of the
module M. This leads to the following definition:

1.1 Definition: Let R be a commutative ring with 1, M an R-module and
let  : M ® g M — R be an R-module homomorphism which is symmetric and

associative, that is, which satisfies
$(m @ m') = ¢(m’ ® m)
and (1.1)
mé(m’ ®m") = $(m & m') m"

for all m,m',m"” € M. Then the ring obtained from the (additive) abelian group
R & M by defining the multiplication by

(rym)(r',m’) = (rr' + g(m @ m'),rm' + r'm)

(r,r' € R,m,m' € M) is called the semitrivial extension of R by M and ¢, and
we shall denote it by RagM.

It is clear that RayM is a commutative ring with unit-element (1,0). Trivial
extensions correspond to the special case ¢ = 0.

Not surprisingly the mixture of the module part and ring part that ¢ causes
makes the relation between RayM and between R and M more subtle and com-
plicated than in the case of a trivial extension. This makes semitrivial extensions
more difficult to deal with but, on the other hand, leads to a more interesting
variety of examples; for example, a semitrivial extension can be a domain or even
regular.

The basic difficulty in constructing examples of semitrivial extensions is to find
modules with associative homomorphisms. It is clear that the existence of such

homomorphisms implies restrictions on the module (see lemma 2.1 and remark
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2.2). Nevertheless, there are natural examples of semitrivial extensions. Let us
give a few simple ones. First of all, we mention the obvious fact that a semitrivial
extension is essentially the same thing as a Z /2Z-graded ring. Perhaps the simplest
example of a (non-trivial) semitrivial extension is obtained by taking M = R and
an element s € R and putting ¢ = su : r ® v’ +— srr’. (Here as always in this
paper u denotes a multiplication which is obvious from the context.) It is easy to
see that RayR is then isomorphic to R[X|/(X?—s). Another example is provided
by a graded ring: R = G};’Zo R, can be written as a semitrivial extension of its

second Veronese subring,

oo (o}
R = R@aq, R = (€D Rap) @y (€D Rant1) - (1.2)

n=0 n=0
Especially polynomial rings are semitrivial extensions in this way. Also powerseries
rings can be decomposed analogously. Later we shall encounter less immediate
examples (cf. also [Va]).

The definition of a semitrivial extension makes of course sense also in a non-
commutative context and, indeed, most papers on them have been in this greater
generality. We mention Palmér [Pa] and Garcia-Herreros Mantilla [GHM)]. We
shall however restrict our attention to the commutative case and so we make the
convention that our rings are commutative and with a unit-element. All modules
will be unitary.

The content of this paper is as follows: In chapter 2 we study some general
properties of RagM (as that of being a domain or reduced). In chapter 3 follows a
discussion on some, mostly well-known facts on trivial extensions. The main-part
of this paper is devoted to the study of some homological properties of RagM : we
begin by studying when an Artinian semitrivial extension is Gorenstein (chapter
4). Then we move on to the local Noetherian case in chapter 5 and study the
Cohen-Macaulay and Gorenstein properties — the main-tool here will be local
cohomology. In chapter 6 we discuss regularity and we end with a few remarks on

complete intersections and some open problems in chapter 7.

2. SOME GENERAL PROPERTIES

Let R be a ring (commutative and with 1) and M an R-module (unitary).
Denote
®(M) := {¢ € Homg(M ®r M, R) | ¢ satisfies (1.1) }
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It is obvious that ®(M) is then an R-submodule of (M@M)* := Homgr(MQM, R).

The following observation is important:

2.1 Lemma: If (M) # {0} and if M is free or torsion-free, then M is

indecomposable.

Proof: Suppose that M is torsion-free and that M = M'@® M" is a nontrivial
decomposition. Let m' € M’',m"” € M" be nonzero elements. Then ¢(m’' ®

m")m' = ¢(m' ® m')m' and so ¢ = 0. The case where M is free is similar. g

2.2 Remarks: (a) The fact that ®(M) # {0} does not alone guarantee
indecomposability of M. To see this let R = Z/4Z and M = Z/2Z & Z /2Z, where
Z/2Z is considered as an R-module in the natural way. It is easily seen that
®(M) # {0} (cf. also (c) below).

(b) The existence of a nonzero ¢ € ®(M) implies of course also other re-
strictions on M than (possibly) indecomposability: Let {m;|¢ € I} be a system
of generators of M and let ¢ € ®(M). Write r;; = ¢(m; ® m;). Then we have
by (1.1) that rijmyg = rjxm; for all ¢,5,k € I, so there should be ‘many rela-
tions’ between the generators of M. On the other hand, this gives also a way to
construct modules M with ®(M) # {0}. Let F = @, Re; be a free R-module
with basis (e;)icr and let (ri;)i,jer be a symmetric matrix where r;; € R satisfy
rijTkl = rierj for all 4,7,k,0 € I, i.e. all 2 X 2-minors should be 0 (this corre-
sponds to associativity in (1.1) ). Let K C F be the submodule generated by
all elements of the form r;jex — rjxe; and let M = F/K. Then we can define a
homomorphism ¢ : M ® g M — R satisfying (1.1) by setting ¢(m; ® m;) = ryj,
where m; = ¢; mod K. If e.g. R is a local ring with maximal ideal m and r;; € m
for all ¢, 7, then M will certainly be nonzero by Nakayama’s lemma.

(c) Let us give an example of the construction in (b). Let again R = Z/4Z
and let F = @?___, Re;. Take (r;;) to be the n x n-matrix where r;; = 26;;. Then
the construction gives M = (Z/2Z)"™ (and ¢ is given by ¢(m; @ m;) = 26;;).

2.3 Definition: A homomorphism ¢ € ®(M) is called diagonally squarefree
(DSF) if the equation ¢(m ® m) = r? (m € M,r € R) implies that m = 0 and

r=0.

2.4 Proposition: Let ¢ € ®(M). Then RayM is an integral domain if and

only if the following conditions are satisfied:
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(a) R is an integral domain;

(b) M is torsion-free;

(c) ¢ is DSF.

Proof: (=) : Suppose that RagM is a domain. Let r,r' € R,m € M.

(@) rr"=0 = (r,0)(+',0)=0 = r=0o0rr' =0.

(b) rm=0 = (r,0)(0,m)=0 = r=0o0r m=0.

(c) Suppose that ¢(m ® m) = r2 for some r € R,m € M. Then (r,m) (—r,m)
=0, so that r = 0,m = 0.

(«): Let (r,m) # 0 and suppose that (r,m) (r’,m') = 0. Then

rr' +¢(mem') =0 (2.1)
and
rm'+r'm=0, (2.2)
so that r'¢(m ® m) = ¢(r'm ® m) = —¢(rm’ @ m) = r'r2. If r' # 0, we see from
(a) that ¢(m ® m) = r? and so m = 0,7 = 0 by (c). Thus r' = 0. We claim that
also m’ = 0. Suppose not. Then, as rm’ =0 by (2.2) and M is torsion-free, r = 0.
But by (2.1) ¢(m ® m’) =0, so
0=¢(mem')?
= ¢(m @ p(m @ m')m')
= ¢(m ® ¢(m’' ® m') m)
= ¢(m @ m) p(m' @ m’).
As ¢(m' @ m') # 0 by (c), ¢(m ® m) = 0 and again by (c), m = 0. But this is

impossible, so that m' = 0. g

2.5 Proposition: Suppose that 2r = 0 = r = 0 in R. Then RayM is
reduced if and only if R is reduced and (¢(m @ m) =0 => m =0).

Proof: (=): obvious.

(«): Suppose that (r,m)%? = 0. Then r% + ¢(m ® m) = 0 and 2rm = 0,
so that 0 = 2¢(rm ® m) = —2r3. Thus 2r = 0 and by assumption also r = 0.
Further, ¢(m ® m) =0, so m = 0 also.

2.6 Remark: The assumption (2r =0 = r = 0) cannot be dropped. Take
R = M = Z/2Z and ¢ = ordinary multiplication. Then (1,1) = 0 in RagM
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but R is reduced and ¢ satisfies the requirement of proposition 2.5. Note that
RayM = (Z/2Z)[X]/(X? —1); (1,1) corresponds to X + 1 in this isomorphism.
A similar example is provided by R = M = Z/2pZ where p is an odd prime; now
(p,p)*=0.

The following result is well-known:

2.7 Proposition ([Pa, prop. 1]): (a) RayM is Noetherian (resp. Artinian)
if and only if R is Noetherian (resp. Artinian) and M is finitely generated (f.g.
for short).

(b) dim(RayM) = dim(R) (where dim stands for Krull-dimension both in

classical and in Gabriel-Rentschler sense). g

2.8 Corollary: RagM is a field if and only if R is a field, M = R and
#(1®1) # r? for all r € R (where we think of ¢ as a homomorphism R® R — R).

Proof: Fields are precisely Artinian integral domains. g

2.9 Example: Let ¢ : RQr R — Rber®r' — 2rr', where R = Qor R =R.
Then

QeyQ = Q[X]/(X*-2) = QV2]

is a field while RagR is not. Note also that C = Ra_,R (where p is the ordinary
multiplication).

Suppose then that (R, m) is a local ring, M af.g. R-module and ¢ € &(M). If
¢ is an epimorphism an easy computation shows that it is in fact an isomorphism
and that M is projective (cf. Bass, [Bs, theorem 3.4]). Hence M is free as R
is local and by lemma 2.1 M = R. Then RayM = R[X]/(X? —r) for some
(invertible) r € R. Thus the interesting case occurs when ¢ is not onto, that is,
when Im¢ C m. Clearly RagM is then a local ring with maximal ideal m x M
and RoyM/m x M = R/m. For simplicity we introduce the notation

Om(M) = {¢ € 2(M) |Im(¢) C m}
(for not necessarily f.g. M). If ¢ € ®,,(M), it is seen by induction on n that
m?"* x m?*"M C (m x M)?** Cm" x m"M (2.3)

From this we see that the degrees of the Hilbert-Samuel polynomials of R and

RaygM coincide; thus we get an alternative proof for proposition 2.7(b) in the case
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when R is a local Noetherian ring and M is f.g.. (The original proof of Palmér
uses Krull-dimension in Gabriel-Rentschler sense and works so for more general
rings.)

The inclusions (2.3) give also bounds for the multiplicity of RagM. Recall
that if N is a f.g. module over a local Noetherian ring (S,n), the multiplicity e(N)
can be defined by e(N) := limp—.o d!n~¢(N/n"N), where d = dim(S).

2.10 Proposition: Let (R,m) be a d-dimensional local Noetherian ring, M
af.g. R-module and ¢ € ®,(M). Then
1
é—d-(e(R) +e(M)) < e(RagM) < e(R) + e(M).
Proof: From (2.3) we see that

I(R/m?™) + |(M/m?*"M) > |(RagM/(m x M)?") > I(R/m") + |(M/m"M).

This yields immediately the claim. g

Note that if Im(¢) = m (resp. ¢ = 0) the lower (resp. the upper) bound is

attained.

2.11 Proposition: Let (R,m) be a local ring, M an R-module and let ¢ €
& (M). Then
RagM = RozM

where 6 denotes the respective maximal ideal adic completions and $ is induced
by ¢.

Proof: Let ¢x : M/m*M @ M/m*M — R/m*, (k > 1) be induced by ¢,
$ is then induced by the ¢4’s. From (2.3) we get a sequence of epimorphisms

RoayM/m?*" x m**M —» RazM/(m x M)*" —» RagM/m" x m"M .
¢ ¢ ¢

As RayM/mFx m*M = R/mFay M/m*M ((GHM, p.11)), the inverse limit
of left- and righthand terms equals ﬁasﬁ . The claim follows as lim RayM /
(m x M)* = RayM. g

2.12 Corollary: Let R be a local Noetherian ring, M a f.g. R-module and
let ¢ € ®p,(M). Then RayM is complete if and only if R is complete.

51



VALTONEN
Proof: (=): As RayM = Ra,M = ﬁa;ﬁ and R < R, M < M, R equals
R.
(«<): As M is f.g., M is complete and so the claim follows from proposition

2.11. g

2.13 Remark: There is an isomorphism
(Ra¢M)[X] & R[X]a¢[x]M[X] .

where M[X] := M ®g R[X] and ¢[X] : M[X]| ® px) M[X] — R[X] is defined by

8 t a8+t
St Y mied s S 3 gmiemp)et.
i=1 7=1 k=1 i+j=k

(It is clear that @[X] is then associative.) A similar assertion is true also for

powerseries rings.

3. TRIVIAL EXTENSIONS

The content of this chapter is mostly well-known. We shall recall some results
of homological nature. Let R be a local Noetherian ring and M a f.g. R-module.

Here is a summary of some known facts:

3.1 Facts: (a) RaM is never regular.

(b) RaM is a hypersurface <= R is regular and M = R.

(c) RaM is a complete intersection (CI) <= Risa Cland M = R.

(d) RaM is Gorenstein <= R is a Cohen-Macaulay ring which is a factor of
a Gorenstein ring and M is a canonical module.

(e) RaM is CM <= R is CM and M is a maximal CM-module.

Here (a) and (e) are obvious and (d) can be found in [FGR, theorem 5.6];
only (b) and (c) might deserve a comment.

Suppose first that R is a CI and M = R. Then ReM = R[X]/(X?) is a CL
Suppose then that RaM is a CI. Let p : RaM — R, (r,m) — r be the natural
projection. It is obvious that it is large, that is, p* : Extg(k,k) — Exth (K, k)
is injective (cf. [Lev, theorem 2.3]) As RaM is a CI, Extp,as(k, k) is Noetherian
and so its sub-Hopf-algebra Ext}(k, k) is Noetherian too. Thus R is a CI ((BH,
theorem A]). As M is canonical over R, M = R.
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Clearly v(RaM) = v(R) + [M/mM : k| (where v stands for embeddingdi-
mension). This means that if R is a CI, v(RaM) = v(R) + 1. This gives (b).

3.2 Remarks: (a) Yamagishi has characterized those trivial extensions that
are Buchsbaum or quasi-Buchsbaum (cf. [Ya, theorem (1.2)]).

(b) Lescot ([Les, chapter VII] has proved that if R is a (local Noetherian)
Golod ring and M is a Golod module (an inert module in Lescot’s terminology,
[Les, def. 3.4]), then RaM is Golod. Conversely, if RaM is Golod, it has has
been proved by Roos (unpublished) that R is Golod too. The question whether
M must be Golod seems still to be open.

() RayM can be CI (resp. Golod) without R being CI (resp. Golod). Take
eg R = k[X,Y,Z]®,M = k[X,Y, 2] and ¢ = ordinary multiplication.
Then obviously RagM = k[X,Y,Z] (compare (1.2)), but R is neither CI nor
Golod. (But in this example R is Golod-attached by a recent result of Backelin,

see [Bc], where also terminology is explained.)

3.3 Corollary: Let R be a local CM-ring. Then the following conditions are
equivalent:

(a) R is regular

(b) R is Golod and there exists a canonical R-module which is also Golod.

Proof: (a = b): clear.

(b <= a): Suppose that the R-module Q2 is both canonical and Golod. Then
Raf) is Golod (by 3.2(b)) and Gorenstein, thus a hypersurface. But then R is

regular. g

3.4 Proposition: Let R be a local CM-ring and M a (f.g.) maximal CM-
module. Then RaM has a canonical module if and only if R has a canonical

module.

Proof: Recall that a local CM-ring has a canonical module if and only if it
is a factorring of a Gorenstein ring (cf. [FGR, ch. 5]). The implication from left
to right follows from this.

(<=): Recall the following result which is a special case of [HK, Satz 5.12].
Let f: A — A’ be a local homomorphism of local Noetherian rings. Suppose that
Ais CM, A’ is finite over A and that dim(A) = dim(A’). Then, if  is a canonical
A-module, Hom 4 (4’, Q) is canonical over A’. The claim follows by applying this
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to the inclusion R — RaM. g

We note that (<) in the above proof works also for RayM if Im(¢) C m.

4. ARTINIAN GORENSTEIN RINGS

Let (R, m, k) be a local Artinian ring, M a f.g. R-module and let ¢ € &, (M).
Then RayM is a local Artinian ring too (see ch. 2). We shall now determine when
it is Gorenstein. As Ig(k), the injective envelope of k, is a canonical R-module,
it follows from 3.1(d) that RaM is Gorenstein if and only if M = Ip(k). Recall
that a local Artinian ring is Gorenstein if and only if its socle is a onedimensional

vectorspace over the residue class field. Now, an easy computation shows that

4.1 Lemma: soc(RayM) = (soc(R) N AnngM) x (soc(M) N M1+#), where
ML% = {m € M|¢(m ® M) = 0}. In particular, soc(RaM) = (soc(R) N
AnngM) x soc(M). g

(As usual, ¢ is said to be non-degenerate if M-¢ = 0.)
Therefore |soc(RagM)| =1 if and only if either

soc(R) N AnngM =0 and |soc(M)N M>?¢| =1 (4.1)

or
soc(M)NM+% =0 and [soc(R)N AnngM| = 1. (4.2)

As m is nilpotent, soc(N) is an essential submodule of N for any R-module N.
Therefore the first equation in (4.1) (resp.(4.2)) is equivalent to ‘AnngM = 0’
(resp. ‘M+¢ = 0).

4.2 Lemma: (a) If AnngM = 0, then soc(M) C M9,
(b) If ML% = 0, then soc(R) C AnngM.
Proof: (a) Suppose that AnngM = 0 and let m € soc(M). Then
¢(m® M)M =Im¢-m C m-m =0, so that ¢(m @ M) = 0.
(b) Suppose that M1¢ = 0. As Im¢ C m, we have that 0 =
é(M ® M)soc(R) = ¢(M ® soc(R)M). Hence soc(R)M = 0. g

4.3 Theorem: Let (R,m) be a local Artinian ring, M a f.g. R-module and
let ¢ € ®n(M). Then RayM is Gorenstein if and only if either
(a) M = Ig(k)
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or

(b) R is Gorenstein and ¢ is nondegenerate.

Proof: We have seen that RagM is Gorenstein if and only if either AnngM =
0 and [soc(M)| = 1 or M1# = 0 and [soc(R)| = 1. The first of these possibil-
ities occur precisely when [soc(RaM)| = 1, which gives (a). The second case

corresponds to (b). g

4.4 Examples: (a) Let R = kak? where k is a field. Then R is a local Artinian
ring which is not Gorenstein. It is easily seen that R = k[z,y|/(z?, zy,y?). By
e.g. [GHM, Satz 3.18] Ir(k) = Homg (R, Ix(k)) = Homg(R,k). Thus Ip(k) =
kf®kg®dkh where f,g,h : R — k are defined by f(a+bz+cy) = a, g(a+bz+cy) = b
and h(a + bz + cy) = ¢ (a,b,c € k), and z and y operate on Ig(k) by zg = f,
yh = f and by zero otherwise. Then Ir(k) ® g Ir(k) = k* (with trivial operations
of z and y) with basis {g® g, ® h,h ® g,h ® h}. Therefore

Hompg(Ir(k) ® g Ir(k), R) = (soc(R))* = k&.

It is easy to find homomorphisms that are associative and symmetric, for example
¢ defined by ¢(¢ ® g) = z,4(9 ® h) = ¢(h ® g) = ¢(h ® h) = 0 is a member of
®m(Ir(k)). By 4.3(a) Raglg(k) is then Gorenstein. Obviously the same con-
struction works also for kak™ for any n > 2.

(b) Let (R, m, k) be a local Artinian Gorenstein ring which is not a field (e.g.
R = kak). Then there exists a monomorphism j : k < R. Define ¢ to be the
composition k @r k =k R R. Then ¢ is associative and furthermore, as j is a
monomorphism, ¢ is nondegenerate. By 4.3(b) Rayk is Gorenstein.

(c) The rings constructed in 2.2(c) are Gorenstein.

4.5 Remark: Let R now be an arbitrary (not necessarily local) Artinian
ring, M a f.g. R-module and ¢ € ®(M). Then R can be written as a finite
product of local Artinian rings (R;,m;), ¢t =1,...,n,and M = M; X --- X My,
where M; is an R;-module for each i. Let j; : M; — M be the inclusion and define
#i =¢o(4i®Ji) : M;®r, M; — R. As Im(¢;) = ¢(M;®@M;) C ¢(RiIM®M) C R;,
we can consider ¢; as an R;-homomorphism M; ® g, M; — R; which obviously is

associative. One checks easily that there is a ring-isomorphism

RaygM = H Riay,M;. (4.3)

=1
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Order now the indexes so that ¢; is an epimorphism for ¢ = 1,...,k and that
Im(¢;) Cm,; fori =k +1,...,n. Then (4.3) can be rewritten as

k n
RayM = 1-‘[.12,'[.)(]/()(2 — 1) X H R;ay,M;,
=1 i=k+1
(where r; € R; for ¢ = 1,...,k) and RagM is Gorenstein if and only if R; is
Gorenstein for ¢ = 1,...,k and R;ay,M; satisfies either (a) or (b) in theorem 4.3
fori=k+1,...,n.

5. LOCAL COHOMOLOGY AND APPLICATIONS

Let (R,m) be a local Noetherian ring, M a f.g. R-module and let ¢ € &, (M).
We shall discuss the local cohomology of RayM and as an application deter-
mine when RagM is Cohen-Macaulay or Gorenstein. For the definition and basic
properties of local cohomology we refer the reader to the notes of Grothendiecks
seminar, [Gr], or to [HK, §4].

Recall the following change-of-rings lemma due to Grothendieck (cf. e.g.
[HK, Lemma 4.11]). Suppose that f : R — S is a homomorphism of local Noethe-
rian rings. Let I C R be an ideal and let J C S be the ideal generated by f(I). If

N is an S-module, write ;N for N regarded as an R-module via f.

5.1 Lemma: There is an R-isomorphism H?(;N) = ;H’(N) forall j € N
(where we have written H } for H ", %) etc.). §

We apply this lemma to ¢ : R — RagM,r — (r,0). Then

.-H;’;‘xM(Ra‘sM) = H] o o mam(RagM) (m x mM is m X M—primary)
= Hi,(i(RagM))
=~ HI.(R) ® HL,(M).
Using the characterization of depth as the index of the lowest nonvanishing local
cohomology module we get the next corollaries:

5.2 Corollary: depth(RagM) = min (depth(R),depthz(M)). §

5.3 Corollary: RayM is a CM-ring if and only if R is CM and M is a

maximal CM-module. g
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Recall that the type of a maximal CM-module N over a local CM-ring S,
r(N), is defined by r(N) := dimg Extgim(s)(k,N). If z is a maximal S-sequence,
it is well-known (and in any case easy to prove) that r(N) = dimgsoc(N/zN).

Using this we prove

5.4 Proposition: Let R be a local CM-ring, M a maximal CM-module and
let ¢ € @, (M). Then
r(RagM) < r(R) + r(M).

Proof: Let z,,...,Z, be a maximal R-sequence (whence it is also a maximal
M-sequence) and let I = (z1,...,z,) C R be the ideal generated by it. Then
(21,0),..., (zn,0) is a maximal RayM-sequence; let J = ((z;,0),...,(z,,0)) C
RaygM . Obviously J = I @ IM and by [GHM, p.11] RazM/J =
(R/I)eeg(M/IM), where ¢ is induced by ¢. Then

1(RayM) = dimg soc((R/I)az(M/IM))
< dimg soc(R/I) + dimgsoc(M/IM) = 1(R) + (M),

where the inequality follows from lemma 4.1. g
We can now generalize theorem 4.3 to the Noetherian case.

5.5 Theorem: Let R be a local Noetherian ring, M a f.g. R-module and let
¢ € & (M). Then RayM is Gorenstein if and only if

(a) RaM is Gorenstein
or

(b) R is Gorenstein, M is a maximal CM-module and ¢ is regular.
Here we define:

5.6 Definition: Let I C R be an ideal. We say that ¢ : M @ M — R is
I-regular if ¢(m ® M) C I implies that m € IM; ¢ is said to be regular if it is
I-regular for every ideal I generated by a maximal R & M-sequence.

Proof: In the situation of the theorem R is CM and M is a maximal CM-
module. Let I, J and ¢ be as in the proof of proposition 5.4. As I is m-primary, R/
I is Artinian and we see from theorem 4.3 that (R/I)az(M/IM) is Gorenstein
if and only if either (R/I)a(M/IM) is Gorenstein or if R/I is Gorenstein and

& is nondegenerate. But I and J are generated by regular sequences, so
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(R/I)az(M/IM) (resp. (R/I)a(M/IM), R/I) is Gorenstein if and only if RayM
(resp. RaM, R) is Gorenstein. Furthermore, ¢ is nondegenerate if and only if ¢

is I-regular. g

From examples in 4.4 together with remark 2.13 we find examples of both (a)
and (b) in the theorem.

5.7 Remark: Let R be a local Gorenstein ring and M a maximal CM-module
over R. It is clear from the above proof that a ¢ € ®(M) is then regular if and

only if it is I-regular for some I generated by a maximal R @& M-sequence.

Let us then characterize regularity of a homomorphism ¢ : M @ M — R in
terms of ¢% : M — M*, where ¢* (the adjoint of ¢) is defined by ¢%(m)(m') =
$(m & m).

5.8 Theorem: Let R be a local Gorenstein ring and M a maximal CM-
module over R. Then an R-homomorphism ¢ : M ® M — R is regular if and only
if ¢* is an isomorphism.

Proof: (<«=): Suppose that ¢ is an isomorphism. Let I C R be an ideal
generated by a maximal R-sequence. Denote R := R/I,M := M/IM and let
#:M®zM — R and ¢* : M — M* be the induced homomorphisms. As R is
Gorenstein, M is a maximal CM-module and I is generated by a regular sequence,
there is an isomorphism M* = Hom(M, R) (see [HK, Lemma 6.5]). Thus ¢° can
be identified with ($)®. As ¢® is an isomorphism, so is also (#)* = #°. Suppose
now that ¢(m ® M) C I. Then ¢(» ® M) = 0 so that ($)®(rh) = 0 and thus
m=0,ie m¢€IM.

(=): Suppose that ¢ is regular.

(i): ¢* is mono: Suppose that ¢(m) = 0. Then ¢(m®M) C I for every ideal
I and so m € IM for every I generated by a regular sequence. But for any n there
exixts a regular sequence in m™. Thus m = 0 by Krull’s intersection theorem.

(ii): ¢* is epi: Let Q = Coker(¢?) so that the sequence

0——»M£>M*—p+Q—»0 (5.1)
is exact. Dualizing we get an exact sequence

0— Q" — M* O M — Exth(Q,R) — Exth(M,R) — ... (5.2)
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As R is Gorenstein and M is a maximal CM-module, Ext}; (M, R) = 0. Further-
more, the canonical homomorphism (evaluation) o : M — M** is an isomorphism
(HK, Kor. 6.8]).

5.9 Lemma: The following diagram is commutative.

M
/ \ ¢°
(¢*)*

«@
M** M*

Proof: Let m,m’ € M. Then a(m) is given by g — g(m) (¢ € M*) and
((¢%)"0e)(m) = a(m)og® : M — R. Thus ((¢°) oa)(m)(m') = (a(m)(4%))(m') =
¢%(m)(m’).

From (5.2) we see now that
0— Q" — M M* — Exth(Q,R) — 0

is exact. Thus by (5.1) @* = 0. We show next that dim@ < n — 1 (where
n = dim R). Note that Supp(Q) C Supp(M*) = Supp(M). Let p € Supp(M) be
a minimal prime (then ht(p) = 0). Then 0 = (Q*)p = Hompg, (Qp, Rp). As Ry, is
Artinian Gorenstein, Qp = Homp, (Homg, (Qp, Rp), Rp) = 0 by Matlis-duality.
This shows that every p € Supp(Q) is of height > 1 and the assertion on dimension
is proved.

Claim: Q@ = 0.

Proof: Suppose that @ # 0. Then @ is by the above argument and (5.1) an
(n — 1)-dimensional (CM-)module. Hence there exists an z € Ann(Q) such that
z is R-regular. Let f € M*. Then p(zf) =0 € Q so that zf = ¢%(m) for some
m € M. Thus ¢(m ® M) C (z) and as ¢ is regular, m € zM (compare the proof
of injectivity of ¢), i.e. m = zr for some » € M. But then f = ¢*(h) and ¢° is

onto. This contradiction shows that @ = 0. g

5.10 Remark: Let R be a local Gorenstein ring and let MC be the category
of isomorphism classes of maximal CM-modules over R. Then Z/2Z = {1,g}
operates on MC by gM = M* (see [HK, Kor. 6.8]). Theorem 5.8 characterizes the
fixed points of this operation (note that we did not assume that ¢ was associative

in 5.8).
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Theorems 5.5 and 5.8 combined give

5.11 Corollary: Let R be a local Noetherian ring, M a f.g. R-module and
let ¢ € ®,(M). Then RagM is Gorenstein if and only if either

(a) RaM is Gorenstein
or

(b) R is Gorenstein, M is a maximal CM-module and ¢% : M — M* is an
isomorphism. g

Next we shall examine more closely the RagM-module structure of the local

cohomology modules HZ ,,(RagM).

5.12 Proposition: HY , ,,(RagM) = HY (R)agHY, (M).
(where we have written ¢ also for ¢|H2, (M))

Proof: From (2.3) we get that

HY  m(RagM) = {(z,m) € RayM |3n € N s.t. (m x M)"(z,m) = 0}
= {(z,m) € RagM |In € N s.t. m" X m"M - (z,m) = 0}
= {(z,m) € RayM |3n € N s.t.m"z = 0 and m"m = 0}
— HO,(R)ap HY(M). 1
To study the H*’s for ¢ > 0 we must recall how to compute them (see e.g. [HK,
§4] for details). Let R be a local Noetherian ring and let z = (z1,...,z,) be a

sequence of elements of R. Write z¥ = (zY,...,z%). Let K.(z; R) be the ordinary

Koszul-complex associated to z and put

K*(z; M) = Homg(K.(z;R), M)
and
Hi(z; M) := H'(K*(z; M)).

Finally define
H_;_(M) = @H‘(g";M) e

(For details on this direct system we refer to [HK].) One can show that Hj(M)
depends only on V(z) = {p € Spec(R)|z; € p for all 1} and so one writes
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Let then z,,...,z, be a system of generators for m. Then the m x M-primary
ideal m x mM C RagM is generated by (z,0) := ((z1,0),...,(zs0)). There is

an isomorphism of complexes

HK(z;,0)
0 — RoyM—"3RayM —» 0

~ (RayM) ®r (0 — R 5 R — 0),

which implies that
K.((z,0); RagM) = (RayM) ® K.(z;R)
and so

Hompay,m(K.((z,0); RagM), RagM) = Hompa, m(K.(z; R) ®r RagM, RagM)
= Hompg(K.(z;R), RagM).

As an R-module this is isomorphic to K*(z; R) @ K*(z; M) and we recover our

earlier result that there is an R-isomorphism
H}pxne(RagM) = HE,(R) © Hiy (M) (53)

Let (z,y) € Hi,(R) ® Hi,(M). Then
z is represented by a Z € H(z”; R),
y is represented by a § € H'(z" ; M)
(where v € N) and
Z is represented by a f € Homg(KY, R),
§ is represented by a g € Homg(K), M),
where K = K,;(z"; R).
Write z = (f], y = [g] and (z,y) = [(f,g)]- Then

(r,m)(z,y) = [(r,m)(f,9)]

(5.4)
=[(rf+é(m®g),rg+ f-m)],

where ¢(m ® g) : K7 — R is defined by ¢ — ¢(m ®¢(t)) (¢t € KY) and f-m:

K? — M by t ~— f(t)m. It is rather obvious that (5.4) is independent of the

choise of representatives.
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Suppose now that dim(RaygM) = n. Then dim R = n also and as HZ (") is

rightexact, there is an isomorphism
Hp (M) = M@ Hp, (R)
so that
HZ(R) ® HA(M) = (R® M) © HLA(R). (5.5)

Let U be an R-module. Then the rule T : U — (RayM) Qg U defines a functor
from the category of R-modules to the category of RagM-modules, T : Modr —
Modga,m- As an R-module T'(U) is isomorphic to U @ M ® g U ; if we make this
identification, RagM-modulestructure of T'(U) is given by

(ry,m)(u,m' @) = (ru+ g(m@m)u’,rm’' @ u+ m @ u) (5.6)

(u,u’ € U, m' € M). Formulas (5.3) and (5.5) suggest that there might be an

isomorphism of RagM-modules
Hixm(RegM) = T(Hp (R)) .- (5.7)

We claim that this is indeed the case. Make again the identification T'(U) =
Uo® M ®rU and take (z,m' ® z) € HX(R) ® M ®r H(R). Let z and z be
represented by f,h € Homg(KY, R) as above. Then (5.4) gives that

(ry,m)(z,m' ®2) = [(rf + p(m @ m'h),rm' @ h + m - f)]
=(rz+é(me@m)z,rm' @ z+ m® 1),

which is precisely (5.6). Thus (5.7) is valid.
5.13 Proposition: Suppose that dim(RaygM) = n. Then the following dia-
gram is commutative upto isomorphism:

T
MOdR ———— MOdRo,‘M

lffﬁ.(-) JH;xM(')
T

Modp ——— Modga,m

Proof: Both T(HZ(-)) and HE a(T(:)) are rightexact functors that pre-
serve direct sums. Thus by Watts’ theorem it is enough to check that T'(HZ (R)) =

" <m(T(R)). But we have already done this in (5.7). g
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6. REGULARITY

Let R be a local Noetherian ring, M a f.g. R-module (M # 0) and let
¢ € ®n(M). We shall now discuss the regularity of RayM. The 0-dimensional
case is already settled in corollary 2.8. The following result is a direct consequence

of a theorem of Palmér:

6.1 Proposition : Suppose that dim(R) = 1. Then RayM is regular if and
only if R is regular, M = R and ¢ (thought of as a homomorphism R®g R — R)
is of the form r ® ' +— zrr’ for some z € m \ m?2.

Proof: (<«): Clear.

(=): Suppose that RagM is 1-dimensional and regular. By [Pa, theorem 3|
R is then regular, R/Im(¢) is regular and M is projective. As R is local, M is free
and by lemma 2.1 M = R. If we identify R and M we can write ¢ as r®@r' — zrr’

for some z € m. Then R/Im(¢) is regular if and only if z ¢ mZ. g

For higher dimensions the situation is more complicated. For example, R need

not to be Gorenstein even if RagM is regular. Here is a fundamental example.

6.2 Example: Let S = k[z,y,2,w], where k is a field. Then S can be
decomposed as a semitrivial extension in four essentially different ways (where u

denotes always ordinary multiplication):

S = k[z,y,z,w]Pauk[z,y,z,w] Y (2)
= k[z,y, 2] (2)[[11)]] a, kz,y, z](odd)[[w]] (72)
= k[z, 9] ® [z, w] oy k2, 9]V, v] (i79)
= k[z] P[y, 2, w] o, k[2] 2V [y, 2, w]. (+v)

(Actually we should write p[w] for x in (4%) etc., compare remark 2.13) Here R
is (¢) Gorenstein, but not CI; (i7) not Gorenstein (as 2 does not divide 3); (i3) a
hypersurface and (iv) regular.

6.3 Proposition: Suppose that dim(R) > 1. Then, if Im(¢) C m?, RayM
is not regular.

Proof: Let n = dim(R) = dim(RagM). If Im(¢) C m?, we can evaluate the
embeddingdimension of RagM as follows:

v(RagM) = jm x M/(m x M)?| = |m/m? + Im($)| + |M/mM]|
> |m/m?| + 1 > dim(R) = dim(RayM). g
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6.4 Proposition: Suppose that dim(R) = n > 1. If RagM is regular, then
. . n

v(R) € {n + ‘u}
2 j=1

Proof: (1): If Im(¢) = m, then

("37) = tm x 202/ x 20y
= [m? + Im(¢)/m? + mIm(¢)| + [mM/(m? + Im(¢)) M|
= |m/m? = v(R).
This gives the case 7 = n.
(#%): Suppose that Im(¢) # m. Then there exists an z € m \ (m? + Im(¢)),
so that (z,0) € (m x M) \ (m x M)?. Then RagM/((z,0)) = R/(z)azM/zM is
regular of dimension n — 1. Induction gives that

v(R/(z)) € {n -1+ j(—j_—l)}n“1 ;

2 1
Thus v(R) € {n + L(g;ll};:ll . Finally note that the case n = 1 was proved in
proposition 5.1. g

6.5 Remark: All possible values of v(R) can be realized: write k[zi,...,z,]

as a semitrivial extension in n ways as we did above for n = 4. Then

(i1
V(kﬂzl, fee yxj’]](z)lli'+1, o .’Enﬂ) =n+ ‘Z_(Jz_) .
Our next result shows that RagM is not regular so often.

6.6 Proposition: Let (R, m, k) be an n-dimensional (n > 1) local Noetherian
ring which contains a field. Suppose that char(k) # 2. Let M be a f.g. R-module
and let ¢ € &, (M). Then, if RayM is regular, the m-adic completions R and M
occur (upto isomorphism) in the following list:

(1) B=k[z1,...,2]®, M =k[zy,...,2,] Y ;
@) B=k[z1,...,20-1]P[za], M =k[z1,...,2Z0_1] *Y[z.] ;

(n) R= k[[:z:l]](z)ﬂzg,... »Znls M= k[zll(°dd)|[z2,. ey Za] -
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Proof: Suppose that RayM is regular. As ﬁa;jf = RE;M =3 T L |
by Cohen’s structuretheorem, it suffices to study decompositions of k[zi,...,z,]
as a semitrivial extension. Let G = Z/2Z = {1,¢}. Then G operates on R\ad;l\?
by g (r,m) = (r,—m). This operation is obviously k-linear and it is compatible

with the multiplication in Ro 4;54\ . Clearly

R = (ﬁa$m S
and

M E{z€§a$ﬁ|z=—g2}.

As the operation of g is determined by the g(z;)’s (1 = 1,...,n), this operation
corresponds to a unique k-linear homomorphism Ly : V. — V, where V is the
k-vectorspace generated by z1,...,Z,. In a suitable basis of V' L, is given by a
diagonal matrix My. As (My)% = Inxn (n X n-identity matrix), My must after a

permutation of the basis-elements be of the form
t times n—t times

. rm—— | p——
M, = diag(-1,...,-1, 1,...,1).

Then R = k[zi,... ,It]](z)IIZt+1, ..., Zp] and M
k[[zl, ‘e ,Itﬂ(Odd)ﬂ$t+l, e ,anl -1
7. SOME CONCLUDING REMARKS

Let again R be a local Noetherian ring, M a f.g. R-module and let 0 # ¢ €

& (M). We begin with a few simple observations.

7.1 Proposition: If RayM is a hypersurface and Im(¢) C m?, then R is
regular and M = R.

Proof: Let dim(R) = n. Then

n+1=v(RagM) = |m/m? + Im(¢)| + |M/mM]|
> |m/m? +1.

Thus v(R) = |m/m?| = n and R is regular. As M is a maximal CM-module over
a regular ring M must be free, and thus by lemma 2.1 M = R. g
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7.2 Proposition: There exists an n = n(R) € N such that if RayM is a CI
and Im(¢) C m", then R is a CI too.

Proof: Recall that there exists an n € N such that the projection R — R/
m® is Golod for all s > n (see [Lev,]), and in particular small. If Im(¢) C
m", R — R/Im(¢) is small too. As R — R/Im(¢) can be decomposed as
R — RayM -5 R/Im(4) (where p : (r,m) — r + Im(¢)), R — RoyM is
small. Thus by [BH, theorem A] RayM CI => Extp,, pr(k, k) Noetherian —>
Exty(k, k) Noetherian => R CI. g

7.3 Example: (a) Let s > 3. As k[zy,...,z,4] ® is not a CI, we can conclude
from proposition 7.2 that

k[zi,..., a:,]](z) agan klzy,. .., z,]](°dd)

is not a CI for n > 0.

(b) There are a lot of examples of semitrivial extensions that are CI’s: let f :=
f1,..., ft be a regular k[zy,...,z,]-sequence such that either {f} C k[[g]](z) or
{f} c k[[g]l(mid). Then R := k[ z]/(f) can be written as a semitrivial extension;

for example in the first case
R= kll!.](z)/(i) a#k[[;_t_n(Odd)Ki) . klgﬂ(Odd) ,

where (f) denotes the ideal that the f;’s generate in k[ z ]|(2).
Proposition 6.6 suggests that there might a numerable list of possible R and
M that can occur in a CI RagM in the case where R is complete, char(k) # 2

and R contains a field.

We end with the following problems which seem to be quite difficult.

7.4 Problem: Characterize those semitrivial extensions RagM that are (say)
(a) hypersurfaces;
(b) complete intersections;
(c) Golod-rings or
(d) Buchsbaum.
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