D
[-A elt

Werk

Titel: On the number of non-equivalent differentiable structures on 4-Manifolds.
Autor: Salvetti, Mario

Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0063|log15

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

manuscripta math. 63, 157 - 171 (1989) manuscrigta
mathematica
© Springer-Verlag 1989

ON THE NUMBER OF NON-EQUIUALENT DIFFERENTIABLE
STRUCTURES ON 4-MANIFOLDS

Mario Salvetti

By using results from [7], [8] we show that for any positive
integer k there exist k simply-conected algebraic surfaces of
general type which are pairwise homeomorphic but not
diffeomorphic.

Introduction. By using ramified coverings of CPlxcpl,
in [7] infinitely many pairs of homeomorphic,
non-diffeomorphic simply connected algebraic surfaces of
general type were found.

In this paper we obtain a stronger result: namely, we prove
that for any given positive integer k there are k surfaces
Yy, .., y(k pairwise homeomorphic (so they have same
invariants Kz, %) but not diffeomorphic. In particular,
they must lie in k different connected components of
the coarse moduli space M (Kz, X) of complex structures
on the oriented 4-manifold underlying Y(i), showing that the
number of connected components of M (K2, X) can be arbitrarely

large. This last result was recently proved in [4] by using
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different methods (see also [2], [3]).
Our surfaces are still obtained as ramified coverings, but

we consider CP? instead of CPlxcpl. Let Nisessrfpr Aipess,8r
be sequences of positive integers such that djlny, i=1,...,r.
Let C; be a smooth curve in CcP2 of degree nj, i=1,...,r, such
that C = C; U..UC, has normal crossing singularities.
Construct a sequence P;:Y; — Yj_1, Yo = CP2, where Bi is the

cyclic covering of degree d; ramified over a4_; (Cj), @4 =

Bi°...°B1 (i=1,...,r). The surfaces Y, =
Y, (n{,...,np;dy,...,d,) are the ones we consider. The

problem of determining if two surfaces corresponding to
different sequences are homeomorphic and not diffeomorphic is
a numerical one. In fact, one checks if two such surfaces are
homeomorphic by looking at their intersection forms ([6]). To
see that two (homeomorphic) surfaces are not diffeomorphic
result from [7] is employed: a new Donaldson invariant is used
to proof that an orientation preserving diffeomorphism between
two simply connected algebraic surfaces of general type, which

have even Pg and big monodromy groups, must preserve the

divisibility of the canonical class.

Following [8], some results from [1], [5] are used to deduce
that the surfaces have big monodromy groups (and for our
examples the proofs are easier than in [7], [8]). Moreover,
the proof of the main theorem uses a little bit of number

theory.
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We recall the main points which will be used in the

following.

Let X be a compact complex manifold, D a linear system of
dimension N on X. Set W = {(x,t) € XXCPN | x€eE.} (Ex €D
corresponding to t € CPN) and let f:W — CPN, m:W » X be
the projections. Set also S(D) = (peW | p is a singular
point of f'l(f(p))}, gD) = {peW | p is an isolated singular
point of £71(£(p))}, S,(D) = £(s(D)).

Definition . D is called a linear system of Lefschetz type
if: (a) #D = o and D has no basepoints; (b) £( S(D) \ q(D) )
has codimension > 2 in CPN; (c) if dime X 2 2, then for any

generic E¢€D the linear system D|E, is of Lefschetz type.

Let now dimg X =3, Ey € D generic. The group Difft(E.) of

the orientation preserving diffeomorphisms acts on Hp(E¢).

Theorem 1 (see [8;prop.5 and p.44] and [1],[5]). Let D be
of Lefschetz type on X and let gq(D) be connected. If there
exist Eg€ D with only isolated singularities, one of which
having in its universal deformation the singulariry U;, (=
{z3+y3+x4=0)) then Vt e Sy (D) the image of Diff*(E.) in

Aut (Hp (E¢) ,< >, (KEt) has finite index.

Here Aut (Hp (E¢) ,< >, (KEt) denotes the group of

automorphisms which preserve the intersection form and the

canonical class.
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Theorem 2 ([7,§3]1,[8,p.48]). Let Y1, Yy be simply connected

algebraic surfaces of general type and suppose: (i) the image

of Difft(Y;) in Aut(Hy(Y;), (Ky )) has finite index; (ii)
Pg(¥j)=0 (mod 2); (iii) Ky =nj k3 , njez', ki primitive
in Hp(Y;;2), and nj # np. Then Y; is not diffeomorphic to

Y, (by an orientation preserving diffeomorphism) .

Let now (ny,...,n.) (d1,.-.,dy) be sequences of
positive integers such that dilni, i=1,...,r, and for each i
let Cic:CP2 be a nonsingular curve of degree n;. Suppose that
C = C{U..UC, has only normal singularities. We recursively
construct a finite covering oj: Y; -> CPZ, i=1l,...,r. Given
Yq = CP2, 0 = id, let By: Y; -> Y;j_; be the cyclic covering
of degree d; ramified over ai_l*(Ci), and 03 = Bjeaj_7. So
Oy : Yo =Y, (ny,...,0p; dy,...,dy) CP? is finite of degree

dj...d,. Let us determine the invariants of Yz

KYF . One has:
Ky, = B.* (kyr“) + [(dp-1) /dp] BeX(op—q ™ (Cp))=
= =0t (Kp2) + Tiog (di-1)/d; ¥ (Cy) =
= [-3 + T ((d3-1)/d;) n3] o (L) =
= (-3 - ¥ nj/d; + 2 ny) o, (L).
c12(Y,) . c12(¥y) = (Ky )2 =dy...dp (-3 - £ ny/d; + T ny)2.
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c2(Yr). c2(Yy) = dp c2(Yr-q)

- (dy - 1) e(op_1%(Cp) =

dr cp(¥po) + (A = 1) (Ry, , + 0" (Cp)) . 0 1™ (Cp) =

dy cp(¥p_7) + (dp - 1) (-3
ny) o, (L) . OLr_l"‘(nr L)
dp cp(¥p_7) + (dp - 1) dy...
Z;Ll nj) = ... =

d...dp cp(C®?) + 3i) dp...

1-1 3
23=1 ny/dy + X4=1 n3) =

r-1 -4
- Zjp ni/dy + Zjop ng 4+

r-1
de_q np (-3 - X i-1 ny/d; +

Gjesedp (df = 1) ny (=3 =~

Y T
di...dp 3+ X ((df - D/dy) ny (-3 - X1l ny/dy +

Tiny)] =

di...dp [3 +3 Xnj/d; -3 Xnj +Z; 5 5 (nj/dy) (ny/d3) -

Zi > yny (n3/dy) + X4 > 303 ny - Xy >4 (03/dy) ny 1=

(1/2) dy...dy [6 + 6 Xny/dy - 6 Xng +

2% > 4 (03/d)) (ng/dy) + T(ny/dp? - 2 Zj 50y (n3/ds) +

2

+

1

Zi>jninj + ZZniZ

Y (ny/dy)?) =

(1/2) dy...dy [( L n3 )2 + ( Tny/dy )2 - 2 34 4 ny(ny/dy)

9 - 62 ng + 6 Zni/di + X ni2 - z,(ni/di)2 - 3] =

(1/2) dy...dp [( T ny - T(ny/dy) -3)2 + (X ny2 -

T(ni/d)2 - 3)1.

(We used the genus formula)

T(Y,). From  T(Y,) = (1/3) (ch(¥y) - 2 cp(¥y))

it

immediately derives:

T(Yy) = (1/3) d7...dy (3 + X
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my(Y,). Assume by recurrence that Y; is simply connected
(i 2 0). Then ([2; §1]) ®p(¥Y;\ a;%(Cy47))  is cyclic of
order nj;; , and it easily follows that Y;j,q is simply

connected.

Pg(Yr) . Since m®;(Y,) = 0 one has Ipg(Yy) = X (Yp) =
= (1/12) (c12 + cp) = (1/24) d;...dy [3 ( Z n; - ¥ ny/d; - 3)2

+(Zn2 -3 (n3/d2 -3) 1.

Let now Q be a non singular surface of degree nj given in

affine coordinates by Q = (x4 + y3 + P(x,y,z) = 0}, where

P(0,0,0) = 0 and P contains x and y in degree at least 5 (for

instance P = x"1 + y™1 + zP1 , ny>4 ). Let Eg = {z=0}, so

(x4 + y3 + o(5) =0}. We can suppose that Eg is

that EgNQ
tangent to Q only in O = (0:0:0:1). Set S; = Q and let
S3;...,5¢ be non singular surfaces in cp3 non containing O and
in general position with respect to Eg, such that deg S; = nj
>1 (i=1,...,r) and S = S7U..US, has only normal
singularities. Let us construct a sequence of cyclic coverings
ﬁi: X3 > Xj-1, i=1,...,x, with Xp = ce3, &o = id, &i = ﬁi °
ai_l, and where (analog to the above construction) ﬁi is the
cyclic covering of Xj_j of degree dj ramified over ai_l*(si) .
The hyperplane linear system D in CP3 is clearly of
Lefschetz type; indicate by D; the linear system &i* (D), which

still is of Lefshetz type ([8; prop.9]). The divisor al*(Es)
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has an isolated singularity of the kind udl = x4 + y3 + o(5),

which is equivalent to ud1 = x4 + y3 and if dj 2 3 such
singularity has the singularity Uj» in its versal

deformation. Therefore the same happens for the divisor

o, * (Eg) .
Proposition 1. q(D,) is connected.

Sketch of proof. Let W, be the graphic of Dr (constructed
as above); indicate by f, : W, — ce3, T, : W, = X, the
projections and set by brevity o= a,. Clearly if p = (x,t) €
W, is such that o(x) € S then a* (E¢) is nonsingular in x. For y

€ S, denote by TS(y) = Nyes (Tsj)y, where (".I‘Sj)Y is the

y€e
tangent space to Sj in y. A point p = (x,t) € W, 1lies in
S(D,) if and only if Ey DTS(a(x)). Moreover, p will be in

q(D,) if and only if E¢ DTS(0(x)) but it does not contain
TS(y) for y in a punctured neighborhood of o (x).
If (x,t), (x',t') € q(Dr) , O0(x) and 0(x') lie in the same

S

3 and t [t'] corresponds to the tangent space to Sj in o(x)

[(x')] then take Y:[0,1] — ol (Sj) connecting x and x', such

that y((0,1)) NS, = @, h # j. We can lift y to a path ¥ in

S(D,) by setting ¥(u) = (y(u) , t(u), 0 < u <1, where t(u)

is the parameter of the divisor (TSj)q(y(u))- It follows that

Yea®d,).
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If a(x) € S4, @(x') € Sy, j # h, then choose x"ea'l(sj N

Sp) such that, if t(3) M7 is the parameter corresponding

to (TS§)q(x") [(TSp)(x)], then (x",t3)), x",tM™)) e qd)).
Since {t' e cp3 | Eg+DTS(a(x"))} is connected the thesis

follows by using the preceding part. Q.E.D.

Proposition 2. If Ey is generic with respect to S then
Diff+(ar*(Et)) induces a finite 1index subgroup in

Aut (Hy (B (), < > (g,)) .

Proof. The proof immediately follows by theorem 1, since by
proposition 1 q(Dr) is connected and &r*(Es) (Eg={z=0}) has
only one singular point which contains Uj;, in its versal

deformation. Q.E.D.

Corollary. For every surface Y, = Y _(nj,...,Ny;dy,...,d;)
of the kind constructed before, where at least one nj > 5 and
the corresponding d; 2 3, the group Difft (Yy) induces a finite

index subgroup in Aut (Hp(Y,), (KYt)) 5
Proof, In fact, one can identify Yg = cpP2 with the divisor

Ey of proposition 2, C; with SNE; and Y, with ar'l (E¢) .

Q.E.D.
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Recall now from [6] that two simply connected surfaces Y,
Y' are homeomorphic if they have isomorphic intersection forms
(same rank, index and type). This is equivalent to the fact
that ¥ and Y¥' have a same pair of invariants and intersection
forms of the same type. In particular Y =

Y(ny,...,0p;dg,...,dy) and Y' =Y'(ny',...,ng':;d1',...,dg")

will be homeomorphic if

c12(¥) =dg...dp (-3 -3Fny/dy +XFn; ) = dy'...dg' (-3 -
28 nj'/dj' + 38 nj' ) = cl?"(Y')
3(Y) =dj...dp (-3 - 3F (n3/d1)%2 + T n;2 ) = dp'...dg' (-3

- 2% (ny'/d3")2 + I8 (n3")2) = -3r(¥")
and the intersection forms of Y and Y' have the same type. Y
and Y' will be homeomorphic but not diffeomorphic if (by
theorem 2) py(Y) =pg(Y')=0 (mod 2) and (-3 - XF ny/dg + X
nj ) # (-3 - X% ny'/dy' + X% ny'); in fact 0" (L) [ag™(L)] is
primitive in Y [Y'].
We will see that the system

c12(Y(n1,...,nr;dl,..., ) =M

-3 1(¥(ny,...,ng;d3,...,dy)) =N
has many solutions even under the condition dj =...= d,.
Integer solutions to such system will be parametrized by an
integer i. So set aj =djj =...=djp , njy =djy mjy = ajmjy,
i O

To simplify the proof we also assume r 2 16, r = 0 (mod 4).

Theorem. For each positive integer k there exist positive

integers aj , mjj, ... M4y, M, N, i=1,...,k, such that
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aj* [ (a; = 1) Xy=1 m35 - 3 12 =M
(*)
a;T [ (@2 - 1) gy 92 - 3] =N

where the aj's are distinct, and (3M + N) /24 is odd.

We need the following lemma.

Lemma. S = I} 2 = Zr
. et Fr(x) = Z3=1 X4, Gr(x) = 24=) x4 , where x4

€eZ j=1, ..., r.

(a) The form F (x), under the restriction Gy (x) =A 2 0,
represents all numbers n = A (mod 2), n 2 ur,A:= min Gy (x)=A
Fy, (%),

and it holds
A2/r Sy S A%/ + o

where 0, is a constant depending only on r.
(b) Under the restrictions G.(x) = A, xy > 0 for j=1,...,r,
Fo(x) represents all n =A (mod 2) such that

Hp,a S n < a%/(c-1).

Proof of lemma. (a) It is easy to see that if Xy = Xg 2 2,
where for example j < k, then Fr(...,xj—l,...,xk+1,...) <
Fr‘---rle---'xkr---)° So the minimum value of F,(x) is
attained at a point (x3,...,%Xy) s.t. | x5 - xx | =<1 for all
jo k. If A= [A/r] and A=r A + s, 0 < s < r, then Hr,a =

F(X1/...,%,) where 3: =A+ 1, §=1,...,s, &4 = B, J=stl,...,r.
r J J
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It follows that
Mr,a = ra2+2sBa+s = A/r + s(s-r)/r,

from which the inequalities for Hr, A immediately follows with
o, = r/4.
Setting now Xy = Xy tyy we have to consider F,.' yy) =

¢ e r _
Fr(xj + yj), under the restriction Zj=1 ¥y = 0. Now

'y r r
Fp' (yy) = Iy=1 (x5 + Yj)2 = Iy ij + 2 Zj=1 x5 vy *
r r S r
£ s

where the quantity in square brackets (say Fr"(yj)) is not
negative. We claim that F " (y4) represents all even numbers 2
0. Up to writing F, " as Z;;l yj2 -2 E;;s+1 Yy we can
assume that the linear part contains at most r/2 variables,
i.e. s < r/2. Now set F, ™ =F,"|{y1=...=yg=0}, so F.™ is a sum

of 2 8 squares (by assumption r 2 16). Using that each not
negative integer is a sum of four squares one easily deduces

that F, ™ (so F.") represents all even not negative integers.

(b) By part (a) min y. =0, Ge(x) =a Fr(X) = Hr_g a
, where A2/(r-1) < My-1,a - Then by symmetry it follows that
{x : Fr(x) < 2a2/(x-1) , Gp(x) = A} € {x§ >0, 3=1,...,r}.

Q.E.D. for lemma.

Proof of theorem. Let aj,...,ax be distinct big positive

integers such that (ai,aj -1) = (ai,aj +1) =1, Vi, j,
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and aj =1 (mod 4) , Vi. Let

M=a;51 ... 5% [ (a; - 1) ... (g - 1) ¢ =312 ,
where for j = 1,...,k and Vi # j the positive integer 85 is
divisible by the numbers 2¢(a; - 1), ¢(ai2 - 1) (¢ is the

Euler function). For each i we can write

M=a;F [ (a])51/2 ... (aj_1)8i-1/2 (a;) (8i"0)/2  (a;,,)8i+1/2

e (a)%/2 (@ - 1) ... (a - Dr - 3) 12,

Call bj the number in square brackets; by construction b; = -3

(mod (aj - 1)), so there are solutions for

(a; - 1) Zj_—_l mjy - 3 =Dhby (**)

with respect to the mj4's.

Set now

N= 2a;51 ... 5% [ (372 -1) ... (a2 -1) r-3].

For each i one has

N =a;f [ (a1)81 ... (a;-1)5i-1 (ap) (810 (aj4q)Sidl
... (aK) Sk (@2-1 ... (&2 -1 - 3)71 ,
and if cj is the integer in square brackets we have cj = -3

(mod (ai2 - 1)). The second equation in (*) becomes
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) 22 = (c;s +3) / (a2 -1 *kx
]=1 mlj (Cl ot ) (al ) ( )

By the lemma equation (***) is solvable under the

conditions (**) and my4 > 0 for all j if
(bj + 3)2/r(a;-1)2 + ap < (ci+ 3)/(az?-1) < (1/(r-1)) (bg +

3)2/(a3-1)2, or

1+ rop(a-1)2/(by +3)2 < ((ag - 1)/(ay + 1)) r(cy +3)/(by+

3)2 < r/(r - 1) (%)

14

and (ci+ 3)/(a12-1) =(by + 3)/(aj-1) (mod 2). It is easy to
see that both (ci+3)/(ai2—l) and (bj + 3)/(aj-1) become even

(if they are not even already) by multiplying every exponent

85 by 2 (1) (we use here r =0 (mod 4)).

When the aj's are big enough (#) is approximately the same

as
e 2 (a)S s
1+ 0./ [r(a;-1)“...(a;-1)“¢ ...(ax-1)“ (a)®1 ...(aj-1)%11
N
(@1)5i7F (aj41)8%i41 ... (ap)Sk 1 < (a1tl)...(aj+1) ... (ax+l) /
(a1-1) ... (a;-1) ... (ax-1) < r/(z-1)

which is verified for big aj's. So (*) is solvable.

(1) . Note: we could assume from the beginning that

4p(aj-1), 4¢(aj? -1) divide sj.
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It remains to see that (3M + N) /24 is odd. But 3M+N =
a181 ... a3k { 3[(a;-1)...(ag-1)r =312 + [(a12-1)...(ax2-1)r
=31} =
a131 ... a5k { 24 + r (a;-1)...(a-1)  [(ag+l)...(ax+l) +

r(a;-1)...(a-1) - 6 1 }.

Since aj=1 (mod 4) the thesis follows. Q.E.D.

Note that we obtained odd values for M, so the intersection

forms of the associated surfaces are odd.
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