

Werk

Titel: On the Distribution of Sequences connected with Digit-Representation.

Autor: Larcher, Gerhard

Jahr: 1988

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0061 | log7

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE DISTRIBUTION OF SEQUENCES CONNECTED WITH DIGIT-REPRESENTATION

Gerhard Larcher

Let N = e(s)b(s) + e(s-1)b(s-1) +...+ e(1)b(1) + e(0) be the digit representation of the integer N to base b or to $\alpha\text{-scale}$, that is with respect to the best approximation denominators of an irrational number α . Let $f:N_0$ + 2 with f(0) = 0 be an arbitrary function and $r(0),r(1),\ldots$ be an arbitrary sequence of integers and F(N) := $f(e(s))r(s)+\ldots+f(e(1))r(1)+f(e(0))r(0)$. Conditions for the uniform distribution modulo one of the sequence $\{F(N)x\}_{N\in N}$, $x\in R$ are given.

Introduction and statement of results

Let 1 = b(0) < b(1) < b(2) < ... be a sequence of integers, then for every positive integer N there is an s with b(s) \leq N < b(s+1) and a unique e(s) \in N with N = e(s)b(s) + N_{s-1} and with 0 \leq N_{s-1} < b(s). By continuing in that way we get a representation of N, unique in the above sense, of the form:

(1)
$$N = e(s)b(s) + e(s-1)b(s-1) + ... + e(0)b(0) with$$

$$0 \le e(i) < \frac{b(i+1)}{b(i)} for all i .$$

Let now

 $f: \mathbb{N}_0 \rightarrow \mathbf{2}$ be an arbitrary integer-valued function with f(0) = 0

and let

 $r(0), r(1), r(2), \ldots$ be an arbitrary sequence of integers.

Then we define the base-and-digit-changing function $F: N_0 \rightarrow \mathbf{Z} \quad \text{by} \qquad F(0) := 0 \quad \text{and} \qquad \qquad F(N) := f(e(s))r(s) + \ldots + f(e(0))r(0)$ if N has representation (1) .

In this paper we will be interested in the distribution modulo one of the sequence $\{F(N)x\}_{N\geq 0}$ where x is a real number, and where $\{y\}:=y-[y]$ denotes the fractional part of y. Investigations in this direction have been done for example in [1], [2], [3], [4], [6], [7], [10], [11] and [12].

For the initial base $(b(i))_{i \ge 0}$ two cases are of outstanding interest:

- i) $b(i) := b^{i}$ for all $i \ge 0$, and b is a fixed integer larger than one.
- ii) Let α be an irrational number with continued fraction expansion $\alpha:=[a(0);a(1),a(2),\dots]$ and with best approximation denominators $1=q(0)\leq q(1)< q(2)<\dots$ If we take

then we have the representation of N to $\alpha\text{-scale}$.

In most of the previous papers the case $r(i) \equiv 1$ (that is the case of generalized sum-of-digit sequences) is considered. In this paper we will investigate the general case for the representations a) and b) and we will show (||y|| denotes the distance of y to the nearest integer):

THEOREM 1: If N is represented to base b, then: $\{F\left(N\right)x\}_{N\geq0} \quad \mbox{is uniformly distributed modulo one if and } \\ \mbox{only if there is an } e \in \{1,2,\ldots,b-1\} \quad \mbox{with } f\left(e\right) \neq 0 \\ \mbox{and}$

(2)
$$\sum_{n=1}^{\infty} ||r(n)hx||^2 = \infty \quad \underline{\text{for all}} \quad h \in \mathbb{N} .$$

From this theorem moreover we will give some examples and applications.

THEOREM 2: If N is represented to α -scale, then:

$$\frac{\text{If}}{\text{(3)}} \qquad \frac{\sum_{n=1}^{\infty} \frac{\||r(n)hx||^2}{a(n+1)}}{\sum_{n=1}^{\infty} a(n+1)} = \infty \qquad \frac{\text{for all}}{h \in \mathbb{N}},$$

where a := min {e|f(e) \neq 0}, then {F(N)x}_{N \geq 0} is uniformly distributed modulo one.

In this result the denominators a(n+1) in the summands of (3) can be neglected if α has bounded partial quotients. But otherwise these denominators seem to be disturbing since, if α is such that Σ 1/a(n) is converging, then the condition (3) doesn't hold for any x. The result of Theorem 2 can be improved for special choices of the digit changing function f , but it cannot be improved for general f as can be seen by the following:

THEOREM 3: If N is represented to α -scale, then:

a) If
$$f(e) = e$$
 for all $e \ge 0$ then:

If $\sum_{n=1}^{\infty} ||r(n)hx||^2 = \infty$ for all $h \in \mathbb{N}$,

 $a < a(n+1)$ or
 $a = a(n) = a(n+1)$

 $\underline{\text{then}} \ \{F(N)x\}_{N\geq 0} \ \underline{\text{is}} \ \underline{\text{uniformly distributed modulo one}}.$

b) If f(1) = 1 and f(e) = 0 for $e \neq 1$, then for every choice of the new base $(r(i))_{i \geq 0}$ and for all α with $\sum_{n=1}^{\infty} \frac{1}{a(n)} < \infty \quad \text{the sequence} \quad \{F(N)x\}_{N \geq 0} \quad \text{is for no}$ x uniformly distributed modulo one.

Proofs of the results

LEMMA 1: There are positive constants c, c' such that $\frac{\text{for all integers } q \ge 2 \text{, all reals } x(1), \dots, x(q-1) \text{ in } (-\frac{1}{2}, \frac{1}{2}] \text{ and with } x := \max_{i} |x(i)| \text{ we have:}$ $q(1-cx^2) \le |1 + \exp(x(1)) + \dots + \exp(x(q-1))| \le q-c'x^2 \text{.}$ (Here and in the following $\exp(y) := e^{2\pi i y}$.)

We omit the easy proof .

<u>Proof of Theorem 1:</u> If f(e) = 0 for all $e \in \{0,...,b-1\}$ then F(N) = 0 for all N.

Let $f(e) \neq 0$ for an $e \in \{1,...,b-1\}$ and $\sum_{n=1}^{\infty} ||r(n)hx||^2 = \infty$ for all $h \in \mathbb{N}$.

If N has representation (1) then with L(s) = 0 and $L(i) = e(s)b^{S} + \ldots + e(i+1)b^{i+1}$ for $i = 0,1,\ldots,s-1$, and because of $F(k+1.b^{i}) = F(k) + F(1.b^{i})$ for all k with $0 \le k < b^{i}$ $(k,l \in N_0)$ we get:

$$0 \le k < b^{1} \quad (k, 1 \in N_{0}) \text{ we get:}$$

$$S(N) := \sum_{D=0}^{N-1} \exp(F(N)hx) = n=0$$

$$S(A) = \sum_{D=0}^{N-1} \exp(F(L(j) + e \cdot b^{j})hx) \cdot S(b^{j}) \cdot p=0$$

$$S(A) = \sum_{D=0}^{N-1} \exp(F(L(j) + e \cdot b^{j})hx) \cdot S(b^{j}) \cdot p=0$$

Further:

$$S(b^{j}) = \sum_{e=0}^{b-1} \exp(f(e)r(j-1)hx).S(b^{j-1})$$
,

and continuing in that way, because of Lemma 1, since f(0) = 0 and because of

$$S(b) = \sum_{e=0}^{b-1} \exp(f(e)r(0)hx), \text{ we get:}$$

$$|S(b^{j})/b^{j}| = \prod_{k=0}^{j-1} \frac{1}{b} \cdot |\sum_{e=0}^{b-1} \exp(f(e)r(k)hx|) \le$$

(5)
$$\leq \prod_{k=0}^{j-1} (1 - \frac{c}{b}) \cdot \max_{0 < e < b} ||f(e)r(k)hx||^{2}) \leq$$

$$\leq \prod_{k=0}^{j-1} (1 - \frac{c}{b}, ||f(1)r(k)hx||^2),$$

where $l \in \{1, \ldots, b-1\}$ is arbitrary such that $f(l) \neq 0$. Since for h' := f(l)h we have $\sum_{k=1}^{\infty} ||r(k)h'x||^2 = \infty$, the expression $|S(b^j)/b^j|$ tends to zero for j to infinity. Further from (4):

$$|S(N)/N| \le \sum_{j=0}^{S} b^{j+1-s} \cdot |S(b^{j})/b^{j}|$$

and therefore |S(N)/N| tends to zero for N to infinity and by Weyl's criterion (see [5] or [8]), $\{F(N)x\}_{N\geq 0}$ is uniformly distributed modulo one.

If x is rational then the sequence trivially is not uniformly distributed.

Assume now x irrational and $\sum_{n=1}^{\infty} ||r(n)h(0)x||^2 = d < \infty$.

The polynomial $\sum_{n=1}^{\infty} y^{f(e)} = p(y)$ has only finitely

many zeros. Further p(1) = b, and because x is irrational, there is a 1(0) such that $p(exp(1h(0)x)) \neq 0$ for all integers 1 with $|1| \ge 1(0)$.

Therefore $\sum_{e=0}^{b-1} \exp(f(e)r(j)1(0)h(0)x) \neq 0$ for all j.

Because of $||r(j)1(0)h(0)x|| \le 1(0) \cdot ||r(j)h(0)x||$, because of (5) by Lemma 1 and with h := h(0)1(0) we get:

$$|S(b^{S})/b^{S}| = \prod_{k=0}^{S-1} \frac{1}{b} \cdot |\sum_{e=0}^{b-1} \exp(f(e)r(k)hx)| > c'' > 0$$

for all $s \in \mathbb{N}$ and by Weyl's criterion $\{F(N)x\}_{N \geq 0}$ is not uniformly distributed.

We give some examples:

EXAMPLE 1: If $(r(i))_{i\geq 0}$ is bounded (especially if $r(i) \equiv 1$) then (2) holds for every x irrational .

EXAMPLE 2: If $r(i) = g^{i}$ for an integer $g \ge 2$ and all $i \ge 0$, then (2) holds for every x irrational.

EXAMPLE 3: If $|r(i+1)/r(i)| \le K$ for an absolute constant K and all i large enough, then (2) holds for all without countable many x , since under the above condition $\lim_{i \to \infty} ||r(i)x|| = 0$ can hold only for countable many x .

EXAMPLE 4: If α is irrational and $1=q(0) \leq q(1) < \ldots$ are the best approximation denominators of α , then let r(i) := q(i) for all i. If α has bounded partial quotients, then (2) holds if and only if x is not of the form $a\alpha + b$ with $a,b \in \mathbb{Q}$. This in general is not true for all α .

This follows from Theorem 1 in [9] which says that if α has bounded partial quotients, then $\lim_{n\to\infty} \|q(n)x\| = 0$ if $\lim_{n\to\infty} \|and$ only if $x = a\alpha + b$ with $a,b \in Q$, and from Theorem 2 in the same paper from which easily follows that there are α and x not of the above form for which (2) doesn't hold.

For the proof of Theorem 2 we need the following rather technical $\ensuremath{\text{c}}$

<u>LEMMA 2:</u> <u>Let</u> q(-1) = S(-1) = 0, q(0) = S(0) = 1 <u>and</u> q(i+1) = a(i+1)q(i) + q(i-1),

S(i+1) = b(i+1)S(i) + c(i+1)S(i-1) for i > 0

with $a(i) \in \mathbb{N}$, $b(i), c(i) \in \mathbb{C}$, $|b(i)| \le a(i)$,

 $|c(i)| \le 1$ for all i and moreover:

 $b(i) = a(i) \text{ if } a(i) \ge a \text{ and } c(i) = 1 \text{ if } a(i) > a \text{ where}$

a is fixed, then:

$$\underbrace{\text{If}}_{\substack{i=1}}^{\infty} (1 - \frac{|b(i)|}{a(i)}) + \underbrace{\sum_{\substack{i=2\\a(i-1)=a(i)=a}}^{\infty} ||\text{arg }c(i)||^2 = \infty$$

then
$$\lim_{i\to\infty} \frac{|S(i)|}{q(i)} = 0$$
.

Proof: If
$$\sum_{i=2}^{\infty} \|\arg c(i)\|^2 = \infty \text{ then there } a(i-1) = a(i) = a$$

is an 1 (without restriction of generality say 1 = 0) such that

otherwise, and where $i \ge 1$.

By induction and some easy calculations it can be seen, that $|S(i)| \le t(i)q(i)$ for all $i \ge 0$ Further we have: If t(i+1) was defined by

Case 1: Then t(i) was defined by Case 3 or 4 .

- a) If t(i) was defined by Case 3 then $t(i) \le t(i-1)$
- b) If t(i) was defined by Case 4 then t(i-1) < t(i-2)and t(i-1) was defined by Case 3 and $t(i) = \frac{1 + B(i-1)}{2} \cdot t(i-2) \le t(i-2)$.

So we have
$$t(i+1) = C(i+1)t(i-1)$$
 and
$$t(i) \le t(i-1)$$

or
$$t(i+1) = C(i+1) \cdot B(i-1) \cdot t(i-2)$$

and $t(i) \cdot t(i-1) \le t(i-2)$

Case 2: Then
$$t(i+1) = \frac{t(i-1) + t(i-2)}{2}$$
, $\frac{t(i-2)}{t(i-1)} > 2-C(i+1)$

and especially t(i-2) > t(i-1) , therefore t(i-1) was defined by case 3 and t(i) was defined by case 3 or 4 .

- a) If t(i) was defined by Case 3 then $t(i) \le t(i-1)$.
- b) If t(i) was defined by Case 4 then

$$t(i) = \frac{t(i-1) + t(i-2)}{2} = t(i+1)$$

In any case $t(i+1) = \frac{B(i-1)+1}{2}.t(i-2)$ and

$$\frac{1}{B(i-1)}$$
 = $\frac{t(i-2)}{t(i-1)}$ > 2 - C(i+1) and therefore

$$t(i+1) \le \frac{4+C(i+1)}{5} \cdot \frac{4+B(i-1)}{5} \cdot t(i-2)$$

and
$$t(i-1) \le t(i-2)$$

and
$$(t(i) \le t(i-1) \text{ or } t(i) \le t(i+1))$$
.

Case 3: Then
$$t(i+1) \leq B(i+1) \cdot t(i)$$

And finally by analogous considerations as above we get in

Case 4: Then
$$t(i+1) \le \frac{4 + B(i+1)}{5} \cdot \frac{4 + B(i)}{5} \cdot t(i-1)$$

and $t(i) \le t(i-1)$

or

$$t(i+1) \le \frac{4 + B(i+1)}{5} \cdot \frac{4 + C(i)}{5} \cdot \frac{1 + B(i-2)}{5} \cdot t(i-3)$$

and
$$t(i), t(i-1), t(i-2) \le t(i-3)$$

From all this it follows that t(i) tends to zero for i to infinity and the result follows.

<u>Proof of Theorem 2:</u> If N = e(s)q(s) + ... + e(0)q(0), then as in the proof of Theorem 1 we have:

$$\begin{array}{c|c} N-1 & & s & q(j)-1 \\ \mid \Sigma & \exp\left(F\left(n\right)hx\right) \mid & \leq & \sum\limits_{j=0}^{\infty} e\left(j+1\right). \mid \sum\limits_{k=0}^{\infty} exp\left(F\left(k\right)hx\right) \mid . \end{array}$$

Further:

$$g(j)-1$$

$$S(j) := \sum_{k=0}^{\Sigma} \exp(F(k)hx) =$$

$$a(j)-1$$

$$= (\sum_{e=0}^{\Sigma} \exp(f(e)r(j-1)hx)).S(j-1) +$$

$$e=0$$

$$+ \exp(f(a(j))r(j-1)hx).S(j-2)$$

and by Lemma 1 and Lemma 2 we get that $\lim_{j\to\infty}\frac{\left|S(j)\right|}{q(j)}=0$ and from this we easily get that $\frac{1}{N}\cdot\sum_{n=0}^{N-1}\exp\left(F(n)hx\right)\text{ tends}$ to zero for N to infinity, and the theorem is proved.

Proof of Theorem 3:

a) In this case we have

$$\begin{vmatrix} a(j)-1 \\ \Sigma \\ e=0 \end{vmatrix} = \exp(f(e)r(j-1)hx) = \left| \frac{1-\exp(a(j)r(j-1)hx)}{1-\exp(r(j-1)hx)} \right| \le a(j)(1-||r(j-1)hx||^2),$$

that is an improvement of the right side of the inequality in Lemma 1. From this and from the proof of Theorem 2 the result follows.

b) Let a(j) > 2 for $j \ge j(0) - 1$ then for $j \ge j(0)$: $A(j+1) := \kappa(\{n \mid q(j) \le n < q(j+1) , F(n) = 0\}) \ge (a(j+1) - 2) \cdot A(j) .$

Therefore for $j \ge j(0)$:

$$\frac{A(j)}{q(j)} \ge \prod_{i=j(0)}^{j} (a(i)-2) / \prod_{i=0}^{j} (a(i)+1) \ge c''' > 0$$

because of Σ 1/a(n) < ∞ , and therefore for no n

x the sequence $\{F(N)x\}_{N\geq 0}$ is uniformly distributed .

References

- [1] COQUET,J.: Représentation des entiers naturels et suite uniformément équiréparties. Ann.Inst.Fourier 32, 1-5 (1982)
- [2] COQUET,J.: Repartition de la somme des chiffres associée á une fraction continue. Bull.Soc.Roy.Liége 51, 161-165 (1982)
- [3] COQUET,J.,RHIN,G.and TOFFIN,Ph.: Représentation des entiers naturels et indépendance statistique 2 .
 Ann.Inst.Fourier 31, 1-15 (1981)
- [4] GELFOND, A.O.: Sur les nombres qui ont des propriétés additives ou multiplicatives données . Acta Arith. 13, 259-265 (1968)
- [5] HLAWKA, E.: Theorie der Gleichverteilung. B.I. Wien Mannheim Zürich 1977
- [6] KAWAI, H.: α-additive Functions and Uniform Distribution modulo one. Proc. Japan. Acad. Ser. A. 60 , 299-301 (1984)
- [7] KOPECEK,N.,LARCHER,G.,TICHY,R.F. and TURNWALD,G.:
 On the discrepancy of sequences associated with the sum-of-digits function. (1986), to appear in:
 Ann.Inst.Fourier
- [8] KUIPERS, L. and NIEDERREITER, H.: Uniform Distribution of sequences. J. Wiley and Sons, New York 1974
- [9] LARCHER,G.: A convergence problem connected with continued fractions. (1986), to appear in: Proc.Amer.Math.Soc.
- [10] LARCHER,G. and TICHY,R.F.: Some number-theoretical properties of generalised sum-of-digit functions. (1987), to appear in: Acta Arith.
- [11] MENDES-FRANCE, M.: Nombres normaux. Applications aux fonctions pseudoaléatoires. J. Analyse Math. 20, 1-56 (1967)
- [12] TICHY, R.F. and TURNWALD, G.: On the discrepancy of some special sequences. J. Number Th. 26, 68-78 (1987)

Gerhard Larcher Universität Salzburg Institut für Mathematik Hellbrunnerstraße 34 A-5020 Salzburg Austria

(Received November 15, 1987)