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CHEBYSHEV CENTERS, £-CHEBYSHEV CENTERS
AND THE HAUSDORFF METRIC

Wang Jia-ping and Yu Xin-tai

In this paper, we affirmatively answer an open
question raised by P.Szeptycki and Vlech in (9]
and give a new characterization of p-uniformly
convex Banach space. The Lipschitz stability of
the set of £-Chebyshev centers GE(A) under the
perturbations of A and G is also proved.

I. Introduction

For a normed linear space X, X* denotes its
dual, U(X)={xe X;|xl<1} the closed unit ball and
s(x)={xc-x; Ixi=1} the unit sphere. Let A,G be
two nonempty subsets of X, define the following:

d(y,A)=inf | x-yi, r(y,A)=sup || x-yl,
xeA xeA

h(A,6)=max{sup a(x,G), sup d(y,A)} ,
X€A yeG

the Hausdorff distance of A,G.

115



WANG-YU

rA(G)=inf r(y,A) the Chebyshev radius
yeG #
of A with respect to G.
Ge(h)={ge@; r(g,A)<T,(6)+E},E> 0,
the § -Chebyshev centers of A in G.

G(A)=G0(A) the Chebyshev centers of A

»
in G.

It is easy to see that G¢(A)#4 for any €>0 and
G(A)=‘£LGS(A). We denote the elements in G(A) (if
not empty) by 8.

Recall that the modulus of convexity of a

Banach space X is

bg()=tnt {1- LIL sy yi=g, x,ye s(x)}
and X is called uniformly convex (p-uniformly
convex) if 5X(8)>0 ( éx(8)> ce? for some constant
c¢>0) for every £>0.

In [9], Szeptycki and Vliech proved the following
THEOREM A: If X is a Hilbert space, then for any
two compact subsets A,B of X the following
inequality holds

1x,-x511 % (r,(X)+rp(X)+n(4,B)) n(4,B) (1)
They also raised
PROBLEM 1: Does (1) remain valid without the
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compact assumption?

PROBLEM 2: Does there exist a sharp estimate of
I xy-xgll similar to (1) in the case when X is a
uniformly convex Banach space?

Recently, the problem 1 was solved in the
affirmative in [8].

One purpose of this paper is to solve the
problem 2. We show that “xA-xB“ admits an
estimation similar to (1) if and only if X is a
p-uniformly convex Banach space. Moreover, a
sharp estimate of ugA-fBu for any subsets A,B of
X and closed convex subsets G,F of X when X is
uniformly convex is obtained.

The another part of this paper is mainly
devoted to the study of the way in which
perturbations of £ and the sets A,G affect the
Gg(A), and we show that G (A) is Lipschitzian
stable under the perturbations of ¢ and A,G. In
fact, the estimation of h(Ga(A),Fq(B)) is given
in general normed spaces in the case G,F are

convex, which generalizes one of the results in[2].
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JI The Solution to Problem 2

We begin with some lemmas.
LEMMA 1. If G is a closed convex subset of X,
AcX and gAeG(A), then for any geG, £20, there
exist a €A and x*eU(X*) such that

x*(a;-g, )2 r,(G)-¢ , and x*(g,-g)> -¢ .
PROOF: It follows immediately from the Freilich-
Mclaughin-Amir result [3].
LEMMA 2.(5,p190,Prop. 1 & p194] If X is uniformly

convex, then for all x,yeX and 1<p<+«,

I3 Ps 301 - 8 (elfrmtiey ) (ixiP+ i)

where $p(8)2 cpé(s) for some constant cp only
depending on p.

Now we are ready to prove
THEOREM 3. If X is uniformly convex , A,B are
subsets of X, and G,F are closed convex subsets

of X, then || gA—fBll satisfies
-1 (% +h+h, )P-gP
&( (d+h)71g,y-5ll) < ey (mg *

where o(=max(rA,rB), P=min(rA,rB), rA=rA(G),

rB=rB(F), h=h(A,B), h1=h(F,G) and cr; is a

118



WANG-YU

constant only depending on p, 1< p<+ 90,

PROOF: Without loss of generality, we assume

A= B * !3= Tpe Since fBE F, by definition of

h(F,G),for any ¢>0, there exists g€ G such that
“fB_gt“ < h1+8°

By lemma 1, there exist a,éA and x:eU(X*) such

that x:(ae-gA)> r,-¢ and Xt(SA-S;)? -<.

Let x=a£—fB, y=ag-g) .

Obviously, Jylls T, (2)

1
For any n, choose bne B such that lla;"bnl|$ h+;
1
then || x“="a£-fB“ N “a;-bn“ +“bn"'fB“~<~ h+ﬁ' +rB
so lixll<h + ry (3)
By lemma 2,

x+y P p P 1€, 7l
255 < QP+iy®) (- 6 G Ty )

“gA_fB“
max(| x|, tyl)

< ((herg ParB) (1-c_§( )

- f
<2(rgn)P(1-c a3l ) @

On the other hand,
1 1 1
I 5(x+y)l =llag g, +5( 8, ~8¢ ) +5( g, £
1
> max(0, x*(a;-g,+ 3(g,-g, )+ (g, ~p)))
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> max(0, (r,- & - § - 3(n,+£))) (5)
Combine (4) and (5), we have

18—t ]
e 6B 5 () P(max(o, 1, Jn,-28 )P

Let € — 0, then

1o $(AEATBL) 5 (v on) P(max(0, ry- 3n,))P

Therefore,
-f
é( “gA.’-hB“)s 05(1"(1‘B+h)—p(max(o' I‘A— 12*11))1)) (6)

We claim that
(r +h+h, ) -rp

- 1
In fact, (I) if r,- g-<0 then
p PP P p
(rghony)Pr}  (rp#h)Pendrf b} -(® -
1=

(rgtn® 7 (rgm® T (rgem)P
=(1-(rg*h) P(max(0, r,- 3n,))P).

(I1) if r,- g_>0, then rp+h>r,- 1 sh, (since ry
=dzp=rA),so
(rgh)P=(ry- 30y)P & (rgth G0, )P=(ry- Z0y+ 50007
$(rg+h+h, )P-r}

(here we use the inequality: xP-yPg(x+£)P-(y+g)P
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for x32y>0, £€>0, 1<p<+00)
From (I), (II), the claim follows,
By (6) and (7)
p
(rg+h+h, )P—r}
NTp p
(rg+h)

P_ nP
acy (Kthth )7 -f Q.E.D.

p (a+h)P

gx-Inll
é(|\:+hB‘)

COROLLARY 4: If X is uniformly convex, A, B, G and

F as in theorem 3, then

g,=Txll r,+ro+h+h
é(ujé:ﬁg—)§c: A B 21(h+h1), where ¢ is a
(x+h)

constant.
PROOF: Choose p=2 in theorem 3 and note that
oA -{3\<h+h1. Q.E.D.

REMARK: The corollary 4 shows that if X is a
uniformly convex Banach space, then the mapping
Tz (f3, (X)x §3,(X)—> X defined by T(G,A)=g,1is
uniformly continuous on bounded subsets of 1its
domain,where 031(X) denotes all the bounded closed
convex sSubsets of X and 032(}() all the bounded
subsets.

If X is p-uniformly convex, the situation is

more satisfactory. We have
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COROLLARY 5: If X is p-uniformly convex, then

there exists a constant ¢ such that

I8y -£5IP < e (@ +h+h )P-pP)

PROOF: Use the definition of "p-uniformly convex"
and theorem 3. Q.E.D.
COROLLARY 6: With the same assumption on X as in
corollary 5, the following estimation holds
“gA-gBuQ c((o\+h)p-[;p) with ¢ a constant.

REMARK 1: In the case where X is 2-uniformly
convex, we get the estimate of Theorem A up to a
constant.
REMARK 2: As well-known, Lp(p) is p-uniformly
convex when p2 2, and is 2-uniformly convex when
1<p< 2 (see [7])). Also, every superreflexive
Banach space can be renormed to be p-uniformly
convex for some p3> 2 (see [5 , p273).
The following result shows that the converse of
corollary 6 also holds.
THEOREM 7: If X is a Banach space and there exists
a constant ¢ such that for any A,Bc X,
1x,-xgl° g e((rg(X) + n(A,B))P- rp(x) ) ,
where erX(A), xBeX(B), then X is a p-uniformly
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convex space.
PROOF: For any x,yeS(X), |x-yl=¢&, we will use

the same planar sets used in [1). Let

X+y - X+y )
x4y x+y

B=co(x, =y, > 52 . -x—;l), then 0 € X(A) and

and

A=co(x, -y,

2 9
X exX(B), h(A,B)=1- “—"EL", r,(X)=1 and rg(X)<1,

By the assumption, ll’%yﬂpsd(rBH- "%.‘L“ P-1)
hence 1- “E%I".> ( %(-%)p+1)1/P -1

1o 94(8)> (14 %(fi)p )1/P_ >1+-%

(ol B

where e'= % ( % Y, +thus X is p-uniformly
convex. Q.E.D.
REMARK 1: From the proof, it is enough to assume
that the condition of theorem 7 holds for any
two-dimensional subspace of X with a common
constant c.
REMARK 2: Corollary 6 and theorem 7 give the
solution to Problem 2.

To conclude this section, we give a result
concerning the metric projection which is only

a particular case of corollary 5.

COROLLARY 8: If X is p-uniformly convex, then

123



WANG-YU

for any x,y ¢ X and closed convex subsets G,F,
IPgx-PEylP< e((+1x-yl+n(G,F))P- pP)

holds with some constant ¢, where P, (Pp) is the

metric projection on G (F), and

oA=nax{d(y,F), d(x,®)}, g=min{d(y,F), d(x,6)].

III. The Stability of &-Chebyshev Centers
In this section, we shall prove

THEOREM If X is a normed linear space, A,B are

subsets of X and G,F are convex subsets of X, then

h(G, (A),Fy(B)) < hy+(2h+2h,+|2-11)k(E,1), where

2max{rA(G),rB(F)}+2h+2h1+min{gn}
2h+2h1+min{t,q}

k(i,q)=

For the proof of this theorem, we need
LEMMA 10: If A is a subset of a normed linear
space X and G is a convex subset of X, then for
any ¢£>0,7> 0O, h(G£+'[ (A),Ge(A))Sf(S,"l)"L
ZrA(G)+z+n

g+
PROOF: Let ze(}aﬂ(A). Take, for sufficiently

where f(5.1)=

small $>0, x€G,(A) and let A = T =5
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y=Ax+(1-A)z. Then, for any ac¢A,
lla=yl $A(r,(6)+3)+(1-2)(r, (G)+e+1)=r,(G)+E,
i.e yé€Gg(A), while |z-yl=Alz-xl
\<ﬁ':'é—(2rA(G)+é+2+7l).
Since 4 is arbitrary,

n
4(2,6¢ (A)) € Lim —ee(2r) (0)+5+8+1)= gl2r, () + T+
Therefore h(Gguy (A),Gg(A))<£(€,1)7
2r,(G)+t
where f(2 ,n)r rA )+ +’L . QchDo
g + 1

The proof of theorem 9: Fix an arbitrary x eGg(A),

1
choose anF such that ||fn-x|\.< h1+ e

For any béB, by the definition of h, there is
1
a, € A such that ||ab-b|\< h+ o

Now, |f -bll < I£ -xll+lIx-a,|+la -bl

1 1
= +rA(G)+a+h+ =

<yt
Since \rA(G)-rB(F)| § h+h, ,
2

|\fn—b||§rB(F)+2h+2h1+Z+ s

hence fne F2h+2h1+8+2/n(B) .

2
By lemma 10, d(fn.F.l(B))s(2h+2h1+£—7[+ 2)f,

- 2 2
where f—(2rB(F)+2h+2h1+£+ n)/(2h+2h1+£+ n).
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So  a(x,Fy(B))< llx-£,[I+a(£, ,Fy(B))
Syt Te(2neon, +e-1+ )2,

Let n—> +o, d(x,F.L(B) )< h1+( 2h+2h1+2—71)f
where 1’=(2rB(F)+2h+2h1+£)/(2h+2h1+5) .

Since x is arbitray in Gg(A),

d(x,Fp(B)) < h,+(2n+2h,+5-1)F

A symmetric argument yields

d(y,G. (A h,+(2h+2n,+1-3)¥",
Szg‘m(B) (7+Gg(A))< hy+(2h+ 1H1-2)

where ¥'=(2r,(G)+2h+2h,+7)/(2n+2h,+7).
Hence h(Gg(A),Fy(B))< hy+(2h+2h +|2-1)k(z,1),

2max{rA(G),rB(F)} +2h+2h, +min{gy} Wi
[ . L]

where k(g,1)=
2h+2h, +min{s,M}

COROLLARY 11: If G,F are convex subsets of a normed

linear space X, then
h(PI‘Ja(X,G) yPTJ 'L(y'F) )é h+( 2h+2|(x~yl|+| 2-’]1)g

omax{d(x,8),d(y,F)} +2h+2)x-yll+minlE 1}
where g= 2h+2 ux-yll+min{z . 1]}

h=h(G,F), prj,(x,6)={ge G;|g-x|< d(x,6)+5}
and similarly for prjm(y,F).

PROOF: Let A={x}and B={y} so h(A,B)=|x-yl|
and prj (x,G)=G¢(A), prj,(y,F)=Fy(B).
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An appeal to theorem 9 yields the result. Q.E.D.

COROLLARY 12: (4], theorem 2.1) Let C,D be two

convex subsets of a normed linear space X. Given

any £> 0 and Xq € X, the following estimation holds
h(prjg(xysC)s prig(xy,D)) < §(1\xy\)h(C,D)

with  § (IIxgl)=3+ & (a(xsC)+d(x,D)).

REMARK: Theorem 9 shows that the set Ggz(A) is
Lipschitzian stable under the perturbation of G,
A respectively.

Acknowledgement: The authors would like to thank

the referee for a simple proof of lemma 10.
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