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A Note on the kernel of the d -Neumann operator
on strongly pseudo-convex domains
Der-Chen E. Chang(®)

Abstract
In this paper, we discuss the relations between a special Heisenberg coordinate system and a
normalized Levi metric on strongly pseudo-convex domains in C" and see how they are related to

the 0 -Neumann operator.

Lilntroduction
The study of boundary regularity for solution of 0 -Neumann problem
(1.1) Ou=@ 9*+9*3 Ju=f

(1.2) ue domain (i‘), 9 ue domain (3_*)
on pseudo-convex domains Q in C™*! has been an interesting theme in the theory of several

complex variables for many years. The existence and regularity properties of the 0 -Neumann
operator N (the parametrix for this problem) on strongly pseudo-convex domains were well
understood by the results of Kohn [6], Greiner-Stein [8] (for "Levi metric" case), Beals-Greiner-
Stanton [2], and Chang [4] (for "non-Levi metric" cases).

On the other hand, it is very interesting to give a more explicit constructions of the operator N,
which expresses the solution u in terms of f. The result of the construction of N were essentially
achieved by two different methods. The first method (Phong [15] and Phong-Stein [16],[17])
involves techniques in partial differential equations; the second method (Lieb and Range [13],[14] )
uses integral formulas.

Phong's result [15] is based on the point of view of the Dirichlet problem for the complex

Laplacian on the "model" case D=((z,,2,,...2,,,) C**}: Sz, >F . Iz 7} which was

equipped with a Levi metric. He discovered that the kernel N, is a mixed type homogeneity kernel

(mixed the Euclidean and the Heisenberg homogeneity). But unlike the parametrix of the boundary
(*) Work supported by MSRI, Berkeley, California.
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complex Laplacian Elb, Phong's result cannot be transferred to Q directly by standard Heisenberg

coordinates (we will explain this in section 2). After few years of effort, Phong and Stein [16],[17]
achieved this goal by using special Heisenberg coordinates.

The method of Lieb and Range [12],[13],[14] is more fundamental, they used a generalized
Bochner-Martinelli-Koppelman integral formula whose boundary term can be approximated with a
Henkin type kemel. (Here the boundary geometry comes into play). In the papers [13] and [14],

they found an integral operators T, and (Ty)* which are defined explicitly in terms of the geodesic
distance function for the given Hermitian metric (the Euclidean homogeneity part) and the Levi

polynomial of a plurisubharmonic defining function for Q (the Heisenberg homogeneity part). T,
and (T)* give the principal kernel to represent §:N,f and E—Nof in terms of f. Under the

assumption that Qis equipped with a "normalized Levi metric" (we will explain this in section

2), Lieb and Range solved the system of partial differential equations:
1.3) 9 K, =ker(T)), 0*K=ker[(T)*]

to get the kernel K, for the 0 -Neumann operator N,.

It seems these two methods based on totally different philosophies. However, on the "model”
D a straightforward computation shows that Lieb-Range's kernel is equal to Phong's kernel plus an
acceptable error term. How about the general domain Q? As we mentioned at the beginning,

Phong-Stein need to use a special Heisenberg coordinates to transfer the kemel N, to Q. But
Lieb-Range just use a standard Heisenberg coordinates to simplify the computations in their works

(but they need to assume Qis equipped with a normalized Levi metric to construct the kemnel K for
N,). In this paper, we see how the special Heisenberg coordinates and a normalized Levi metric are

related. The author would like to reiterate his thanks to his teacher and advisor E.M.Stein, not only
for his many valuable suggestions but for his inspiring example in research and teaching. The
author would also like to thank the referee for giving him some nice suggestions.

2Tt ial Heisent finat i lized Levi metri

Let us review some properties of strongly pseudo-convex domains. There are many equivalent
definitions of strong pseudo-convexity, see Kerzman [9] and Krantz [11]. We will use the one
which leads most quickly to the Heisenberg group (see [7],[20],[21] about the basic properties of
the Heisenberg group):
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A bounded smooth domain Qe C™! js strongly pseudo-convex if and only if every E€9Q
there are local holomorphic coordinates in which 9Q is osculated by the Heisenberg group H" in
the following sense ([71.181.[18]):

There exists a map ©,:0Q—H" which carries £ 9Q 1o the origin and satisfies:

(i) © is a local diffeomorphism.

(ii) ©, is analytic (i.c.. annihiliated by the 9,-operator on 9Q) to the third order at &, when H"

- . l TSN ] . . I Cn+l'
We may inspect this phenomena by Fefferman's result in [5], (p.17-p.18).

Moreover, we may make © depend smoothly on £. We write ©(E,0) for 9§(§). Thus
0:0QxdQ—H". Furthermore,

(iii) for  close to € in 9Q, O(E,L)=[O(,E)] ! in H™.

For £>0 small, the hypersurface 0Q.={{e Q; p({)=€) is strongly pseudo-convex. For each
£e9Q, we can thus find by the Levi procedure (see [8]) holomorphic coordinates (W', w, )€ Cntl
for a neighborhood Dg of £ in which the geodesic distance p becomes

p(O)=e+Sw_, - w+O(Iw_, Hw'Hplw'*+w'T).
Weset  (W,s;p)=(w,Rw,, ;;p(Q)=(OE,0);p(0))e HR*
which will be referred to as the standard Heisenberg coordinates for { near £. From the
above discussion, we can see the geometries of D and aD=(szM=§"_;sz|215H“ are "close" to
i=

those of Q and 0Q respectively. This gives us a good reason to believe that we can investigate some
problems on the "model" D or dD and then transfer to  or 0. This phenomena had really
occurred in [2],{3],[41,[71.(8],[18]. The property (iii) allows us to control the size of the error term

when we transfer a parametrix ®(z,w) of the boundary Laplacian 00, on d<2 to a parametrix
OOE,L)) of Ub on dD.

Let us consider t=dt+22(xkdyk-ykdxk) as a 1-form on dD. Note that <t.Zk>=<t,Z>=0.
k=1
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for all 1<k<n. Here 71%@% is the Heisenberg vector field. To compute the Levi form:

<Z,Z> = -5- <dt[Z,Z,)>= -% “"Z‘BjkT”s,r

Thus 9D is strongly pseudo-convex. Suppose 0Q is smooth and strongly pseudo-convex, then
from the definition (2.1) and the above computation, we can see that the strong pseudo-convexity is
equivalent to the existence of a positive definite quadratic form on the complex tangent space which
induced by the Levi form. We can define a Hermitian metric on the complex tangent space by this
positive definite quadratic form. Hence we have the following definition:

2 EFINITI R :
Suppose 9Q s strongly pseudo-convex and (Z,,Z,.....Z, } is a basis for the subbundle T* of

the complex tangent bundle and @, ,,,...,®, are the dual forms for Z;'s. A metric given by

n
dszm)c(z)Z<Zi,zj>l_mi®'cﬁ‘i
ig=1

with sitive smooth function Qi 1 vi i he complex tangen
T1ORQ)STOD@Q). A Levi metric on Q is a Hermitian metric which is a Levi metric when
we restrict the metric to T"9(@Q)@TONEQ).

This definition is first given by Folland-Stein when they study the 0, on H™. It is easy to see
the metric defined in (2.2) allows one direction freedom (i.c., the normal direction). In [7], they

n
just need to assume the metric is ds2=x(z)zpj®5j. where a)j is the dual form of Zj. We also can
j=1

look at the definition for a Levi metric in another way. According to a theorem of J.J.Kohn [6], the

defining function y for 92 can be chosen strictly plurisubharmonic, i.e, X, sw,a’—y(p)/aziazj 17

>0 V te C**\{0}, Vpe A neizhborhood W of 9Q. Using this theorem, we can have the following
definition:
(2.3) SECOND DEFINITJON FOR A LEVI METRIC:

Lety ictly plurisubh ic defining function for dQ. A metric given in local
coordinates by
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ds =|((z)2 5 az_) dZ@dZ
ij=1
with a positive smooth function x on a neighborhood W of o< js called a Levi metric on W with

respect 10y, A Levi metric on € is a Hermiti ic which is a Levi metric i
neighborhood of 0Q2.

Remark:

From the second definition, it is easy to see that the metric controls all directions,i.e., the

“"tangential" and "normal" directions. For example, when Lieb-Range studied the 0- Neumann

problem on the other "model” - the unit ball B™*1CC™; they assumed a Levi metric defined on

B
2
121 9%(1z, P4iz, Ptz P-1) nsl
P, il i i, dz®dz, =) dz®dz,
ij=1 alialj j=1

which just the Euclidean metric on B™!. Suppose Q is strongly pseudo-convex, it is easy to see the
Levi metric as in the Definition (2.3) is also a Levi metric as in the Definition (2.2). (We just need to

n+1

n+l
restrict ds2 to the complex tangent subspace z a:) =0, V te(C" \{0}). On the other hand,

=175

once we have a defining function y for 9Q, we always can find another strictly plurisubharmonic

defining function ¥ (e.g., Y=(eA7-l)/A for some constant A) such that the metric is defined by

n+l n+l 2.Y-
ds’=Y, g.-dzidej =Y -a——(z)dz®dz
ij=1 i,j=1

is a Levi metric on a neighborhood W of 9.

As we mentioned in Section 1, Phong's result of the Neumann operator N cannot be
transferred to Q directly by standard Heisenberg coordinates. Few years later, Phong and Stein
[16], [17] achieved this goal by using special Heisenberg coordinates which is any coordinate

system (z1,t1;p)e HAxR* for (e Dy (where Dy is a small neighborhood of &), depending

smoothly on &, which satisfies the conditions
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izt-21=0?, It-1=0°, Ipt-pi=0*
where (z',t;p) are standard Heisenberg coordinates. Evidently such a system will also satisfy all the
properties which standard Heisenberg coordinates have. We write (z"f,t*)=9)'(§,C). Here O* and
O denote respectively C functions f(§,{) and g(&,{) satisfying If(E,{)IS(iz'+Iti+p(E)+p(L))k and
IgE,DIS(Iz'+t2+p(E)24p(L) )k, The existence theorem of special Heisenberg coordinates is

the following:

THEOREM (Phong-Stein):

ach ngl d nvex domain Xi ial Heisenber. inat m
©'E.0:p€.0)="1E,0.E,L):p"(E,0) which satisfies the additional conditions:
Q4  Z,,a+iph=0°, Z_, (zt»)=0’.

This theorem is crucial when we consider the differential operator O and the boundary operator
act on the "transferred kernel"! We can compare the equation [0 on D and Q, the crucial differences
between these two situations are terms SZ,__; and Z,,,Z, ;- When we consider the model case,
$=0 and the kernel K for N, is holomorphic in t+1p. If we just plug in the standard Heisenberg
coordinates in Phong's kernel, the kernel K(O(&,£);p(§)+p(L)) is not holomorphic in t+1p. The
first two terms K, and K, of K(©(&,0);p(§)+p(L)) are smoothing kernel of order -1 and -3/2
respectively. Db(Kl) is a kernel of order zero and Elb ) is a kernel of order -1/2, but

SZ, +1’Zn +1Z4+1)(K;) will produce a kemel of order 1/2 which is really bad! In this situation,

(Db-z 1Zn+1+5Z 1 )K(OE,D);p(€)+p(L))) will not satisfy the condition OK=§+at least type
two operators. This is the reason why Phong and Stein need the extra property (2.4) to overcome
the difficulties in their "transferred" process.

If we go back to Lieb and Range's paper, the only crucial assumption in their method is the
"normalized Levi metric" ([14], p.153).

(2.5) DEFINITION FOR A NORMALIZED LEVI METRIC:
A normalized I evi metric is a Levi metric
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1
ds =x(z)'ig 'f;z_)

l.j-l

.®dzj
such that Ilay(z)lld',tl, for all z in a small neighborhood W of aQ and %=1 on the subbundle

T %0)e1* e60), 2e00.

Remark:
The property dY(z) has length 1 for z in a neighborhood U of 92 is important! In Lieb and

Range's papers (see [13], p.286-p.287), they always assume ®__,=dyon U. According to the
Definition (2.5), now the normalized Levi metric has the following form:

ds’= ’2-:10) ®m o em“l,

where (o)l,...,mn] are the dual forms of the "tangential” vector fields.

When we solve the differential system:
6) OKg=ker(T,),  0*K =ker[(Ty)*]
we need to know the coefficients of T, and (T, o)™ exactly. If 1 in the definition (2.5), the above
remark gives us the geodesic function on D as follows:
n+l
Rz,w)=3x(2) 1) (2w )(z_k-wk)—K(Z){Zﬂl w s+’ ).
P azk i=1

and 3 7] Rz(z,w)—x(z)aza wz(z,w)+crror terms. When we consider the transition kemel €, (z,w)

(see [22], p.279-p.286) on the boundary, the kernel will depend on different power of x and we
don't know how to solve the system! We also know Lieb and Range just used the standard Levi
procedure to construct the kernel (so they just used the standard Heisenberg coordinates). It
is very interesting to know why their method can be worked without the special Heisenberg
coordinates. Is it true that the "normalized Levi metric" gives us some properties which can
recover those particular properties of special Heisenberg coordinates?

Once we choose one defining function 7, we always can construct another strictly pluri-
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AY

subharmonic defining function y¥= - A-l such that

+1
ds’=x(z) () S dz@dz= x(z)"Zg_dz@dz
i-)'la la j

is a normalized Levi metric. It is easy to see that ds? is not only a Hermitian metric but also a Kzhler
metric on the subbundle .1.(21.0) (BQ)$T§0'1)(BQ). Now we use the Levi procedure to change the

defining function ¥ to
A(zT"-Sz,,,40Y '

e
= A

and change the Euclidean vector field (a/azj, a/azjl i=1,..n+1 10 the Heisenberg vector field

Z ] it is easy to get

Fl..n+l?

4=20=2(0,-Z_,,Z_,,+5Z,, +6(Z,Z +zcr0 order terms)

n+1"n+l
with 1S}=02. On the other hand, suppose we consider the other Kihler metric on thre subbundle
Yoot 00):

+1 n+l
?=f(z )..z ? Y(z) dz dZ = Y g.-02,847
.,1-1 ij=1

(in this situation, f(z) has to satisfy some PDE system). Will this metric ds? contradict the
argument we have made? Now, if we study the metric defined by (2.3) more carefully, the

assumption of (®_,,=3Y,®,....®, } (Once again, we use Lieb-Range's assumption; see [13],

P-286-p.287) is an orthonormal basis for (0,1)-forms will give us a lot of restrictions. Suppose 7y is
a strictly plurisubharmonic defining function and

n+l

n+l—aY_ zrdz i

. 2n+l
Consider z, -by" Ia_ r ThenZ ne1(@p,1)=1. Suppose the "tangential” vector fields

n+l .

are Z=2p'k r » j=1,2,....,n. Then we can prove the following theorem:
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(2.7) THEOREM:
Suppose the metric defined on @ is given by Definition (2.3) and

<zj,zn+l>ds,=o, Vj=12,.n; and<2n+1,Zn+l>d‘2=l,
Then 1 is uniquely definied on the boundary Q.

Proof:
Suppose ¥ is another such function, then there exist a positive function h such that y=hy.
According to the assumption, when we consider the restriction of y to the boundary:

S oy oo ¥ amy 3y e
o8 do P B2 o 2 2

This tells us Z, h=0 and Zh:O, V k=1,2,...,n. Strong pseudo-convexity implies that [Zk,fj 1h=0
and we know the function h is a constamnt on the boundary. If we also assume the metric is

"normalized" i.c., <Z_,,,Z, ,;>4,2=1, then h=1 and yis uniquely determined on the boundary!

Remark:
In this theorem, we just use the local property of strong pseudo-convexity. Since the function h

=], so the local solution can gives us the global solution. In fact, we can prove this theorem without
the assumption of strong pseudo-convexity. But in this case we need to apply a theorem due to
Bochner: fjh=0 for all j=1,2....,n, then h is a CR function and which is a boundary value of a

holomorphic function. By Bochner's theorem [10], h can be extended holomorphically to a
neighborhood of 0Q. But we also know that h is a real-valued function, which implies his a
constant. Without the assumption of storng pseudoconvexity, we only tan consider this problem
globally!

Now the problem reduces to consider the existence of such function  for a strongly pseudo-
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convex domain. But the existence of such a defining function was proved by Lieb-Range [12],
[13], we will not go through all the details. The assumption of a normalized Levi metric not only
allows us to solve the system (2.6), but also gives us the properties ISI=0? and

)
&+ K OEL:p@pE)=0".
op

These are the crucial properties of a special Heisenberg coordinates! This explain why standard
Heisenberg coordinates can be worked in this case. If we study Phong's theorem ([1], p.313
-p-322) more carefully, it is not so hard to generalize his result to the following metrics:

n+1

where o,B:C""'=R"; a,peC”(D).

n
2 = -
ds =aj_§1mj®mj+[3mn+l®mn P

Hence we need more efforts to control the normal direction and put in an extra term

f](é,C)(ZuZO((D'm)*-(‘P‘m)*) (see [17], p.106-p.112) to approximate the parametrix.
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