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ON THE KAHLER GEOMETRY
OF THE HILBERT-SCHMIDT GRASSMANNIAN

OsM0O PEKONEN?

We compute the Riemann curvature tensor of the Hilbert-Schmidt
Grassmannian with respect to its natural Kahler structure. The sectional
curvature 13 shown to be non-negative. We also discuss the Kahler struc-
ture of the Hilbert-Schmidt space of almost complez structures whose
sectional curvature is shown to be non-positive.

1. Introduction. - Fischer and Tromba [4-6,13] have provided a new
a priori Riemannian approach to the theory of Teichmiiller space which
allows a quick presentation of the basic facts of its global geometry.
In this note, we point out that their formalism also applies to another
geometrically meaningful space, namely to the Hilbert-Schmidt Grass-
mannian.

The Hilbert-Schmidt Grassmannian manifold (also known as the Sato
Grassmannian [11]) has recently been amply studied both in the context
of completely integrable systems [9] and in Connes’ non-commutative
differential geometry [3] where the analogous object is referred to as a
2-summable Fredholm module. The Grassmannian manifold also is one
of the key notions of string theory [1]. We shall follow the conventions
of [10] where the cohomology of the Grassmannian was computed.

Let H = H* @ H~ be a graded separable complex Hilbert space where
1 0
0 -1
H* and H~. One can think of H as the Hilbert space of square integrable
complex functions on the circle and ¢ as the Toeplitz involution, i.e., the
sign of Fourier modes, say, with the convention (1) = +1.

Recall [12] that the Schatten class LP(H) for 1 < p < oo consists of
all compact operators A such that

e 1/p
lall, & (tx(ar2)?/?) 7 < oo

where the trace is the sum of eigenvalues. The LP(H) are then Banach
spaces with norms ||.||, and ideals in £(H), the von Neumann algebra
of bounded operators of H. For p = 1, LP('H) consists of trace class
operators, and one has the trace map tr : £L(H) — C which is con-

the grading is defined by an involution € = ( with eigenspaces

tResearch supported by a grant from the Osk. Huttunen Foundation and the Wihuri
Foundation (Finland).
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tinuous and linear, hence smooth. For p = 2, it is the Hilbert space of
Hilbert-Schmidt operators with the inner product tr(AB*).

DEFINITION 1.1. The Grassmannian Gr? = GrP(H,¢) is the set of boun-
ded seld-adjoint involutions of the Hilbert space H congruent to the
grading € modulo the Schatten ideal LP(H), 1 < p < oo.

We emphasize that Gr? depends on the choice of €.

In [10] it was shown that Gr? is a Banach manifold whose tangent
space at a generic involution F' € Gr? is isomorphic to the Banach space
of self-adjoint operators in £P(H) that anticommute with F. The anti-
commutativity FF + FF = 0 results, of course, from formally differenti-
ating the involution property F? = 1. Algebraically, anticommutativity
is simpler to handle than the corresponding identity obtained by differ-
entiating a parametrized family of projectors. Therefore the involution
point of view of the Grassmannian is best adapted for our purposes.

To make contact with [3], note that the non-commutative differential
of F

(1.2) F +— i{e,F} =i(eF — Fe)

defines a smooth vector field on Gr?. Indeed, to see that i{e, F'} € LP(H)

write

eF — Fe=(e—F)(e+ F).

Then check for anticommutativity. Conceptually, (1.2) can be under-
stood as a non-commutative differentiation of the involution property.

The curly bracket was used above for the algebraic commutator of
operators. We shall henceforward observe this convention and reserve
the hooked bracket for the bracket of vector fields X,Y on GrP. Denoting
the Fréchet derivative on Gr? by D we define

[X,Y] = DY (X) — DX(Y).

By abuse of notation, we shall never distinguish between tangent vectors
X,Y,Z at a point F € Gr? and their extensions to vector fields in a
neighbourhood of F.

An almost complex structure J on Gr? for any p is given by

Jr(X) =1iFX.
Indeed,
Jr(X)F =iFXF = —iX = -FJp(X)

and
((FX)' = —iXF =iFX
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so JF is an endomorphism of the tangent space of Gr? at F' and, more-
over, (Jr)? = —1.

To prove that J is integrable we may appeal to an infinite-dimensional
version of the Newlander-Nirenberg theorem [8]. As in finite dimensions,
the integrability obstruction is the non-vanishing of the Nijenhuis tensor.
The formal integrability of the Nijenhuis tensor can be established by a
direct computation just like in [5]. Note carefully that the proof in [8]
only works in the case of a real-analytic Banach manifold. However, the
real-analyticity of GrP can easily be checked using the explicit charts
given in [10]. Thus, all the Grassmannians Gr? are complex Banach
manifolds.

Moreover, Gr? is a complex Hilbert manifold with respect to the
Hermitian metric

(X’Y>F = trXY.

The corresponding Kahler 2-form (symplectic form) w on Gr? reads
wrp(X,Y)=(JX,Y)p =itr FXY.

This is, of course, the same Kéahler structure as that described in [9] and
the complex structure is explicited by the Pliicker coordinates [9]. To
show directly that w is closed, one may compute just like in [6].

2. The Levi-Civita connection on Gr?. - In the sequel, we shall

compute the curvature of the Hilbert-Schmidt Grassmannian Gr?. Pio-
neering curvature computations of infinite-dimensional Kahler manifolds
were recently undertaken by Freed [7] who studied the loop group and
Bowick and Rajeev [2] who found the Ricci curvature of Diff S*/S!. Our
computation is more elementary as no regularizations intervene. It was
inspired by Tromba’s computation of the Weil-Petersson curvature of
Teichmiiller space [13].

To construct the Levi-Civita connection on Gr? we start from the
Fréchet derivative in £(H) which we project to the tangent space of the
submanifold Gr2. The intrinsic projector is given by the first (anticom-
muting) part of the decomposition

Z = %(Z—FZF)+ %(Z-f—FZF).
Therefore, the Levi-Civita connection V on Gr? will equal

2.1) VyX = %(DX(Y) _ FDX(Y)F).
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Differentiate the anticommutation relation
XF+FX=0
in the direction Y to find
(2.2) DX(Y)F+ XY +YX+ FDX(Y)=0.
Solving (2.2) for (2.1) we find

(2.3) VyX = DX(Y) + 3F(XY +¥X).

The latter term in (2.3) (extrinsic projection) is the second fundamental
form.

The reader can now easily check that V is, indeed, torsion-free and
annihilates both (.,.) and J.

3. The Riemann curvature tensor of Gr?. - By definition, the cur-

vature is given by
R(X,Y)Z = (VxVy = VyVx —Vixy])Z.
One readily computes from (2.3)
VxVyZ = D*Z(X,Y) + DZ(DY (X))
+ —;—(FDZ(X)Y + FZDY(X) + FDY(X)Z
+FYDZ(X)+ FXDZ(Y)+ FDZ(Y)X)
+ i—(XZY+XYZ +2Z2YX+YZX).
We obtain VyV xZ by changing X and Y while the bracket term yields
Vix,y1Z = DZ([X,Y]) + %F(Z[X,Y] + [X,Y]2).

Putting everything together we find:
THEOREM 3.1. g
R(Xa Y)Z = Z{{X’Y}’ Z}

Thus the algebraic Bianchi identity is just the Jacobi identity for the
operator bracket.
The sectional curvature K is given by

(RX,Y)Y,X) 1 to(X2Y?)— tr(XY)?

G2 )= = ¥y~ 2R Xay I - (@ XV

In finite dimensions this convention gives +1 for the curvature of the
unit sphere.
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THEOREM 3.3. The sectional curvature of the Hilbert-Schmidt Grass-
mannian is non-negative, but not strictly.

PROOF: To see this we decompose X,Y € TrGr? into block matrices
with respect to the graduation determined by F. Using anticommutativ-
ity and self-adjointness, we find

(3 8) (3

for some Hilbert-Schmidt operators A, B.
We then compute

1 tr(AB - 4B)’ o i

K(X,Y)= 2tr X2trY? — (tr XY)2 =

If X is a tangent vector at F, so are the odd powers of X because
of anticommutativity. Take for instance ¥ = X3. From (3.2) we read
off K(X,Y) = 0. More generally, the lower bound 0 is attained on any
tangent 2-plane generated by algebraically commuting tangent vectors
X,Y,ie., when {X,Y}=0.

For the holomorphic sectional curvature H we find

tr X4
HX)=K(X,JX)= m
4. The Hilbert-Schmidt space of almost complex structures
as a Kahler manifold. - Let H be a separable complex Hilbert space
as before. Besides the Grassmannians, the spaces of almost complex
structures of H also have some importance and are discussed at some
length in [9].

Let us fix an almost complex structure n of H, that is an endomor-
phism of H such that ? = —1. Thus, n has the eigenvalues +i. The
corresponding eigenspaces give a grading H = H* @ H~ and 7 can be
i1 0
0 —:

DEFINITION 4.1. The LP space of almost complex structures AP =
AP('H,n) is the set of bounded self-adjoint operators of the Hilbert space
H congruent to n modulo the Schatten ideal LP(H), 1 < p < oo.

decomposed as n =

Just like the Grassmannians the spaces of almost complex structures
AP turn out to be complex Banach manifolds whose tangent space at a
generic almost complex structure G € AP is isomorphic to the Banach
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space of self-adjoint operators X in LP(H) that anticommute with G.
The complex structure of A? is then given by

Jso(X) = GX.

In analogy with Gr?, the Hilbert-Schmidt space of almost complex
structures A? is a Kahler manifold with the symplectic form

wa(X,Y) = tr GXY.

Indeed, the reader can easily check that switching from involutions to
almost complex structures merely amounts to some changes of signs in
the foregoing discussion. The Levi-Civita connection is found to equal

VyX = DX(Y) - %G(XY +YX)

whence:

THEOREM 4.2. The Riemann curvature tensor of A% is
R(X,Y)Z = ~7{{X,¥},2}.

The computation leading to this is formally the same as the one ap-
pearing in the first few pages of [13].

THEOREM 4.3. The sectional curvature of the Hilbert-Schmidt space of
almost complex structures is non-positive, but not strictly.

The proof is similar to that of the theorem 3.3.
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