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ON THE DISTRIBUTION OF SEQUENCES CONNECTED
WITH DIGIT-REPRESENTATION

Gerhard Larcher

Let N = e(s)b(s) +e(s-1)b(s-1) +...+e(l)b(1l) +e(0)
be the digit representation of the integer N to base b or
to a-scale, that is with respect to the best approximation
denominators of an irrational number o. Let f : N, > 2
with £(0) = 0 be an arbitrary function and xr(0),r(1),...
be an arbitrary sequence of integers and
F(N) := f(e(s))r(s) +...+£f(e(1l))xr(1l) + £(e(0))x(0).
Conditions for the uniform distribution modulo one of the
sequence {F(N)x}NEN , XER are given.

Introduction and statement of results

Let 1 = b(0) < b(l) < b(2) < ... be a sequence of inte-
gers, then for every positive integer N there is an s with
b(s) s N < b(s+l) and a unique e(s)€E N with

N = e(s)b(s) +Ng_q and with 0 s Ns-l < b(s) .

By continuing in that way we get a representation of N,
unique in the above sense, of the form:

N = e(s)b(s) +e(s-1)b(s-1) +...+e(0)b(0) with
(1)

ose(i)<% for all i .

Let now
f :NO + 2 be an arbitrary integer-valued function
with £(0) = 0

and let

r(0),r(1),r(2),... be an arbitrary sequence of
integers.
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Then we define the base-and-digit-changing function

F :N0 > Z Dby F(0) := 0 and
F(N) := f(e(s))r(s) + ...+ f(e(0))x(0)
if N has representation (1) .

In this paper we will be interested in the distribution
modulo one of the sequence {F(N)X}NZO where x is a real
number, and where {yl} := y-[y] denotes the fractional
part of y. Investigations in this direction have been done

for example in [11, [21,[31,(41,[61,[7], (101, 111 and [12].

For the initial base (b(i))izo two cases are of out-

standing interest:

i) b(i) := bi for all i 20 , and b 1is a fixed integer
larger than one.

ii) Let o be an irrational number with continued fraction
expansion a := [a(0);a(l),a(2),... ] and with best

approximation denominators 1 = g(0) £ g(l1) < g(2) <...

If we take
b(i) := gq(i) ( or b(i) := g(i+l) 1in case that
q(l) = 1) for all i 20 ,

then we have the representation of N to a-scale .

In most of the previous papers the case r(i)= 1
(that is the case of generalized sum-of-digit sequences )
is considered. In this paper we will investigate the
general case for the representations a) and b) and we will
show ( ||y|| denotes the distance of y to the nearest

integer ) :

THEOREM 1: If N is represented to base b, then:

{F(N)x}.0
only if there is an e € {1,2,...,b-1} with f(e) 0

is uniformly distributed modulo one if and

and

(2) z ||r(n)hx||2 = e for all heWN .
n=1

From this theorem moreover we will give some examples and

applications.
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THEOREM 2: If N is represented to a-scale, then:
> r (n) hx 2 _
(3) a<a(n+l) or RER

a=a(n)=a(n+l)

where a := min {e|f(e) % 0},

then {F(N)x} is uniformly distributed modulo one.

N20

In this result the denominators a(n+l) in the summands

of (3) can be neglected if o has bounded partial quotients.
But otherwise these denominators seem to be disturbing
since,if o is such that I 1/a(n) is converging, then the
condition (3) doesn’t hold for any x . The result of
Theorem 2 can be improved for special choices of the digit
changing function £ , but it cannot be improved for

general f as can be seen by the following:

THEOREM 3: If N is represented to a-scale, then:
a) If f(e) = e for all e 2 0 then:
1f L It (m)hx||> = = for all he N ,
1

a<a(n+l) or
a=a(n)=a(n+l)

then {F(N)X}N>0 is uniformly distributed modulo one.

b) If £(1) = 1 and f(e) = 0 for e + 1 , then for every
choice of the new base (r(i))ito and for all o with
b 1 < = the sequence {F(N)X}NZO is for no

n=1 ain)

X uniformly distributed modulo one.
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Proofs of the results

LEMMA 1: There are positive constants ¢, ¢’ such that
for all integers q 2 2 , all reals x(1),...,x(g-1) in
-%, % ] and with x := max |x(i)| we have:
i
q(l-cxz) S |1+exp(x(1)) +...+exp(x(g-1))] s q-c'x2 .
( Here and in the following exp(y) := e2my )
We omit the easy proof .
Proof of Theorem 1: If f(e) = 0 for all e€{0,...,b-1}
then F(N) = 0 for all N . -
Let f(e) $ 0 for an e €{1,...,b-1} and E ||r(n)hx||2=w
n=1

for all he N .
If N has representation (1) then with L(s) = 0 and

L(i) = e(s)b5+ ... +e(i+1)b**? for i = 0,1,...,s-1 , and
because of F(k+1.b}) = F(k) + F(1.b}) for all k with

0 sk <b" (k,1c¢€ N,) we get:

N-1
S(N) == z exp(F(N)hx) =
(4) n=0
s e(j+1)-1 . ;
5 z exp (F(L(j) + e.bd)hx).S(bI) .
j=0 e=0
Further:
5 b-1 o1
s(bl) = I exp (£ (e)r(j-1)hx) .S (b3~ 7) ;
e=0

and continuing in that way, because of Lemma 1, since

£f(0) = 0 and because of
b-1
S (b) = z exp(f(e)r(0)hx) , we get:
- e=0
. . j=-1 1 b-1
|s)y/pI| = “m° £.| T exp(f(e)r (k)hx| s
k= e=0
- c’ 2
(5) s I (1-gf . max [| £ (e)r(k)hx||“) s
k=0 O<e<b
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J-l ’,
s 1 oa-g.lEmrmnx|?) ,
k=0

where 1 €{1,...,b-1} is arbitrary such that £(1) # 0 .

o

Since for h’:= f£(l1)h we have b Hr(k)h’x||2 = ® ,

the expression |S(b])/b3| tends to zero for j to

infinity. Further from (4) :

s : ; ‘
Ismy/n| sz pI*TS gy /pI|
j=0
and therefore |S(N)/N| tends to zero for N to infinity
and by Weyl’s criterion ( see [5] or [8]), {F(N)x}g.

is uniformly distributed modulo one.

If x is rational then the sequence trivially is not
uniformly distributed.

Assume now x irrational and I Hr(n)h(O)xH2 =d <
b-1 £ (e) n=1

The polynomial I y =: ply) has only finitely
e=0

many zeros. Further p(l) = b , and because x is

irrational, there is a 1(0) such that p(exp(lh(0)x)) $ 0

for all integers 1 with |1| 2 1(0) .
b-1
Therefore I exp(f(e)r(j)1l1(0)h(0)x) # 0 for all j .
e=0
Because of ||r(j)1(0)h(0)x|| s 1(0).]|lr(3)h(0)x]|| , because
of (5) by Lemma 1 and with h := h(0)1(0) we get:
o - s-1 1 b-1
|s(®”)/p>| = 1 5 .| £ exp(f(e)r(k)hx)| > c” > 0
k=0 e=0
for all s €N and by Weyl’s criterion {F(N’X}Nao is not

uniformly distributed.

We give some examples:

EXAMPLE 1: 1If (r(i))i>0 is bounded ( especially if
r(i) = 1 ) then (2) holds for every x irrational .

EXAMPLE 2: If «r(i) = gl for an integer g 2 2 and all

i 2 0, then (2) holds for every x irrational .
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EXAMPLE 3: If |r(i+l)/r(i)| s K for an absolute
constant K and all i 1large enough, then (2) holds
for all without countable many x since under the

4
above condition lim ||r(i)x|| = 0 can hold only for
ise

countable many x .

EXAMPLE 4: If ¢« is irrational and 1 = gq(0) £ g(l) < ...
are the best approximation denominators of a , then
let r(i) := g(i) for all i . If a has bounded
partial quotients, then (2) holds if and only if x is
not of the form aa +b with a,b € Q . This in general
is not true for all o .

This follows from Theorem 1 in [9] which says that if a

has bounded partial quotients, then 1lim ||gq(n)x|| = 0 if

n+o

and only if x = ac+b with a,b € Q , and from Theorem 2
in the same paper from which easily follows that there
are o and x not of the above form for which (2) doesn’t
hold.

For the proof of Theorem 2 we need the following

rather technical

LEMMA 2: Let g(-1) = S(-1) = 0 , q(0) = S(0) = 1 and
q(i+l) = a(i+l)q(i) + g(i-1) ,
S(i+1) b(i+1)sS(i) + c(i+l1l)S(i-1) for i > 0
with a(i) e N , b(i),c(i) € € , |b(i)] s a(i) ,

[c(i)| s 1 for all i and moreover:

b(i) = a(i) if a(i) 2 a and c(i) = 1 if a(i) > a where
a is fixed, then:
if = (1--L§+B—L)+ : larg eI = =
i=1 i=2
a(i-l1)=a(i)=a

then lim lﬁiill = 0
T ise S

Proof: If z |larg c(i)||2 = «» then there
i=2
a(i-1)=a(i)=a
is an 1 (without restriction of generality say 1 = 0 )

such that
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| arg c(i) |2 = = .

™8

i=2
iz1(4)
a(i-1)=a(i)

a

r C(i) 2=

Let B(i) 2+ |b(§)l/a(i)

2 + |a%+ c(i)]/ (a%+ 1)
3

then %- sB(i),C(i) s 1 and

z (1'12i;ll) i I [|arg C(i)H2 diverges if
i=l a(l) i =
i=0(4)
a(i-l)=a(i)=a
and only if I (1-21§§lil) + I (1-4 ;C(i))
i=1 i=2
i=0(4)

a(i-1l)=a(i)=a
diverges.

We define t(-1) := t(0) :=1 , t(1) := |b(1l}]|/a(l) and

. . / i ; t(i=-2) _ .
Case 1l: C(i+l)t(i-1) if T(i=1) £ 2-C(i+1)
Case 2: t(i_lé re(i=2) otherwise
£(i+1) 2= § . . . t(i-1) .
Case 3: B(i+1l)t (i) if —/F—5— < 2-B(i+1)
t(i)
L Case 4: Ei&l—%EJ&:ll otherwise ;
where Case 1 and Case 2 are applied if a(i) = a(i+l) = a

and i = 3(mod 4) , and Case 3 and Case 4 are applied
otherwise, and where i 2 1 .

By induction and some easy calculations it can be seen,
that |s(i)| s t(i)g(i) for all i 2 0 .

Further we have: If t(i+1l) was defined by

Case 1: Then t(i) was defined by Case 3 or 4 .
a) If t(i) was defined by Case 3 then t(i) s t(i-1)
b) If t(i) was defined by Case 4 then t(i-1) < t(i-2)
and t(i-1) was defined by Case 3 and

t(i) = LEBUAD ¢ (iog) 5 t(i-2) .
So we have t(i+1l) = C(i+1)t(i-1)
and t(i) s t(i-1)
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or t(i+1) = C(i+1).B(i-1).t(i-2)
and  t(i),t(i-1) s t(i-2) .
Case 2: Then t(irl) = EUd-llrel=2) tf%:f; >2-C(i+1)

and especially t(i-2) > t(i-1) , therefore t(i-1) was

defined by case 3 and t(i) was defined by case 3 or 4 .
a) If t(i) was defined by Case 3 then t(i) s t(i-1) .
b) If t(i) was defined by Case 4 then

t(i) = 2= ;t(i'z) = t(i+l) )
In any case t(i+l) = E—(i:%)——"—l.t(i-Z) and
ET%:IT = %%%E%% > 2=C(i+l1l) and therefore
t(i+1) s 22EUErD) A2 BUSL) 4 (5
and t(i-1) s t(i-2)
and ( t(i) = t(i-1) or t(i) s t(i+1l) ) .
Case 3: Then t(i+l) s B(i+1l).t (1) .

And finally by analogous considerations as above we get in

Case 4: Then

t(iv1) g 22BUD A2BU) (5o
and t(i) s t(i-1)
Sk 4+B(i+l) 4+C(i) 1+B(i-2)
t(i+l) s 2 A S22 Lt (i-3)
and t(i),t(i-1),t(i-2) s t(i-3) )

From all this it follows that t(i) tends to zero for i to
infinity and the result follows.

Proof of Theorem 2: If N = e(s)g(s) +... +e(0)g(0) 7

then as in the proof of Theorem 1 we have:

N-1 ] q(j)-1

| 2 exp(F(n)hx)| s 1§ e(j+1).| I exp (F(k)hx) | .
n=0 j=0 k=0

Further:
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q(j)-1
S(j) == z exp (F(k)hx) =
k=0
a(j)=-1
= T exp(f(e)r(j-1)hx)).S(j-1) +
e=0
+ exp(f(a(j))r(j-1)hx).S(j-2)
and by Lemma 1 and Lemma 2 we get that 1lim l%%%%l = 0
j-»uu
1 N-1
and from this we easily get that N I exp(F(n)hx) tends
n=0

to zero for N to infinity, and the theorem is proved.

Proof of Theorem 3:

a) In this case we have

a(j)-1
| T exp(f(e)r(i-1)hx)| = |
e=0

1-eXP(a(j)r(j-l)hx)|
l-exp(r(j-1)hx)

s a() (1-|lr(3-1nx||?) ,

that is an improvement of the right side of the inequality
in Lemma 1. From this and from the proof of Theorem 2
the result follows.

b) Let a(j) > 2 for j 2 j(0) =1 then for j 2 j(0):
A(j+1) := x({n|g(j) s n < g(j+1) , F(n) = 0}) 2
2 (a(j+1) -2).A(3) .
Therefore for j 2 j(0):

. J j

%{4%— 2 1 (a(i)-2)/ T (a(i)+1) =z ¢ > 0
J i=3(0) i=0

because of z 1/a(n) < o , and therefore for no

n

X the sequence {F(N)x}N>O is uniformly distributed .
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