

Werk

Titel: On the Extremality of measure extensions.

Autor: Bierlein, D.; Stich, W.J.A.

Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0063|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

manuscripta mathematica © Springer-Verlag 1989

ON THE EXTREMALITY OF MEASURE EXTENSIONS

D. Bierlein and W. J. A. Stich

Let (M, \mathcal{C}, p) be a probability space and \mathcal{C}_1 be a σ -algebra on M with $\mathcal{C}_1 \supset \mathcal{C}$. We consider the set $\mathcal{F} = \mathcal{F}(p|\mathfrak{C}, \mathfrak{C}_1)$ of all $(\sigma$ -additive) measure extensions $p_1|\mathcal{C}_1$ of $p|\mathcal{C}_1$ and the set ex \mathcal{F} of all extremal elements of \mathcal{F} . There are well-known criteria for a $p_1 \in \mathcal{F}$ to be extremal (see [3], [4], [6], [7] et al.). In rather special cases, there exists an integral representation of \mathcal{F} by ex \mathcal{F} ([4], [5], [8], [9], [10] et al.). In this paper, we explicitly present ex \mathcal{F} , if \mathcal{C}_1 is generated from \mathcal{C}_1 by adjunction of countably many disjoint sets (Thm. 1b)). For an arbitrary target σ -algebra \mathcal{C}_1 , we characterize the extremality of a $p_1 \in \mathcal{F}$ by the maximality of the null set ideal $\mathcal{C}(p_1)$ (Thm. 2, as an additional criterion beside the well-known ones). If \mathcal{C}_1 is generated from \mathcal{C}_1 by a finite partition of M, \mathcal{F}_1 is the σ -convex hull of ex \mathcal{F}_1 (Thm. 3). The analogon of Thm. 3 for a countably infinite partition is not true, as an example shows. The fundamental lemma for the proofs of these theorems is a theorem of 1961 ([1], Satz 2 A) on the representation of \mathcal{F}_1 in case of \mathcal{C}_1 being generated from \mathcal{C}_1 by a countable partition.

Some results of this paper have been demonstrated in diploma theses which have been made under guidance of the two authors, especially Thm. 2 by Hans Gail and Thm. 3 with the following Notice by Ruth Bierlein.

1. PRELIMINARIES

According to the criteria of extremality mentioned above, a measure extension $p_1 \in \mathcal{F}$ is extremal (i.e. p', p" $\in \mathcal{F}$ with $p_1 = \frac{1}{2}$ (p' + p") implies p' = p") if and only if

for any K $\in \mathcal{O}_1$ there is a set A $\in \mathcal{O}_1$ such that $p_1(K \triangle A) = 0^{-1}$ and consequently, if and only if

 $\rm p_1$ is minimal in ${\cal T}$ with respect to (Radon-Nikodym) dominance "<-- ". ^2) The latter condition is equivalent to condition

- (1) There does not exist a p' $\in \mathcal{F}$ satisfying p' \ll p₁ and p' \neq p₁. From (1) we get
- (2) There does not exist a p' $\in \mathcal{F}$ satisfying $\mathcal{R}(p') \supset \mathcal{R}(p_1)$ and $\mathcal{R}(p') \neq \mathcal{R}(p_1)$.

Thus, as a trivial result, we have

(3) If $p_1 \in ex \mathcal{T}$ then $\mathcal{H}(p_1)$ is maximal on \mathcal{T} .

The other direction is not so trivial: For any $p_1 \in \mathcal{F}$ - ex \mathcal{F} there exist different extensions p' and p'' of \mathcal{F} satisfying $p_1 = \frac{1}{2} \; (p' + p'')$. Then, this p' is different from p_1 and keeps $\mathcal{M}(p') \supset \mathcal{M}(p_1)$ and therefore $p' \ll p_1$ (according to the negation of (1)), but, in generally, we have $\mathcal{M}(p_1) = \mathcal{M}(p')$. A $p_2 \in \mathcal{F}$ where $\mathcal{M}(p_1)$ is a proper subset of $\mathcal{M}(p_2)$, is much more scarce than a $p' \in \mathcal{F}$ which is dominated by p_1 , as we will show next.

Let p_1 , $p_2 \in \mathcal{F}$ and $p_1 \neq p_2$. Then we define the bounds

$$\lambda_1 = \lambda_1(\mathsf{p}_1,\mathsf{p}_2) := \inf \left\{ \lambda \in \mathbb{R} : \ \lambda \mathsf{p}_2(\mathsf{K}) + (1-\lambda) \mathsf{p}_1(\mathsf{K}) \geq 0 \ \text{for all } \mathsf{K} \in \mathcal{O}_1 \right\}$$

$$\lambda_2 = \lambda_2(\mathsf{p}_1,\mathsf{p}_2) := \sup \{\lambda \in \mathbb{R}: \ \lambda \mathsf{p}_2(\mathsf{K}) + (1-\lambda) \mathsf{p}_1(\mathsf{K}) \geq 0 \ \text{ for all } \mathsf{K} \in \mathcal{O}_1\}$$

and the following "straight" subsets of ${\mathcal F}$

$$\begin{split} & L(\mathsf{p}_1,\mathsf{p}_2) \colon= \, \{\lambda \mathsf{p}_2 + (1\!-\!\lambda) \mathsf{p}_1 \big| \mathcal{O}(1\!:\,\lambda_1 \le \lambda \le \lambda_2) \\ & L_{\mathsf{o}}(\mathsf{p}_1,\mathsf{p}_2) \colon= \, \{\lambda \mathsf{p}_2 + (1\!-\!\lambda) \mathsf{p}_1 \big| \mathcal{O}(1\!:\,\lambda_1 \le \lambda \le \lambda_2) \,. \end{split}$$

If $\lambda_1(\mathsf{p}_1,\mathsf{p}_2)$ is negative (i.e. $\mathsf{p}_1\in\mathsf{L}_0(\mathsf{p}_1,\mathsf{p}_2)$), then $\mathcal{H}(\mathsf{p}_1)=\mathcal{H}(\mathsf{p}')$ for all $\mathsf{p}'\in\mathsf{L}_0(\mathsf{p}_1,\mathsf{p}_2)$. An additional null set may occur at best at a marginal element of $\mathsf{L}(\mathsf{p}_1,\mathsf{p}_2)$. But, also this does not need, as one can see studying an example of the following kind: \mathcal{M}_1 is generated by $\mathcal{M}=\{\emptyset,M\}$ and the countably many

¹⁾ See [3], [4], [6], [7] et al.

²⁾ See [6], Korollar 1.5

disjoint sets $\{K_1, K_2, \dots, K_1', K_2', \dots\}$, $\Sigma K_n + \Sigma K_n' = M$; p_1 and p_2 are probabilities with the properties

- (i) $p_1(K_n) < p_2(K_n)$ and $p_1(K_n') > p_2(K_n')$ for all $n \in \mathbb{N}$,
- (ii) the zero points x_n of the functions $f_n(x) := xp_2(K_n) + (1-x)p_1(K_n)$ satisfy $x_n \neq \lambda_1$ and $x_n \leq \lambda_1$,
- (iii) the points y_n defined analogously for K'_n instead of K_n satisfy $y_n \vee \lambda_2$ and $y_n > \lambda_2$.

Then $\mathcal{N}(p') = \{\emptyset\}$ for all $p' \in L(p_1, p_2)$.

Now, we return to the general case using the following definition of a "inner kernel" \mathcal{F}^i of \mathcal{F} .

Definition: $p' \in \mathcal{F}^i$ if and only if for any $p_1 \in \mathcal{F}$ there exists a positive number $\epsilon = \epsilon(p',p_1)$ such that

$$\lambda p_1 + (1-\lambda)p' \in \mathcal{F}$$
 holds for all $\lambda \in [-\epsilon, 1]$.

Then we have

LEMMA 1. a) $\mathcal{H}(p')$ equals for all $p' \in \mathcal{F}^i$.

b) If $\mathcal{F}^i \neq \emptyset$, then $\mathcal{M}(p') = n \{ \mathcal{M}(p_1) : p_1 \in \mathcal{F} \}$ for all $p' \in \mathcal{F}^i$ and, consequently, $p_1 \ll p'$ for all $p_1 \in \mathcal{F}$, $p' \in \mathcal{F}^i$.

Proof: Suppose $p' \in \mathcal{F}^i$, $p_1 \in \mathcal{F}$ and $p_1(A) > 0 = p'(A)$. Then, for $\epsilon := \epsilon(p', p_1)$ and $p_{\epsilon} := -\epsilon p_1 + (1+\epsilon)p'$, we obtain $p_{\epsilon}(A) < 0$ as a contradiction to $p_{\epsilon} \in \mathcal{F}$. From this we get b) and hence a).

2. ON REPRESENTATION OF ex F

At first we consider the case of a target σ -algebra $\mathcal{O}_1 = {}^B(\sigma \cup \mathcal{F})$ where $\mathcal{F} = \{K_v : v \in IN\}$ is a partition of M. For this case we define D to be the set of all sequences $(d_v)_v$ of \mathcal{O}_t -measurable mappings

$$d_v: M \rightarrow [0,1]$$

satisfying

$$\chi_{*K_{v}} \le d_{v} \le \chi_{*K_{v}} p - a.e.$$
 and $\sum_{v} d_{v} = 1$ on M,

where ${}_{*}K_{_{\boldsymbol{V}}}$ and ${}^{*}K_{_{\boldsymbol{V}}}$ are some p-measurable kernels and hulls of $K_{_{\boldsymbol{V}}}$, respectively.

For any $d = (d_v)_v \in D$ we define $p^{(d)} | \alpha_1$ by

$$p^{(d)}(\sum_{v} A_{v} \cdot K_{v}) = \sum_{v} \int_{A_{v}} d_{v} dp \quad \text{(for } A_{v} \in O(\text{for all } v).$$

Using these notations we have

THEOREM 1. Let $\}$ be a countable partition of M and $\alpha_1 = {}^B(\mathcal{O}(U))$. Then the following representations are true:

a)
$$\mathcal{F} = \{p^{(d)} | \mathcal{O}\iota_1 \colon d \in \mathbb{D}\}.$$

b) ex
$$\mathcal{F} = \{p^{(d)} | \mathcal{O}_1 : d \in D \text{ with } p(d_v \in \{0,1\}) = 1\}.$$

Proof: Part a) is due to [1], Satz 2A.

The first direction of part b) may be proved indirectly:

Let $p_1 = p^{(d)}$, $d \in D$ with $p(0 < d_{v_0} < 1) > 0$. Then there exists an integer $v_1 \neq v_0$ and a positive ε such that also the set

A: =
$$\{x \in M: \epsilon < d_{V_0}(x) < 1 - \epsilon, \epsilon < d_{V_1}(x) < 1 - \epsilon\}$$

has a positive p-measure. Now, we define two elements d' and d" of D by

$$\begin{aligned} d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) \colon &= & \left\{ \begin{array}{l} d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) - \epsilon \chi_{\boldsymbol{A}}^{\,\prime}(\boldsymbol{x}) & \text{for } \boldsymbol{v} = \boldsymbol{v}_0 \\ d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) + \epsilon \chi_{\boldsymbol{A}}^{\,\prime}(\boldsymbol{x}) & \text{for } \boldsymbol{v} = \boldsymbol{v}_1 \\ d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) & \text{otherwise} \end{array} \right. \quad d_{\boldsymbol{v}}^{\,\prime\prime}(\boldsymbol{x}) \colon = \left\{ \begin{array}{l} d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) + \epsilon \chi_{\boldsymbol{A}}^{\,\prime}(\boldsymbol{x}) & \text{for } \boldsymbol{v} = \boldsymbol{v}_0 \\ d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) - \epsilon \chi_{\boldsymbol{A}}^{\,\prime}(\boldsymbol{x}) & \text{for } \boldsymbol{v} = \boldsymbol{v}_1 \\ d_{\boldsymbol{v}}^{\,\prime}(\boldsymbol{x}) & \text{otherwise.} \end{array} \right.$$

The measure extensions p^{λ} : = $p^{(d^{\lambda})}$ satisfy

$$p_1 = \frac{1}{2} (p' + p'')$$
 with $p''(AK_{V_0}) - p'(AK_{V_0}) = 2 \epsilon p(A) > 0$.

Therefore p_1 belongs to \mathcal{F} - ex \mathcal{F} .

To prove the other direction of part b), let $p_1 = p^{(d)}$, $d \in D$ with $p(0 < d_v < 1) = 0$ for all v. Now, for $p^{\lambda} = p^{(d^{\lambda})}$, $d^{\lambda} \in D$ with $p_1 = \frac{1}{2}(p' + p'')$ we have p-a.e.

$$d_{v} = \frac{1}{2}(d_{v}' + d_{v}'') \quad \text{and, thus,}$$

$$d'_{v} = d''_{v} = \begin{cases} 0 & \text{where } d_{v} = 0 \\ 1 & \text{where } d_{v} = 1, \end{cases}$$

and for that reason p' = p".

Therefore p_1 is an element of ex \mathcal{F} .

For the general case of any target 6-algebra a_1 , the maximality of the null set ideal is equivalent to the extremality of a measure extension:

THEOREM 2. ex
$$\mathcal{F} = \{p_1 \in \mathcal{F} : \mathcal{H}(p_1) \text{ is maximal on } \mathcal{F}\}.$$

Proof: On account of our consideration above in section 1 item (3), it is sufficient to prove that for any $p_1 \in \mathcal{F}$ - ex \mathcal{F} , there exists a $p_0 \in \mathcal{F}$ such that $\mathcal{M}(p_1)$ is a proper subset of $\mathcal{M}(p_0)$.

According to the definition of ex \mathcal{F} , for $p_1 \in \mathcal{F}$ - ex \mathcal{F} there exist two elements p' and p" of \mathcal{F} and a set $L \in \mathcal{O}_1$ such that

(1)
$$p_1 = \frac{1}{2}(p' + p'')$$
 and $p'(L) < p''(L)$.

Applying Thm. 1a for \mathcal{O}_L := $^{\mathsf{B}}$ (\mathcal{O}_L U {L}) as target \mathfrak{S} -algebra, we can use the representations

$$p_1 = p^{(d)}$$
 and $p^{\lambda} = p^{(d^{\lambda})}$ on α_1 ,

where $d' = (d_l', 1 - d_l')$ for $d' \in \{d, d', d''\}$. From (1) we get

$$d_{L} = \frac{1}{2}(d_{L}' + d_{I}'') p - a.e.$$

and, using the notation $B_0 := \{x \in M: 0 < d_L(x) < 1\}$,

(2)
$$p(B_0) \ge p(d_L' > d_L'') > 0$$
.

We define $p^{(d^0)}|_{U_L}$ by

$$d_L^0(x) := \begin{cases} 0 & \text{for all } x \text{ with } d_L(x) < 1 \\ 1 & \text{otherwise.} \end{cases}$$

Then we have

(3)
$$\pi(p_1|\alpha_L) \subset \pi(p^{(d^0)}|\alpha_L);$$

for $p_1(A_1L + A_2\bar{L}) = 0$ implies

$$d_{L} = \begin{cases} 0 & \text{on } A_{1} \\ 1 & \text{on } A_{2} \end{cases} p - a.e.$$

and hence

$$d_1^0 = d_1$$
 on $A_1 \cup A_2$ p-a.e..

Furthermore, $B_0L \in \mathcal{H}(p^{(d^0)}|\alpha_L) - \mathcal{H}(p_1|\alpha_L)$ is true because

(4)
$$p^{(d^0)}(B_0L) = \int_{B_0} d_L^0 dp = 0$$

and, as a consequence of (2),

(5)
$$p_1(B_0L) = \int_{\mathbb{R}} d_L dp > 0.$$

(5) $p_1(B_0L) = \int_{B_0} d_L dp > 0$. Because of (3) there exists a α_L -measurable Radon-Nikodym derivative f|M

(6)
$$p^{(d^0)}(K) = \int f dp_1$$
 for all $K \in \mathcal{O}_L$.

(6) $p^{(d^0)}(K) = \int f dp_1$ for all $K \in \mathcal{O}_L$. Using this integral representation, we extend $p^{(d^0)}|\mathcal{O}_L$ to a measure p_0 on \mathcal{O}_1 :

 $\begin{array}{ll} p_o(K) := \int\limits_K f \, d\, p_1 & \text{for all } K \in \mathcal{O}_1. \\ \text{This } p_o \, |\, \mathcal{O}_1 \text{ is an element of } \mathcal{T} \text{ because of } p_o \, |\, \mathcal{O}_\ell = p^{\left(d^0\right)} \, |\, \mathcal{O}_\ell = p \, |\, \sigma_\ell \text{ , and } \mathcal{M}(p_1 \, |\, \mathcal{O}_1) \\ \text{is a proper subset of } \mathcal{M}(p_o \, |\, \mathcal{O}_1) \text{ because of (4), (5) and (6).} \end{array}$

3. ON REPRESENTATION OF ₹ BY ex ₹.

It is well known that ex $\mathcal F$ can be empty also in case of non empty $\mathcal F$ (see e.g. [2]). In special cases of non empty ex $\mathcal F$ one can represent $\mathcal F$ by integrals defined on suitable σ -algebras of subsets of ex $\mathcal F$ (see [4], [5], [8], [9], [10] et al.). Even if $\alpha_1 = {}^B(\mathcal C + \{K\})$, $\mathcal F$ is not the convex hull of ex $\mathcal F$ in general, as one can see easily. Here we will demonstrate that $\mathcal F$ equals the σ -convex hull of ex $\mathcal F$, if α_1 is generated by σ and finite many additional sets.

Definition: If \mathcal{T} is a set of measures, we define the σ -convex hull of \mathcal{T} by σ co $\mathcal{T}:=\{\sum_{i\in I}\lambda_ip_i:p_i\in\mathcal{T},\ \lambda_i\geq 0,\ \sum_i\lambda_i=1,\ I\ \text{countable}\}.$

Now, the following statement is true:

THEOREM 3. If $\alpha_1 = {}^B(\alpha \cup \{K_1, ..., K_n\})$ with $\sum_{v=1}^n K_v = M$, then $\mathcal{F} = \sigma \cos x \mathcal{F}$.

Proof: Of course, any element of $\sigma \cos x \mathcal{F}$ belongs to \mathcal{F} . For the other direction of the proof, we have according to Thm. 1 this task:

For any $d = (d_1, \dots, d_n) \in D$ we have to construct sequences

- (1) $(\lambda_i)_i$ of non negative numbers with $\Sigma \lambda_i = 1$ and
- (2) $(B_v^i)_i$ of members of α for v=1,...n satisfying $g^i \in D$ for all $i \in \mathbb{N}$, where $g_v^i := \chi_{B_u^i}$ and $g^i := (g_1^i,...g_n^i)$,

such that

$$\begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} = \sum \lambda_i \begin{pmatrix} g_1^i \\ \vdots \\ g_n^i \end{pmatrix} \quad \text{on M.}$$

To fullfil this task we use an iterative exhaustion procedure:

Starting with i=1 for any $x \in M$ there exists an integer v_x satisfying

(3)
$$d_{\mathbf{v}_{\mathbf{x}}}(\mathbf{x}) \ge \frac{1}{n} \sum_{v=1}^{n} d_{\mathbf{v}}(\mathbf{x}) = \frac{1}{n} = : \lambda_{1}.$$

(It is evident that, in case of finite many K_v , such a v_x does exist - in case

of infinite many disjoint sets K_1, K_2, \ldots our procedure does not work at this point.) We define

$$B_v^1 := \{x \in M: d_v(x) \ge \lambda_1, d_u(x) < \lambda_1 \text{ for all } u < v\}$$

and obtain

(4)
$$\sum_{v} B_{v}^{1} = M$$
, $\sum_{v} g_{v}^{1} = 1$ on M.

In step κ , we consider d^{κ} : = $d - \sum_{i < \kappa} \lambda_i g^i$ instead of d. For any $x \in M$ there exists an integer v_x satisfying

(5)
$$d_{\mathbf{v}_{\mathbf{x}}}^{\kappa}(\mathbf{x}) \ge \frac{1}{n} \sum_{v=1}^{n} d_{v}^{\kappa}(\mathbf{x}) = \frac{1}{n} (1 - \sum_{i \le \kappa} \lambda_{i}) = \frac{1}{n} (1 - \frac{1}{n})^{\kappa - 1} = : \lambda_{\kappa}.$$

Now we define

$$B_{V}^{\kappa}:= \{x \in M \colon \operatorname{d}_{V}^{\kappa}(x) \geq \lambda_{\kappa}^{}, \operatorname{d}_{u}^{\kappa}(x) \leq \lambda_{\kappa}^{} \text{ for all } \mu \leq v \}.$$

For all κ∈ IN we have

(6)
$$\sum_{\mathbf{v}} \mathsf{B}_{\mathbf{v}}^{\mathbf{K}} = \mathsf{M}, \quad \sum_{\mathbf{v}} \mathsf{g}_{\mathbf{v}}^{\mathbf{K}} = 1 \text{ on } \mathsf{M}.$$

The numbers λ_i and sets B_v^i defined above constitute a solution of our task; for the following statements (7)...(9) are true:

(7)
$$\sum_{i} \lambda_{i} = 1$$
.

(8)
$$d = \sum_{i} \lambda_{i} g^{i}$$
 on M,

because

$$d_v - \sum_{i \le \kappa} \lambda_i g_v^i = d_v^{\kappa} \le \sum_v d_v^{\kappa} = (1 - \frac{1}{n})^{\kappa - 1} \to 0$$
 on M for all v.

(9)
$$g^i \in D$$
,

because of (4) and (6) where we take notice of the fact that the relation

$$*K_v \subset B_v^i \subset K_v$$
 for all v

is true except p-null sets.

NOTICE. The analogon of Thm. 3 for the case of infinite many disjoint sets K_1 , K_2 ,... does not hold. To prove this we study the following

Counterexample: $Ol = {}^{B}{A_{n}: n \in \mathbb{N}}$ with $\Sigma A_{n} = M$ and $p(A_{n}) > 0$ for all $n \in {}^{B}{A_{n}: n \in \mathbb{N}}$ with $\sum_{v=1}^{n} K_{n,v} = A_{n}$ for all $n \in {}^{B}{A_{n}: n \in \mathbb{N}}$

and $K_{n,v} \neq \emptyset$ for all n and v

$$p_1 = p^{(d)}$$
, where $d_{n,v} = \frac{1}{n} \chi_{A_n}$ for all v and n .

Now let us suppose, that $p^{(d)} = \sum_{i} \lambda_{i} p^{(g^{i})}$ is a representation of p_{1} in the sense of Thm. 3, i.e. in detail we assume

$$d_{n,v} = \sum_{i}^{\Sigma} \lambda_{i} g_{n,v}^{i}$$
 on A_{n} for all n, v

where

- (1) $g_{n,v}^{i}$ is the indicator function of a suitably choosen set $B_{n,v} \in \mathcal{O}$,
- (2) $\sum_{v \le n} g_{n,v}^i = 1 \text{ on } A_n \text{ for all } n,$
- (3) $\lambda_i \ge 0$, $\sum_i \lambda_i = 1$.

Then, for any n,v and i, we have

$$\lambda_i g_{n,v}^i(x) \le d_{n,v}(x) = \frac{1}{n} \text{ for all } x \in A_n.$$

Because of (1) and (2), this implies

$$\lambda_i \leq \frac{1}{n}$$
 for all n and i

and therefore

$$\lambda_i = 0$$
 for all i

being inconsistent with (3).

REFERENCES

- [1] Bierlein, D.: Ober die Fortsetzung von Wahrscheinlichkeitsfeldern. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 28 - 46 (1962)
- [2] Bierlein, D.: Measure extensions and measurable neighbours of a function. Lect. Notes Math. 794, 1-23 (1980)
- [3] Douglas, R. G.: On extremal measures and subspace density. Mich. Math. J. 11, 243 246 (1964)
- [4] Ershov, M. P.: The Choquet theorem and stochastic equations. Analysis Mathematica 1, 259 - 271 (1975)
- [5] Ershov, M. P.: Second disintegration of measures. Institutsbericht No. 135, Math. Inst. Univ. Linz (1979)
- [6] Plachky, D.: Zur Fortsetzung additiver Mengenfunktionen. Habilitationsschrift, Universität Münster (1971)
- [7] Plachky, D.: Extremal and monogenic additive set functions. Proc. Am. Math. Soc. 54, 193-196 (1976)
- [8] von Weizsäcker, H.: Der Satz von Choquet Bishop de Leeuw für konvexe nicht kompakte Mengen straffer Maße über beliebigen Grundräumen. Math. Z. 142, 161 - 165 (1975)

- [9] von Weizsäcker, H. and Winkler, G.: Integral representations in the set of solutions of a generalized moment problem. Math. Ann. 246, 23-32 (1979)
- [10] Winkler, G.: On the integral representation in convex noncompact sets of tight measures. Math. Z. 158, 71-77 (1978)

Dieter Bierlein Werner J. A. Stich

NWF I – Mathematik Universität Regensburg Universitätsstraße 31

D-8400 Regensburg

(Received September 23, 1988)