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PARABOLIC Q-MINIMA AND
MINIMAL SOLUTIONS TO VARIATIONAL FLOW

Wilfried Wieser

We introduce the notion of parabolic Q-minima. Similarly to
the elliptic case, where Q-minima were defined and studied
by M. Giaquinta & E. Giusti, the purpose is to provide a
unifying approach to various regularity results for parabo-
lic problems. In addition, as a parabolic counterpart to
the notion of elliptic minima of variational integrals, we
analyse so-called minimal solutions to variational flows.

Introduction.

In the sequel we shall introduce the notion of parabolic
Q-minima. As in the elliptic case, where Q-minima were de-
fined and studied by M. Giaquinta & E. Giusti [9], the pur-
pose is to provide a unifying approach to some of regulari-
ty results for parabolic systems and equations.

Referring for the detailed description of our results to
the sections below, let us give here a brief summary. Star-
ting with the definition and some examples of parabolic
Q-minima in the first two sections, we prove in section 3
various basic estimates for general, i.e. vector-valued,
parabolic Q-minima, among them an LP-estimate of their spa-
tial gradients. For scalar parabolic Q-minima we obtain
Holder regularity as a consequence of their membership in

certain De Giorgi classes (section 4).

There is a special class of parabolic Q-minima in which
each Q-minimum weakly solves an associated variational flow
system, in the same way as a minimum of an elliptic varia-
tional problem solves its Euler-Lagrange system. Moreover,
the regularity properties of these Q-minima fit well with
those known for minima of regular elliptic variational inte-
grals. We therefore call them minimal solutions (of their

corresponding variational flow system). In fact, we shall
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obtain (in section 6) partial Holder regularity for these
minimal solutions without having to impose the well known
smallness conditions that are needed in the regularity stu-
dy of weak solutions to general second order gquasilinear
parabolic systems. (Cp. [11], and for the elliptic situa-
tion the review articles [8] and [12].) Encouraged by this
analogy, one might also hope to get an existence theory for
minimal solutions of equal generality as for elliptic mini-
mizers. It turns out, however, that existence of minimal
solutions requires in some sense stronger convexity condi-
tions for the defining variational integral than in the

elliptic case. We examine this point in section 5.

The author wishes to thank Mariano Giaquinta, Stefan
Hildebrandt and Michael Struwe for valuable suggestions
which resulted from a technical report [17] preceding this

work.

1. Definition.

Let us start with some notationa. For n 2 2, Q cR® a
domain denote by D = Q x (0,T) a space-time region with
generic point z= (x,t). W;(Q) (ﬁ;(n)) stands for the usual
Sobolev space of functions or vectorfunctions u, depending
on the context, which are squareintegrable over { together

with their generalized spatial gradient Vu (and which vanish
1,0

on the boundary 293). We also need the spaces W2 (D) =
o)

20, W (@), ®y'°m) = £2(0,7;85(2)), and finally

w;(D)E-hJEWE’O(D)|u' € LZ(D)}, where u' = ;Eu.

Consider now a Carathéodory function F = F(z,u,p):

D x ZIRN X ]RnN + IR satisfying the growth condition

(1.1) alpl? = blulY - g(z) < F(z,u,p) < ulpl? + blulY + g(z),

where N 'is a positive integer, g a nonnegative integrable

function, and b,A,u,Yy are numbers.

For Q 2 1 we then define a function u : D > R o

u€ WO

2 loc(D) n LY (D) , to be a parabolic Q-minimum, if
r

loc
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o

for every ¢ € CO(D) we have the inequality

(1.2) - u¢'dz + E(u,K) <0Q
K

E(u-¢rK) ’

where K = spt¢ and E(w,K) j F(z,w,Vw)dz. To extend the

K
range of applicability of our concept we shall also call u

a B-restricted parabolic Q-minimum if (1.2) holds merely
for all ¢ of a certain subset B c Cg(D) .

For Q=1 in (1.2) and F = F(x,u,p) (i.e. time inde-
pendent) (1.2) takes the same status for the variational

flow (or gradient flow) system

(ui)' - ¥ —F i(x,u,Vu) + F i(x,u,Vu) =0
(1.3) a=1 9x P u

i=1,...,N,

as does the minimum problem IF(x,u,Vu)dx = min for the
associated Euler-Lagrange sys%em. In fact, to see that (1.2)
(with Q = 1) implies the weak form of (1.3), replace ¢ by
h¢ in (1.2), h € R\{0} , divide by h and let it tend to
zero. Of course, for this to make sense, one has to assume
that F is C1 in u and p together with an appropriate
growth behaviour of the derivatives, e.g. IFuI + lel2 <
c(1 + IpI2 + IuIY-1). Also, in the B-restricted case, one
has to impose the condition that for every ¢ € Cg(D) B
contains h ¢ if |hl < hys hy e r" possibly depending on
¢. For reasons mentioned in the introduction we call these
Q-minima minimal solutions and, respectively, B-restricted

minimal solutions.

2. Examples.
2.1

Under suitable structural hypothesis any weak solution of

the quasilinear second order parabolic system

(ui)' - O Ag(z,u,Vu) + Bi(z,u,Vu) =0

o
(2.1) 9X

i=1,...,N
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is a parabolic or B-restricted parabolic Q-minimum, once

F, B and Q 2 1 are chosen properly.
In fact, let us assume for the leading term that

2 . blulY - g(z) ,

Ai(z,u,p)pé > |pl
(2.2)  IA(z,u,p)| < ulpl + blul¥/2 + £(2) ,
1 2
geL (D), £f€L°(D, 1 <y<K2,

while for the lower order term B we distinguish between

the case of controllable growth,

1B(z,u,pl < alpl2Y" /Y L piY 1 4 oz,

(2.3)

and that of natural growth,

IB(z,u,p)| < alpl2 + c(z2)
(2.4) if lul €M, i.e. a>0 and c € L'(D) may
depend on M .

Then we have

1,0
PROPOSITION 2.1. Let u € Wy'; .

(2.1) subject to conditions (2.2). Then

(D) be a weak solution of

(a) in case (2.3) u is a parabolic Q-minimum for the
functional E(v,K) = X&(|VV|2 + blvlY + h)dz, where
A€ (0,1) and h=1+g+ £2 4+ Y/ ¥-1)

(b) in case (2.4) we have: If u is bounded, [ul =M,

and if

(2.5) 2aM < 1

EEEE' u is a B-restricted parabolic Q-minimum for the
functional E(v,K) = Af(IVv(? + h)dz, where A € (0,1),
h=g+ £ +c,and B={¢p€CoD]|lu-ol, <n .
In this case no restriction for the exponent <y in

(2.3) is needed. On the other hand, Q depends on M .
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Proof. We follow the lines of the elliptic proof in [9].
(a) u € W;’?oc(D) being a weak solution to (2.1), we have
’ O
for ¢ € CO(D)' K = spt ¢ ,
—[K u ¢'dz + &(A(z,u,Vu) * Vu dz =
(2.6) jKA(z,u,Vu) « V(u-¢)dz + IKB(z,u,Vu) + (u-¢)dz
—IKB(z,u,Vu) + u dz .
Using (2.2) and (2.3) as well as the H6lder and
Young inequalities we easily derive from this,
-fguetdz + (=) [ (1vul? + blulY + h)dz
< Cqleq) ST (u=¢) 1% + blu-¢1Y+ h)dz
] Y
+ C, Jg lull az
= (*) (eq >0 small).

In case that bIKIuIde < jKIV(u-¢)l2dz we are obvious-
ly done. So let

(2.7 bfglui¥az = [ 1V (u-¢)1%az .

From the inequality Ilul? < €2|¢|2 + Cly,ep) -

(1+Iu-¢IY) we can further estimate

o~ 2
(*) < Tileqeey) J(IV(u=0)1° + blu-¢1Y + h)dz
2
+Cy ot gy IKI¢| dz
and applying Poincaré's inequality together with (2.7),

Jlo12az < cfivei?az < cf (1vul? + 19 (u-¢) 1 %) dz

< cf (1vul? + bluMdz ,
we get the claim on taking €, small enough. Note that
in the elliptic case one can work with Sobolev's instead

of Poincaré's inequality, which then allows a variation
of the exponent <y in the range [1,&?%).
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(b) Again we start from (2.6), this time assuming that
(2.8) ﬂu-¢ﬂm'D <M.
Then (2.2) and (2.4) lead to the estimate

- wb'dz + (1-2aM) [, |Vul?az

IA

bfglulYdz + [, g dz + ufy 1Vul1V(u-¢) ldz

+

bfglul™/ 217 (u-0) 1z + [ £1V(u=¢) Idz

+ 2M IK c dz ,

which, further estimated and rearranged, yields
~fg woraz + 122 1 (jvui? + h) az
<cmfy (19(u-¢)1% + h) az ,

thereby proving the assertion.

At this instant we remark that, contrary to the ellip-
tic proof, we cannot go further and show that u is
actually an unrestricted Q-minimum (i.e. we cannot get
free from condition (2.8) on ¢). This is essentially
due to the indefiniteness of the term IK u'dz .

2.2

The obvious trivial example of a minimal solution is of
course provided by any weak solution of the heat equation,
taking F = —12-|p|2 . More generally, if F 1is a function
convex and C1 in the pair (u,p) EZRN XZRnN , than from

the inequality

-fpus'dz + E(u,D) - E(u-¢,D) <

@©

—jDu¢'dz + jD(Fp[u] * Vo + Fu[u] * ¢)dz, ¢ € CO(D) ,

which follows from the convexity assumption, we see that
any weak solution to (1.3) satisfies at the same time (1.2)

with Q=1 , i.e. is a minimal solution.
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To give a non-trivial example, consider the parabolic

equation
u' - Au - u3 =0 on ]R4 x (0,T)
(2.9)
Ulyo = Yg -+
. . 1.2 1.4 4
The corresponding F is 1 2 (u,p) ERxIR  , and

is nowhere convex, if u # O . Nevertheless , as we shall
see in section 5, for initial values u, lying in a cer-
tain convex subset C of %;GR4) , the weak solutions to
(2.9) are B-restricted minimal solutions, with

B=1{¢ € c;’ (-JR4 x (0,T))|u(+,t) - ¢(-,t) € C} .

2.3

Further examples of parabolic Q-minima can be con-
structed by taking the parabolic analogues of those men-
tioned in [9], e.g. parabolic variational inequalities
with obstacles.

3. Estimates for Q-minima.

We continue with some frequently used notations. For

zy = (xo,to) €D and r > O set

2

— n — —
B (x,) = {x e R |Ix-x | <r} , A (t) = (£, - r7,t))

and denote by

Q(2o) =B, (x) x A (t)),

£.(z) =B (x)) x {ty-r’} U 3B (x,) x A, (t,)

the standard parabolic cylinder with its parabolic boun-
dary. We shall omit the reference points and write Qr’Br
etc. when no confusion will arise. Also set fQ fdz =

r

-1
Q.1 IQr fdz for the mean of £ over Q_ . For
h > 0 and t1,t2 €ER , t1 < tZ '
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r
(o] , £t < t1 - h or t 2 t2 + h
1 ) By St St
h t-t
X (t) = 1 -
tyrt, {1+h r oty h<tst,
t—t2
_1 e v t2 <t < t2 + h

denotes a piecewise linear approximation of the characteri-
stic function .
X[t1,t2]

By we we shall mean the mollification of a function

w.r.t. the time variable by an even c® kernel supported

in the interval |tl < € . In particular, if ¢y is defined
h

on (O0,T) and t1,t2 € (0,T) , then spt(wsxt1’t2)ec:c (0,T)

for €,h sufficiently small (as is always assumed).

A cut-off function for the pair (Qr,QR) , 0OK<Kr <R,
is a Lipschitz function 1(x,t) , being equal to 1 on Qr '
equal to zero outside QR , and satisfying |It'l + IVTI25
C/(R—r)2 . The same applies to cut-off functions for
(Br,BR) depending on x only.

Finally, unless otherwise stated, the letter C (occa-
sionally labelled CO,...) will denote constants depending
on given quantities (such as X,K,Ko,n,...) only, and its

value is allowed to change within an estimate.

In the following we assume for simplicity of exposition
that F grows like

(3.1) 3p? - k, < F(z,u,p) <Kp? + K

o A,K >0, K 20,

o’ (0]

which can be weakened using the well-known embedding theo-

rems (cp. [13], p. 74 - 78). Then in the defining relation
o

(1.2) we are allowed to insert testfunctions ¢ € W;(D) n

whenever the Q-minimum u € W;’O(D) .

3.1

The first statement concerns an initial (low) amount of
time regularity implied by the property of the function u
being a Q-minimum. In particular, when inserting functions
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5 2 h . . e
like ¢ = (T “eXt1't2)e into (1.2), this proposition allows
us to pass to the limits €,h - O in the term IDu¢'dz 5
But it will also be useful for the partial regularity proofs

in section 6.

PROPOSITION 3.1. Let F satisfy (3.1) and u € W,'
a O-minimum. Then u € C([O,T]; LZ(Q)) .

(D) Dbe

Proof. From (1.2) we have
—JKu¢'dz < Q * E(u-¢,K) - E(u,K)
and also, replacing ¢ by -¢ ,
jKu¢'dz < Q * E(ut¢,K) - E(u,kK) .
Hence by (3.1),
| f.ue'dzl < cf, Ivul?dz + cf, 1vel2dz
K - K K !
i.e. for the distribution u' defined as <u',¢$>= -IDu¢'dz,
sup{I<u',¢>1|¢ € cg(o), JD|V¢|2 =1} <cC.

Extend by continuity to get u' € L2(O,T;W;1(Q)) 7
= o
W21(Q) being the dual of w;(g) . Therefore,
2 1 . 2 -1
u € {vlvewL (0,T;W,(2)), v' € L°(0,T;W, ())}
< c(lo,T1; L) ,
by Theorems 3.1 and 2.4 of [14].
QED.

As an immediate consequence we have

COROLLARY 3.2.

Minimal solutions are unique.

. = 1 -
Proof. By this we mean that, if u, u € WZ'O(D) are mini-
mal solutions (with same F of course) such that

T 01 ,0 — u —3 - u
u-u€ w2 (D) and u Ui O , then u u a.e. .
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- h .
In fact, place ¢ = ((u - u)ext1,t2)E into (1.2) ,
t1,t2 € (0,T) . Then, since Q =1,

F[u] dz < | Flu-¢ldz + [ u¢'dz

Isptd> spté spt¢

(Flu-¢1 - Flul)dz + Ispt¢ Fluldz + Ispt¢ u¢ 'dz

IA

Ispt¢

IA

Ispt¢ (Flu-¢] - Flul)dz + jspt¢ Flu+¢ldz

(u-u)¢'dz ,

+

Ispt¢

since also u satisfies (1.2). Here we used the shorthand
notation F[w] = F(x,w,Vw) . As € - O and h + O (more

precisely we always take some sequences By * o, hi + 0)

the first term on the r.h.s. vanishes, while the second

cancels with the left hand term. Therefore
- -1 g h '
ID(u w o ((u-u) Xt1,t2) dz < o(1) when ¢€,h > O .

Since by Prop. 3.1 both u,u € Cc([0,T]; LZ(Q)) we may pass
to the limits on the left also, to get for O < t1 < t2 < T

= 2 — 2
IQ(u(tz) = u(t2)) dx < JQ(u(t1) = u(t1)) dx .
Letting t1 + O we get the uniqueness assertion.

QED.

3.2

We proceed with some basic estimates. Varying an idea
of M . Struwe [15] we shall use a competing function in-
volving the weighted mean

Wl (t) = jBorz(x,t)uE(x,t)dx/fBoTz(X:t)dX
(= 0 outside sptt=Q),

where 1 1is a cut-off function for (Qp'Qc)' 0<K<p<Ko,
with the further property that

(3.2) sup t(x,t) < CfB T(x,t)dx , t € Ao .
X€BCr (]
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The corresponding weighted mean of the Q-minimum u is de-
noted by u'(t) . When compared with the simple mean
o]

up(t) = fB u(x,t)dx , it turns out that
P

(3.3) JB Iu—up(t)lzdx < IB Iu-u;(t)lzdx
p g

(since c¢ = uo(t) minimizes for t € A the integral

( o
IB lu(x,t) - c|2dx) , and
o

(3.4)  fg lu-ul(e)1%ax < cf lu-u (t) 1 2ax
ag g

(which follows from (3.2)).

Also, since IB (u(t) - uo(t))dx = 0 , the Sobolev-Poincaré
inequalities hoid, i.e. with 2t = g%% , if n > 3 , and

2¥ € (1,2)arbitrary, if n= 2,

IA

+ (2/72F
)

-2 2 2
(3.5) o fB lu(t) - u () %ax C(fBéVu(t)I dx

o]
and

(3.6) o %[, lu(t) - uO(t)lzdx < cfy IVu(t) | %ax .
a (e}

To get a preliminary estimate, with the notation above insert
into (1.2) the function

- 2 R ) > h
$(x,t) = (t7(x,t) (u_(x,t) u, (t))xo,t1)e’ t, € Ap :
(QO c D , therefore spt¢ « D for e,h small.)

As €,h » O , we observe that

Ispt(b (F[u]-Q'F[U-¢])dZ d
2 T
IQon{tSt1}@[u1-Q-F[u-r (u-uo(t))X[O’t1]])dz
= | Fluldz-Q -
Qon{t$t1}
2 r . T
I(QO\Qp)n{ts1;1}F[“’T (v-uy () 1dz- Q IQpn{tSt1}F[u0(t)]dz,

while
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- ' = - - T,€ 2 - T,€ h [}
IDu¢ dz ID(uE u ')t u, - u fT)x) tdz
_( . TrE 2 - 4Tr€y 0y
pYy (T (u€ u )x ) 'dz
__ 1 _nTrEy2, 2 h T,€ 2 ity h
== = jD(uE u )Tt tdz + [D(u0 ) 't (u -u " T) xTdz

m

(*)

It is easily checked that by Fubini's theorem the last
term vanishes (this is precisely the reason for introducing

the weighted mean), hence as ¢, h +~ O
1 2 2
(*) > 3 IBOT (x,t1)(u(x,t1) - u;(t1)) dx
- e S 1
IQ n{t<t,}luugl “trtdz .
o 1
Collecting the facts we arrive at the inequality

1 2 T 2

5 IQGT (£ (ulty) = u (ty)) “dx + IQUn{tst1}F[u]dz <
2 T

Q - I(Qo\Qp)n{tSt1}F[u_T (u—uo)]dz +

T . T
IQOn{tst1}|u-ucl tt' dz + Q IQpn{tst1}F[uo]dz .

Using that 1t is a cut-off function and passing to
sup we finally get on account of (3.1): for every
t1€A

P
O < p <o with Qo D,

sup IB Iu(t)-u;(t)lzdx + JQ |Vulzdz
p

t€Ap P
2 C T 2 n+2
(3.7) <c, J |IVul“dz + ——— [, lu-u_|“dz + CK o
0 Qo\Qp (c—p)2 9 o @
2 c 2 n+2
<c, J |Vul“dz + —— [ lu-u_(t)I“dz+CK_o
0 Qc\Qp (o-p)2 o o 0

where in the last step we used (3.4).
(3.7) is the starting inequality for the following two
obwervations.

PROPOSITION 3.2. (Caccioppoli inequality). A Q-minimum

u € W21'O(D) satisfies for every O < p < R such that

Q, = Q,(25) = Qp = Qplzy) =D,
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(3.8) g 1vul®az < —S— sup fo lu-u_(t) %z
P (R-p) c€lp,R] >o
n+2
+ CKOR 5

(Note that for fixed 2z, o - IQ Iu-uo(t)lzdz is continuous) .
o

PROPOSITION 3.3. (First Poincaré type inequality). For a

.. 1,0
Q-minimum u € Wz' (D) and every QR c D

(3.9 swp [y lu(t)-ul(v)i%ax s c {

qulzdz+K Rn+2} .
t€AR/2 R/2

J
Qp 0

where 1t 1is a cut-off function for

(Qp/298) -

Proofs. Prop. 3.2: By hole-filling in (3.7),

IQ Ivul2dz < % IQ Iu—uc(t)lzdz+CKoon
P (o-p) o

Now for fixed p and R, O < p < R, QR c D , iterate this

0 2 +2
S—— |Vul| “dz +
C . +1 J’Q

(0] o]

inequality taking the sequence

p; = (1=M)AT(R-p), i = 0,1,...

|
o
~
©

I

Po =
With A > O small enough this implies (3.8). (Compare [7],

Lemma 3.1, p. 161).

Proposition 3.3: Choose p = R/2, 0 = R in (3.7) and

estimate the second term of its r.h.s. using (3.6):

C 2 2
= [ lu-u_(t)1%dz < CJ . |Vul“ dz .
R2 QR R QR

This gives (3.9) .
QED.
As a corollary we obtain what is called a "reverse HOl-
der inequality with increasing domains", first introduced

as a local refinement of Gehrings's lemma [6] in [10] to
conclude LP-estimates.
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COROLLARY 3.4. (Giaquinta-Modica estimate). For every Qr

with Q4r <D,

+. 272"
(3.10) {Q |Vu|2dzsc:(fQ IVul? dz) + e}Q Ivul?az + CKg
r 4r 4r
2*  as defined in (3.5), and 0 € (0,1).
Proof. Take p = R/4, 0 = R/2 in (3.8), and let
9 € [R/4,R/2] Dbe such that
2 2
jQ lu-u_ (t)17dz = sup IQ lu-u_(t) 17dz .
9% 0 c€[R/4,R/2] >0
Then by (3.3), for 1t a cut-off function for (Q_ ,Q )
9 200
(satisfying (3.2)),
2 T 2
IQo lu uco(t)l dz < on lu HZUO(t)I dz .
(0] (0]
Hence (3.8) gives
{Q Ivul2dz < j% *Q Iu—u;0 (t)lzdz + C K,
R/4 R 9% o]
+ +
C 2 2 1-27/2 T 2 2 /2
<= f $o lu-u (t) 1%ax |u-u (t) | “ax dt
R2 Ao Bo 20O BZO 20O
(0} 0 (o}
+ C Ky and by (3.4),
+
1-2"/2
< S% (sup fB Iu-u;0 (t)Izdx) .
R teA o (0]
a 0}
(0]
, \2'/2
. }A ({B lu-u, - (t) | dx) at + C K,
) 200 [0}

which, using (3.9) and (3.5), is

+
1-27/2
o 2 2 2
S 5 (00 fQ [Vul “dz + Kooo)
R 20
o)
2* ot
. oS 4 |Vul dx dt + C K, .
A "0 TB ()
00 20'0
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Hence, since o, € [R/4,R/2] ,

0]

IVuIzdz + Ko
R

Ivul?dz < ¢ (f )1-2+/2

il Q

2+
- f QRIVul dz + C Ky .

Setting r = R/4 , (3.10) follows by Young's inequality.

QED
Next we state an LP-estimate for the spatial gradient of
a parabolic Q-minimum. Besides being of interest in its own
as an inherent property of Q-minima, estimates of this kind
have been used as a tool to prove partial HOlder regularity
results in elliptic and parabolic theory (e.g. [7],[11]).
We shall need it in section 6, too.

THEOREM 3.5. (LP-estimate) Let F satisfy (3.1) and

u € W;'O(D) be a Q-minimum. Then Vu € L (D) for some

loc
p > 2 , and

1/p 2 \1/2
(3.11) ({Q IVulpdz) < (}Q [Vul dz) + C K,
X 4r

holds for all Q4r cD.

Proof. Follows from the reverse HOlder inequality (3.10)
by direct application of the Giaquinta-Modica lemma [7],
Prop. 11, p. 122. Although formulated for Euclidian cubes,
the lemma clearly extends to parabolic ones, and therefore
applies to the case at hand, as has already been remarked

by Giaquinta & Struwe [11] in a similar situation.

3.3

Proposition 3.2 up to Theorem 3.5 carry over the case of
B-restricted Q-minima, once we assume that u € C([O,T];LZ(Q))
(which, in applications, can be shown by other means) and
that, in the limit €, h » O , the test function introduced
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at the beginning of subsection 3.2 lies in the W;’O(D)-
closure of B . This is true e.g. for the case mentioned

in Prop. 2.1 (b), since, if “u"m D= M , then
’

Hu—rz(u-u;(t))x[o't1]Hm’D

3.4

We close this section with another Poincaré type esti-
mate being one of the main ingredients of the partial regu-
larity proof for minimal solutions in section 6. Let us
point out, however, that this estimate already holds for
general Q-minima. The idea of its proof is taken from [15],
but is technically more involved caused by the need of a
suitable modification in the choice of testing function. For
Qr D set u_ = er u dz (an N-vector with constant com-

T
ponents) .

PROPOSITION 3.6. (Second Poincaré type estimate). Let

u € W;'O(Q) be a Q-minimum with F satisfying (3.1).

Then for all Qr with Q2r Db,

-2 2
(3.12) r IQ lu-u_|%dz <

r

qulzdz + C K rn+2 o

¢ IQ2r 0

Proof. 1) For fixed s € A2r\Ar set uzr(s) = }Bzru(x,s)dx

and let T = 1(xX) be a cut-off function for (Br’Bzr) , SO
that for some C. > O

o]
(3.13)  1vt1? s cy/x? .

. s _
Then define t_ € A, = A, N {t2s} by

IB Tzlu(t)—qu(s)lzdx .

2 24, =
Jg_ tTlultg)-u, (s)|17dx = sup .

2r t€As

2r
(By Proposition 3.1 such ts exists.)

Clearly, since t = u, minimizes the integral IQ Iu-clzdz g
r
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2 2

2 2
Jo lu-u_|dz <[ lu-u, _(s)l“dz<, | t°lu-u,_(s)|“dz
Qr r Qr 2r Ar B2r 2r

(3.14)

< r? sz Tzlu(ts)—qu(s)lzdx .
r

2) Insert into (1.2) the function

_ 2 h
d(x,t) = (t7(x) (ue(x,t)-qu(s))w(t))<s’ts)E 7

where the auxiliary function | 1is defined as

1

P(t) = ———— , t €A, = A, (t)) ,
8+ (t-t ) 45 =20
r
so that
(3.15)  ¥' (t) +;Y§¢2(t) =0 in A,

and moreover,
(3.16) 1/(8y) < (t) < 1/(4y) .
The constant Yy > O will be chosen in a moment.

As before, let us first discuss the terms appearing in (1.2)

seperately.

We check that
t +h

_JDu¢'dz = % % & IB 12(u€—u2r(s))2dxw(t)dt

2r

N —?

)=
5=

s
J IB T (ue—qu(s))zdxw(t)dt
s=h 2r

2 20 h
fDT (uE-qu(s)) ] (t)xs'tsdz

=

t=t
2 2 S
Jo téu(t)-u, _(s)) “y(t)dx
B2r 2r t=s
t

2 2
fs f t%(u~-u,_(s))“axy'(t) 4t ,
] B2r 2r

N =

N =
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as €, h»> 0.

Passing to the same limits in the other terms of (1.2) we
get
S spty (Flul-Q-Flu-¢1)dz

t
> Js IB (F[u]—Q-F[u-TZ(u—HZr(s))w(t)])dz
s 2r

which, using (3.1), (3.13), and (3.16), is estimated

t
> %[5y, 1Vul dz-2Kf,  1Vul®dz-4rof, 1vul®y?az

s 2r 2r 2r

t
- axQf5f, 1vt%1? (u-u,, () Paxy? (v at-c K r™*2
s 2r
2 -C (1 + ;%)IQ quIZdz-C Korn+2
Y 2r
16KQC t
0o s 2 2 2

- —— [7[; *%(u-u, (8))“@axp (t)dt .

r2 s BZr e

Hence,
1 2 2
3 IBer (u(tg)-u, (s)) "¥(ty)dx
< 3 Jp. Thuls)-uy () Py (s)yaxec(1+ <5 [ 1vul’dz
2r Y 2r
t 32KQC
+ CKorn+2 + % [ IB Tz(u—u2r(s))2dx{W'(t)-F———i—ng(t)}dt
S 2r r

Thus, choosing vy = 32 KQCo in the definition of ¢ , we
see that by (3.15) the last term vanishes, and for the
rest we conclude using (3.16) and (3.6),

2 2 2 2
Jo T9(ul(t )-u, (s))“dx < C r° | [Vu(x,s) | © ax
B2r ] 2r B2r

+
0 2

+ C IQz Ivul2az + ¢ K, 3
r
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3) With the last inequality we further estimate (3.14) ,

IQ Iu—urlzdz <c IB IVu(x,s)lzdx
r 2r
f Ivul?dz + ¢ K.x?H4 ;
Q,, 0

and averaging this w.r.t s € A2r\Ar delivers the esti-
mate (3.12).

QED

4. HOlder continuity of scalar Q-minima.

We now study the special case of scalar parabolic Q-mi-
nima, i.e. we take N =1 1in the following. The goal will
be to prove their membership in certain De Giorgi classes
(see below), from which, as is well-known, we can conclude
that scalar Q-minima are in fact H6lder continuous. For the
time-independent case Di Benedetto & Trudinger [4] have
shown that nonnegative functions lying in a De Giorgi class
satisfy a Harnack inequality. It seems likely that this
also holds for the time-dependent situation.

Since in the sequel we also want to cover the case of
parabolic equations (2.1) with natural growth (2.4), we

shall slightly generalize (1.2) to:

-jKucp'dz + E(u,K) < QE(u-¢,K)
(4.1)
+a fpvul? + o)l¢l dz, a 20,

where we assume (1.1) with g and vy satisfying
(4.2) ger’m) ,y-osqg= B2, 5 L
and

(4.3) ce1w’(p) , if a>o0 .

Setting for 1z, = (xo,to) €D and p, T >0 Qp,T =

Qp’T(ZO) = Bp(xo) x (to-r,to) , we shall prove
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THEOREM 4.1. Assume N =1, (1.1), (4.2), (4.3) and let
uevyOm =wy%m ncilo,rl; L?(2)) satisfy (4.1) for
all ¢ € C:(D) . If a>0 in (4.1) assume further that
u€L’md , lul <M.

Then there exist positive constants L and « depending

only on the structure conditions and, in case of L , on

the V;'O(D)-norm of u , such that every Qp . € D and
’

Oqr Og € (0,1) the following inequalities hold

max i | (u-k) *(£) 1 2axs) 5 1 (umk) * (£5-1) 1 %ax
t€[to-T,to] (1—01)p P

(4.4)
14

* q }

=2 *£,2
+ L - {(01p) IQ | (u=k) 1 “dz + !Ak,p,T

pP,T

and
max Ig |(u-k)*(t)|2dx+jQ|V(u-k)*|2dz
tE[to—(1-02)T,tO] (1-01)0 (1=04)p, (1=0,) 1
(4.5)
1+K
2 | (u-k) ¥ 2dz+ q
P,T
where k € R if a =0 in (4.1), while in case a > O

setting M* = sup * u, k respectively ranges between

. - _1 :
<L - {l(ogp) “+(o,T) 1IQ B0t r

4

QprT
MY - A sks<sut oor-M o sks<- - 4a) .
+ +
(Above, (u-k) = max(* u#¥k,0) and Ak,p,T = Qp’T n

{(u-k)¥ > 0} .)

Postponing the proof to the end of this section, we re-
mark that in case a =0 u € C([0O,T]; LZ(Q)) by Proposi-
tion 3.1; moreover, in the same way as in [4], one can
deduce from (4.5) that u is locally bounded. Denote

therefore M' = suplul for D' «c <D .
Dl
We notice further that (4.4) and (4.5) are the defining

inequalities for a function u € V (D) to be element of

a De Giorgi class. More precisely, adopting the notation

1,0
2

of [13], p. 110, we have in case a =0 ,
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u € BZ(D', M', L, q, », ) for all D' <« <D,
and in case a > 0 ,
A
u € BZ(D’ M, L, q, 3’ K)

As a direct consequence of Theorem 4.1 we therefore con-
clude from [13], Thm. 7.1, p. 120;

THEOREM 4.2. Under the conditions of Theorem 4.1 there

exists o € (0,1) depending only on the structural assump-
tions, the V;'O(D)-norm of u and, in case a >0 , on

M , such that \1€Cu(D;6) where
i 423

Mz,zo) = max{lx—x0|,|t-t denotes the parabolic

(6]

metric on D .

Proof of Theorem 4.1. By (4.1) and (1.1) we have for
b € Cg(D) , K = spt¢ ,

- jKu¢'dz + AJKIVuIZdz < uJKIV(u-¢)|2dz

(4.6)  + (14+Q) [, (blu=¢1" + blul’ + g)az

+

alg(1vul®+c)l¢ldz = I + II + III .

Taking k as described in the theorem the claim follows
by successively inserting into (4.6) the testfunctions
_ 2 i
¥ E AR Ry )
(more precisely, time regularizations of them, as done in
the preceding section).

For the verification of (4.4) ty is arbitrarily
fixed in (to-T,tO) while n = n(x) is a cut-off function
for the pair (Br,BR) where O < r < R < p . To prove
(4.5) we fix for 0 < s < S <1t and O0<r <R <=<op
t, € [to—s,tO] and let n = n(x,t) be a
for the pair (Qr,s’QR,S) .

cut-off function

Since the procedure is the same in all cases let us con-

centrate on the proof of the "+"-part of (4.4), leaving the
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other cases to the reader.

Then, with the conventions made, insert q>==n2(u—k)+x[t
into (4.6). We estimate the r.h.s. of (4.6), using (4.
and (4.3).

-T,t1]

—

2
J | (u-k) T1%az .
(R—r)2 Q

+,2
I <uQ JQR,T\Qr,tIV(u k) "1°dz +

R,T

+
Ak,R,T

1+k
q

’

1/0
1 < C(ID(IuIYO + |g|°)az)

where «k = q(gll - l) (q = 2(n+2)

as above
o q n b )

1+k
q

+
) A | ’

< c(lgl KR, T
’ 14

Iull
1,0
v,° (D)

by [13], Chap. II, § 3.

L’ (D)’

219 (u-x) *12 + c)az
. n{t$t1}

IIT < a 1ol o
A+
k,;R;
J4x
1/0 q
2 +,2 A o +
IQR,T n?1v -k ti2az + 4 (ch dz) Ay ol

<

>

Calculating the first term on the l.h.s. of (4.6) as usual
we obtain therefore, setting AT = [to—r,to]

T max [o 1(uk)te)1fax + 32 fo V(K *1%az <
1:6/\,r r YT

3 +,2 1 *o. .2
e (4x Jap o, 7R dz) + 3 Jp I ek T (egm) P

Tyt
ik
1 +, 2 + q
+ c, { f | (u-k) " 1%dz + |A ¥ oy

2 (R—r)z QR,T | k,R,Tl
with ¢, = 4nQ/(3X) and c depending on lul .

1 2 1,0

v, (D)

Adding on both sides ¢4 times the second term of the
l.h.s., followed by division through 1 + c; ("hole-
filling"), yields the inequality

——J——g b(p) + c(p)} + d(R) - a(r) ,

(R-r)

¢(r) < 89(R) + C {
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where we abbreviated o(r) = 2 |V(u-k)+|2dz, 8 = T+c

¥, T 1

o
>
—
0

1
blo) = fg I (u-k) Y128z, c(p) = [A;,p J9am =
PrT !

1 + 2
20T+0), IBRIu—k) (ty-1) “dx, and

I et 2
a(r) = 2(THe), igx JBr I (u-k) " (t) | “dx .
T

As in [7], Lemma 3.1, p. 161, iterating (4.7) with the
sequence of radii

T =Ts Tyeq = Ly = (1-e)et(R-x), ¢ € (VG,1) ,

we arrive at

k+1 .
o(r) < o¥o(ry +c (—RLL 4 o1 = (ee™H

B (R=-1) 2 (1-¢) 2 i=0

+ 1 @®) - a() .

As k » o we conclude (4.4) by choosing R = p and
r = (1-01)p . The same line of reasoning yields the
"-"-part of (4.4) as well as (4.5).

QED

5. Existence of minimal and B-minimal solutions.

In this section we assume that the integral

(5.1) E(wa) = [o F(x,ulx), Vu(X))dx
is a bounded functional on W Q) .

2n
n-2
Furthermore, let there be giben a closed, convex subset

C c W;(Q) , such that

This is true for example if (1.1) holds with y=2*=

(5.2) E is bounded from below and weakly lower semi-
continuous (w.l.s.c.) on C .
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Let us then seek for functions u : D +ZRN , belonging
to L2(0,T;C) and having a time derivative u' € L2(O,T;
w;1(n)) , such that

(5.3) <u'(t) ,¢> <E(u(t) - ¢,2) - E(u(t),Q)

o)
holds for a.e. t€[0,T] and every ¢ € By E{¢€IW£(Q)|
u(t) - ¢ € C} . The case C = w;(n) leads to minimal
solutions, while in general, setting

(5.4) B={¢ € CO(D)[¢(.,t) € B},

we obtain B-restricted minimal solutions (simply called
B-minimal solutions in the following). As examples for C
one may have in mind the intersection of W;(Q) with
either of the balls {lI Vul < C},{HUHzﬁQ < C , or

{hul_ o <c} .
’

2,0

In addition we impose the initial-boundary condition

(5.5) u_ = uo(x)

Yax{o} v 3a x (0,T) -~ Yo

where we assume that u, € C depends only on the space
variable, i.e. (5.3), (5.4) is viewed as determining a
deformation {u(.,t)}tZO of the initial state u, leaving
its boundary value fixed.

We shall show in the following that existence of B-mini-
mal solutions (5.3), (5.5) for all u, € C 1is equivalent
to the convexity of the functional E on C . In which
way this latter property effects the structure of the inte-
grand F seems to be a delicate problem. A partial answer
in the cases F = F(x,u) and F = F(x,p) can be found in
[5]. On the other hand, of course, the convexity of F in
both u and p implies that of the functional E . The
question therefore is whether such restrictive assumption
on F can be substantially weakened. That this should
indeed be possible is already indicated by the examples
examined in 5.2 which show that at least if C # W;(Q)
the convexity of the functional need not be related to a
convexity assumption on the integrand.
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5.1

To proceed with the details, define for given u, (2 (¢
o
the functional e : W;(Q) + R U {} as

E(uo + v,Q), if u, + v € C
(5.6) e(v) = e(v,uo)E

+ o , else

We then observe that (5.3), (5.5) can be equivalently
translated into: Find v € %;’O(D) such that

-v'(t) € 3e(v(t)) a.e. t € [0,T]
(5.7)

t=0 G

where je(w) = {qg € W;1(Q)[<q,w> < e(w+y) - e(w) for every
o
P € W;(Q)} denotes the subdifferential of e at w .

Finally, let e** be the bidual of e ,

e** (v)

sup {<q,v> - sup <<q,w> - e(w))} i
- [¢)
qew; ' (2) wew (@)

which, on the other hand, is nothing else but the greatest
convex l.s.c. lower bound of the functional e (cp. [5]).
Note also that, by (5.2), e** is bounded from below. With

this we can state

THEOREM 5.1. Let C be a closed convex subset of W;(Q)
and B be defined by (5.4). Assume (5.1), (5.2) for the
integral functional E(-,Q) .

o
(a): For u €C, e given by (5.6) let veWL(D) nW,"(D)

be the solution to

-v'(t) € de**(v(t)) a.e. t € [0,T]
(5.8)

V[t=0 =0 .

Then a B-minimal solution (5.3), (5.5) exists and is given

by u(x,t) = u (x) + v(x,t) if and only if

(5.9) e(v(t)) = e**(v(t))
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holds for every t € [0,T] .

(b) : A B-minimal solution (5.3), (5.5) exists for every
u, € C if and only if the functional E(-,Q) is convex

and l.s.c. on the set C .

Proof: (a): Since e** 1is convex l.s.c. and bounded from
below, and since the initial value O 1lies in the essen-
tial domain of e**,D(e**) = {w|e**(w) < =} , there exists

always a unique solution v of (5.8), satisfying

o)
v € W;(D) n W;’O(D) and the map t » e**(v(t))

(5.10) is absolutely continuous; moreover for O<s<t<T :
S fglvi1%az + ex*(v(t)) < e**(v(s))

(cp. e.g. Prop. 3.1 and Theorem 3.6 of Brézis' book [1]).
Hence, if (5.9) holds, v satisfies also (5.7), i.e.

u=u, +v is a B-minimal solution.

Conversely, if u € L%(0,T;C) satisfies (5.3), (5.5),
then v = u - u, solves (5.7). But this implies, as a
necessary condition for 23e(v(t)) to be a non-empty set,
that e(v(t)) = e**(v(t)) for a.e. t € [0,T] , thereby
also that 2de(v(t)) = 3e**(v(t)) (cp. [5], p. 21). Then
v € %;’O(D) solves (5.8). Moreover, v(t) € D(e**) for
a.e. t € [0,T] , which, in the same way as in Cor. 3.2,
yields uniqueness of v . Thus we can redefine v on a
measure zero set of [0,T] +to obtain (5.10) and from this
the continuity of e**(v(t)) , thence (5.9) holds for every
t € [0,T] .

(b): First assume E convex l.s.c. on C . Then for
ug € C also e 1is convex l.s.c., i.e. e = e** , so that
existence of u € L2(O,T;C) n W;(D) satisfying (5.3), (5.5)

follows from step 1 of (a).

o
To prove the converse, let uy € C and w € W;(Q) be

given such that wu, + w € C . Setting u_ = u, + w there

P o
exists by assumption Vv € W;'O(D) (actually € W;(D)) ,
solution of (5.7). By (a) we therefore have in particular

e(O,uO) = e**(O,uo) . Since, by definition of e and Uy s
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e(w,u1) = e(O,uO) ’
and also
e**(w,u.l) = sup {(qrw> - Sug (<q:w> - e(®1u1))}

-1 1
qew,  (Q) WEW, ()

= sup{<q,w> - sup <<q,w> - e(p + uy - uo,uo))}
q )

= sup{<q,w+u1-uo> = sup(<q,w> = e(w,uo))}
q ®

e**(0,uy) ,

we therefore obtain e(w,u1) = e**(w,u1) , i.e. for every
o

u, € C e(-,u1) is a convex l.s.c. functional on W;(Q) ¢

But then clearly, for ugr uq € C and o € [0,1] ,

E(au1 + (1-a)u Q) = e(a(u1 -ul), uo)

o’ o

e(a(u1-uo) + (1-a) -0, uo)

IA

a e(u1-uo, uy) + (1-a) e(0,u)

= o E(u1,9) + (1-a) E(uo,ﬂ) !

5.2

We want to apply part (b) of the last theorem to the
following two examples, each having a nonconvex integrand
F(u,p) in the definition of the corresponding energy inte-
gral E(u) . At the same time they illustrate how to
restrict the domain of definition of the energy functional
in order to fulfill the convexity requirement in Theorem
5:1s
Example 1. Take @ = R" , n2=23, N=1, and consider for
(mp)emxmn the function

(5.11)  F(u,p) = % p* = é% i ,

where 2* = éﬁ% is the Sobolev exponent coming from the em-

. o1 o 2% n -
bedding W2(:R ) « L (R") . Denote by Sn the quantity
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HVuﬂg

12) Sn = inf 3
91 _n, lul

u€W2CR ) 2%

(n.nq = L9®R™) -norm.)

is

(5.

We observe that, except for the set {(0,p)lp erR"} F
nowhere convex, and also that the functional

13)  E(w = 3 _ IValax - =% [ _lul

2 'R R

*
2 dx ,

[e)
though bounded on W;(Rn) , is neither bounded from below
nor w.l.s.c. .

o 2 %3
However, set C {u € W;(Rn)luuﬂz* < C* = %(——2—> ZH~2 }

Then we have

LEMMA 5.2. (a) E is convex and w.l.s.c. on C .

a

Ew) 2% quug , weEC.

Proof. (a) For the convexity we check that the derivative

dE:

is

we

1 =
W2(Rn) > W21(Rn) ,

* =
dE(u) = -Au - |u|2 2u ’

a monotone operator when restricted to C . Indeed, since

J n(lulz*-z u - 1?20 (@ - vyax
R
u(x)
d 2%-2
= J | 5= Isl ds(u - v)dx
r® w b ds
= (2%-1) [ _ lewr(1-0)vI?" % (u-v)%ax , (8=0(x) € (0,M) ,
R
< (2%=1) (hul gy + Ivl, ) 2" 2u-vi 2,

get with (5.12)

- 2 2%=2
<dE (u) -dE(v) ,u-v> 2 HV(u-v)Hz-(z*_1)(nuH2* + ﬂvﬂ2*>
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. nu-vug > HV(u—V)Hg 1 - 221 (qui

2*_2}
*= S 2%
n

+ Hvﬂz*)
>0, for u,v € C .

The weak lower semicontinuity on C follows in the stan-
dard way from the convexity and the Banach-Saks theorem.

(b) is obtained by direct computation using (5.12).
QED

Through application of Theorem 5.1 we are therefore
lead to the

COROLLARY 5.3. To every u_ € Wj(R") satisfying lu_l,,<C*
there is a unique u € W;(Rn x (0,T)) , such that

= *
u|t=0 Uy ﬂu(t)"z* < C* , and
1 2 1 2%
J o ou'(t)edx + 5 [ _IVu(t)“dx - 53 J _lu(t) | dx
Rn 2 mp 2 :mn
*
<< J 1Vt -0) 1%ax - o [ _lu(t)-ol % ax
R R
01 .
hold for a.e. t € [0,T] and every o € WZ(RP) with
flu(t) - cp[lz*sc* .

Moreover, once we can show the strict inequality
(5.14) Hu(t)ﬂz* < C*¥ a.e. t € [0,T]

then certainly for every ¢ € %;GRn) we find ho > 0 such
that lu(t)-hel,, < C* is valid whenever |hl < h . Using
the argument at the end of section 1 we therefore conclude
from (5.14) that u weakly solves

*—
u' - Au - Iul2 2u =0 on R" x (0,T)

u[t=O =u, .
asn

*
(5.14) holds e.g. if E(u)) < —2 C 2 , since by Lemma 5.2

(b) and the energy inequality in (5.10),

2 2
3 s lu(t) 15, < SIvu(e)ly, < E(u(t)) < E(u) .

91



WIESER

Example 2. (I wish to thank Prof. S. Hildebrandt for
pointing my attention to this example.) Here we take n = 2,
N =3 and let Q be the plane unit disk. For some real

constant H we then define F : ]R3 X IR2.3 - R as

1 2
F(u,p) = 5 p-p+ 3 Hu-(pyAapy)

P, AP, denoting the usual product of the 3-vectors

(p1, Py pi), i =1,2 . The corresponding energy

~ 1 2 .
(5.15) E (u) = 2 IQIVul 2ax + 3 H JQu (ux1 Auxz)dx
plays the central role in the variational formulation of
Plateau's problem for surfaces of constant mean curvature
H .

For given u, € W Q) n L@ , EH(u) is well-defined
on the space u, -+W (Q) n L7(Q) but again is neither boun-
ded from below nor w.l.s.c. there. However, making use of

an inequality due to Heinz (see [18], Lemma 3.3), namely

(5 .. 16) (E () +E (v)) >EH(U;V)+l4(1-2IHIR)JQ|V(u-V)lde ’
valid for all u,v € Vp = {w € w (@) 1lwl <R} such that
u-ve WZ(Q) , One can immedlately deduce

LEMMA 5.4. Choose R such that |HIR < 4 and let ug EV, .

2 R
Then E_ defined by (5.15) is convex and w.l.s.c. on the
set

01
CR(uo) = {u € VRIu -u, € Wz(ﬂ)} .

Moreover, for u € CR ’

1 2
Ey(u) 2 EIQIVuI dx .

Proof. The convexity follows from (5.16) since the last
summand is nonnegative, if u,v € CR . The lower semicon-
tinuity proof can be found in [18], Lemma 3.4. Finally,
the asserted lower bound is straightforwardly calculated,
using the inequality 2|ux1/\ux | < IVuI2 .

2 QED
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Thus, applying again Theorem 5.1, wo obtain

COROLLARY 5.5. If wuj € W;(Q) satisfies IHl“uOH“' < %
then there is a unique u € W;(D) such that

- 1
(5.17) ulQ x {0} U 3@ x (0,T) = Yo ’ [HIlTu(e)l < 3
and

(5.18) Jqu' () dx + Ey(u(t)) < Eg(u(t) - ©)

o
hold for a.e. t (0,T) and for every ¢ € W;(Q) with
<

IHllu(t) - w"m

€
1
2

Assume in addition that wu € c*(@) for some a € (0,1)

By well-known local existence theorems there exists a to>-0
and a function v : Q x [O,to] +ZR3 , smooth in the interior

and continuously attaining the initial-boundary value u, s

which satisfies the mean curvature flow system

(5.19) v' - Av + 2H vx1 A vx2 =0 on Q x (O,to] ]
Since IHlHuOHm < % , we may assume that IHI“v(t)“m <1
for t € [O,tO] (by taking t, small enough) . But then
2 2\"'
v v _ 2 .
A(T) (7> = |Vv|® + 2H Vv (vx1 Asz)

v

19vi2(1 - HIIv]) 20 ,

so the maximum principle implies that actually

[HIlv(e) I < % , i.e. the solution to (5.19) stays in the
convexity domain of the functional EH . Therefore also Vv
satisfies (5.18), and by uniqueness we have Vv(t) = u(t)
for t € [O,to] . Continuing this argument sucessively to
the intervals [t0,2t0] i [2t0,3to] etc. we have thus
proved:

THEOREM 5.6. If, in addition to the assumption of Corollary

5.5, u € c* (@) for some o € (0,1) , then besides (5.17)

and (5.18) u also solves

u' - Au + 2H u_ Au
®y %

O on D,
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i.e. u 1is a minimal solution for the mean curvature flow.

6. Partial regularity of minimal solutions.

For simplicity of exposition, we shall restrict the par-

tial regularity investigation to the quadratic case

n -
(6.1) F(x,u,p) = 1 Afu] - p + p = 1 = Aqg(x,u)plpJ

2 SR s | a® B

i, j=1
for which (3.1) is assumed to hold with KO = 0 , and where
the coefficients
B ; ’ af _ ,Ba

(6.2) Aij are uniformly continuous, and Aij = Aji .

We recall the definition of g-dimensional Hausdorff measure
Kg of a subset Q' « D w.r.t. the parabolic metric

1/2
I }

6(z,zo) = max{lx-xol,lt-to ’

T q .
HF(Q') = lim inf{ = (45U 9U vy > Qiag(Uy) < e},
>0+ i i
where the Ui's are open sets and ds(Ui) denote their
diameters w.r.t. the metric ¢ . Then Hausdorff dimension

of Q' is the infimum of the numbers g such that
* Q") + = .

Finally, let us write Ca(Qﬁé) for the space of (vec-
tor) functions being HGlder continuous on Q' with ex-
ponent o € (0,1) in the metric ¢§ . Then we can prove
for the case of quadratic F .

THEOREM 6.1. (Partial Holder regularity). For F of the
form (6.1) with coefficients satisfying (6.2) let

u € w;'o
Then u € Cc*(D\S;8) for every o € (0,1) , where S is

a closed set of Hausdorff dimension strictly less than n .

(Q) be a minimal solution.

THEOREM 6.2. (Partial H6lder regularity for Vu). In
addition to the assumptions of Theorem 6.1 let the coeffi-

cients Agg be uniformly HSlder continuous on @ x RN

with exponent B8 € (0,1) .
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Then, with some exponent <y > O possibly less than B, u

possesses HOlder continuous x-derivatives outside the
singular set S .

Let us compare these results for the quadratic case with
their analogues for weak solutions to the corresponding
variational flow system

; 3j k '3
(6.3) (ul)" -ia (A“iﬁ.(x,u) 3“—B>+%Ai§ e 3—“§ =0 .
X J 9X 'u 9xX 09X
First then, we have to assume that the coefficients Agg
1

are C in the variable u , together with a bound

sup 1
X € Q 3 Au(x,u) <a.

u GZRN
Then, in order to get the same conclusions as in the theo-
rems above, one has to impose the a priori smallness con-
dition

2 a ﬂuHLw( <A,

D)

relating the growth factor a , the ellipticity constant A
from (3.1) and the assumed L”-bound of u . This follows
from the paper of M . Giaquinta & M. Struwe [11]. Concer-
ning their analogue of our Theorem 6.2 they even get y=8,
but apart from this faxt the situation for minimal solutions
is definitely better, in that here we don't even have to
assume that u be bounded, which fits well with the results
for elliptic minimizers. On the other hand, as we have seen
in section 5, the conditions for a minimal solution of

(6.3) to exist are more restrictive than in the elliptic
case.

We also point out that both Theorems carry over to B-
restricted minimal solutions, once the results of section
3 are valid for them, cp. with the remark in 3.3. This
holds in particular for the second example in 5.2. There,
however, we can obtain full smoothness on account of the

special (diagonal) structure of the corresponding
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variational flow system.

6.1. preliminaries.

As in the case of general quasilinear systems, the main
idea of the partial regularity proof for a minimal solu-
tion u 1is to compare it locally in a neighborhood of a

point z, € D with the solution w of the linear system

with frozen coefficients A° = (Aig(xo,ur)) , where again
u, = er u dz and Qr(zo) cD,

-jQ wo'dz + IQ 2° . Vw - V¢dz =0 , V ¢ € ﬁé(or) .
(6.4) o o

wlZ = U|z '

r r

Zr = Zr(zo) being the parabolic boundary of Qr .1Lgt us
immediately check that (6.4) has a solution w € W2' (Qr) n
C([to - r2, to]; Lz(Br)) . Indeed, first solve for v the proble

-f . v¢'dz+ [ AC.-Vv.Vedz=-f_ u¢'da+ ). A%-Vu.Vedz
Qr Q 9 Qr '

(6.5) Vo € CO(Qr) , and

From the proof of Proposition 3.1 we have that <u',¢> =
o ue' dz, b € c (Q.) , extends to u' € w51’°( ) =
L2(A W, (B)) . So £.5.8. of 16,5 1ies in 21 O,
Wthh by llnear theory (e. [16]1, Theorem 41.1) ylelds
(@) n clltgr?,e 1 L2(B)
satisfying (6.5). Setting w = u - v we get solvability

g.
unique existence of v € W; ¥
of (6.4) in the same class. Note that, through the inter-
vention of Proposition 3.1 in the above argument, we have
crucially used that u , the initial-boundary value for w
in (6.4), is a Q—minimum Replacing u by an arbitrary
function g € W (Q ) n C([t 2 t 1; L (B )) it will in

generell not even be true that w € W;'O(Qr) ;

As the essential tools for the proofs of Theorems 6.1
and 6.2, we recall the Campanato estimates for w , [2] ,
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2 p\n+2 2
(6.6) JQ |Ywl“ dz < C(r) IQ |Vwl“dz ,
P r
. _ 2 /g>n+4 _ 2
(6.7) JQDIVw (Vw)pl dz < el IervW (Vw) 17dz ,
valid for every p € (O,r) ((VW)p = fQ Vw dz) .

P
Next we have

LEMMA 6.3. There is a constant C such that for any Q.<D
and w satisfying (6.4)

(6.8) lvwi?dz < cf . Ivul?dz .
Qr

JQr

Remark. Contrary to the situation in the elliptic case,
(6.8) is not a simple estimate resulting from linear theory.
(By the remark make above it is even false in general.)

Again we have to use that u is a Q-minimum.

Proof. The difference v = u - w satisfies (6.5), of which
the r.h.s. is estimated by use of (3.1) (for the quadratic

case) :

0
Jo B

© Vu - V¢dz - J, ue'dz < [y a°% . vu . v¢dz
r r r

+ g Alu-01:7(u-9) ¥ (u=9)dz - }f, Alu]-Vu-Tudz ,
thus, rearranging,

o}
-f . vé'dz + [ A" - Vv.Védz <
Qr Qr

6.9) J . a%.vu-.vedz - [. Alu-¢] - Vu - Vodz
Qr Qr
+ %JQrA[u-¢]-V¢-V¢4-%[Qr(A[u—¢]—A[u])-Vu-Vudz .
: . h
Insert in particular ¢ = (Vexto+0'r2,t _0)E « n , where

0 > 0 is chosen arbitrarily small (so that the time compo-
nent of the spt ¢ lies in Ar) and the number n > 0O will
be fixed in the course of the estimate. Then divide (6.9)

by n .

As €, h, 0 - 0 , we infer that on account of (3.1)
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1 2 2
7IBrV (ty)dx + AjervVl dz < 2 K IQrIVuIleldz

+mn ¢

N =R

fo 1vvi?az + k/n |, Ivul?az ,
r r

whence, by Young's inequality and choosing n small enough,
2 2
JQ IVvl©dz < C JQ |Vul “dz ,
r r
which clearly implies (6.8).

QED.

We conclude the preliminaries with

LEMMA 6.4. There exist gq > 2 and constants C and k
such that for every Qr = Qr(zo) with ri c D for the

solution w of (6.4) we have

(6.10) [, Ivwi%dz <

r
Proof. In the following we write Qé = Qp(z') , when in
general z' # zg -
1) Since also w is a minimal solution (satisfying (1.2)
with F replaced by %Ao + p e+ p) we have according to (3.10):

: ]
for every 05 with Q4p < Q.

+ e}Qa lvwi?dz ,
p

where 6 > O can be made as small as we please.

22t
2 ( 2t
fQ.lel dz < C, \{szlel dz)

This implies for v

2
+6 }Qa IVv]“©dz
P

IA

u-w,
2 2t 2/2+
fQ.lvVl dz < Cj {Q, |Vv]

(6.11) P 4o

+ C fQ. Ivul2dz .
4p
Our aim is to achieve a similar inequality without the

restriction Qap c Qr , in order to apply the Giagquinta-
Modica lemma as done for the proof of Theorem 3.5.

2) First take z' = (x',t') € Ir(zo) and let T be a cut-
off function for (Qé,Qép) . Similarly to the proof of
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Lemma 6.3, insert into (6.9)

_ .2 _h
g & (% vext*+0,t'-o)e n

(n, o >0 small, t* = max{to-rz, t'—(2p)2}) , which

vanishes on Zr(zo) since, in particular, v|y =0 .

r
Again dividing the resulting inequality (6.9) by n , this
yields after passage to zero with €, h and o

%IB Tz(t')vz(t')dx + IQ 280 . yv - vv az
r

r

2

vitt'dz + IQ a°
r

< JQ « Vu - V(Tzv)dz
r

IQ A[u—nrzv] « Vu - V(tzv)dz
r

#nc g fg Alumnt?vl - v(e?v) v(t?v)az

2
r
+ ok If (A[u-nTZV] - Afu]) * Vu - Vu dz
2n “Q
- jQ AO « Vv - VT2 - v dz ,

o
which, by obvious manipulations using (3.1) and Young's
inequality, implies

A IQé t?1vul2az < S0 fgr V% dz + c/n JQé Ivul? dz
p o 2p p
+n -5 s t21vvl? az ,
2p

where we have extended v = O outside Qr(zo) o

Put the last term to the left by choosing n small
enough. Then dividing the inequality by IQépI and again

using that vlzr n Q3 = 0O we get by the Sobolev-Poincaré
inequality (valid for wv)
2 2 272" 2
(6.12) fQ |vvl“dz < C (fQ, Vv dz) + C fQ. [Vul“dz
P 2p 2p
where, we recall, z' was assumed to lie on Zr . (Note
that (6.12) is trivial if t' = ty - r? , since then v =0

in Qp )
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3) We are left with the cases that either Qé c Qr but
1 L] .
Q4p¢Qr , or that Qp nQr*¢ , but z' ¢Qr .
These, however can be handled by simple covering arguments
using (6.12).

In fact, as to the first case, let =z € Xr(zo) minimize
the distance of Zr(zo) to the point z' . Then clearly
v — ' 2 '
Q Qp(Z ) Qsp(z) c Q14p(z ) , hence from (6.12)

fQ. Ivvl2az < C fQ ~ IVvIzdz
o) 5

(z)
¢ ot P 2/2+ 5 2
<C ( ~ v dz) + C ~.Vul “dz
Q1Op(2) .\ Q1op(2)
+ 2/2
<cC (1Q. 19v]2 dz) + €} IVul?dz .
14p 14p

The other case is treated in the same way.

4) In conclusion, choosing some ball U < D such that
Q14r c U , we get from (6.11), (6.12), and last inequality:
] 2 1
for every Qp with Q14p cU .
+ )2/2

fQ lvvi?az < C( 1vvi? dz

+ 8§ 1vv|2dz
P kp

T
Qkp
+ }Q. Ivul?dz, 8 € (0,1) ,

kp
where k = 14 , which perhaps is not optimal, but suffices,
for our purpose).

Applying the Giaquinta-Modica lemma as in the proof of
Theorem 3.5, and specializing to Qé = Qr(zo) , this yields
for some q € (2,p] (p from Theorem 3.5),

(fQ IVqudz>1/q < (}Q

1/2 1/q
IVvlzdz) +C (fQ IVulqdz)
r kr

r

2 1/2 1/q
C (4. IVul“dz +C (4 Ivul9dz , by Lemma 6.3
Q Q
r kr

IA

IA

4 1/q
c (fQ IVqudz) ,
kr
and thereby (6.10).

QED.
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6.2. Proof of Theorem 6.1.

The principle of proof is the same as in [11], except
that we have to prepare the steps differently.

Basically, one has to produce an open set Q' < D such
that to every z, € Q' Dbelongs a neighbourhood U(zo) in
which for some R > O and all p € (O,R) there holds

20,

(6.13) o IQ (A |Vu|2dz <Cop » 2 € U(zg) ,
P

z)

where ao € (0,1) 1is arbitrary and C as well as R may
depend on o and Zg -
Then by Proposition 3.6 we get

~ 2 20

which? for some possibly smaller neighbourhood ﬁ(zo) , im-
plies u € Ca(ﬁ(zo);d) , and hence u € Ca(Q';ﬁ) , on
account of Campanato's integral characterization of HOlder
continuous functions (in the refined version for general
metrics of Da Prato [3]).

Secondly, as will be seen in the course of proving (6.13),
for the closed set S = D\Q' we have the inclusion

(6.14) s < {z, € p|Tim & (M27P)
R>O+

with p > 2 as in Theorem 3.5.

S IvulPaz > o}
Qp(z4)

As is known (e.g. from [7], Theorem 2.2, p. 101), the
(n+2-p)-dimensional Hausdorff measure of the latter set
vanishes, hence also

(6.15) ¥™*27P (5) =0 .
To verify (6.13) and (6.14) we proceed in three steps.

1) For arbitrary =z, € D choose r > O such that

(0}
Q4kr = Q4kr(zo) cD, k as in Lemma 6.4. Let w be the
solution of the corresponding linear system (6.4) (defined

on Qr). Writing u = w+(u-w) we get from (6.6) and (6.8)
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for every p € (O,r)

(6.16) [, Ivul®az < c(%)“*z fo 17ul?az + ¢ [ 19 (u-w) 1%az
o r :

2) To estimate the second summand observe that, setting

. _ _ h
for brevity ¢y, = ((u W)axt0+c—r2,to—0)e (o,h,e > 0) ,

r

A IQ 19 (u-w) %dz < IQ a% . v(u-w) - V(u-w)dz - 2 IQ wo/dz
r r r

-2 fQ 2% . vw - V((u-w) - ¢y )dz = (*) ,
r

where intermediately we used (6.4). Noting that the last
term is o(1) as ¢€,h,0 - O , and smuggling in some terms,
we get further,

(*) = -2 [ wordz + o(1) + J_ (AC-Alul) -V (utw) -V (u-w)dz
Q. 'h Qr
+ IQr(A[u]-Vu-Vu-A[u-¢h]-V(u—¢h)-V(u-¢h))dz
- IQ Alul- (Vu+Vw - Yw+Vu) dz
r
+ er(A[u-¢h]-V(u—¢h)-V(u—¢h)-A[u]an'Vw)dz .

Thanks to u being a minimal solution, the forth term is
less than ZIQru¢ﬁdz which, added to the first term, gives
a negative contribution (in the limit €, h, o » O0). Since
by symmetry of A , (6.2), the fifth term vanishes also,
passing to zero with €, h, o we are left with

x Iq 1V (u-w) [%dz < Ty 12%-a[ull 1vul2az
r r

+ fq 12%-A[ullIvwl?dz + fo 1ALW] - Alulll9wl2az .
r r

The further estimation goes by routine arguments using
Theorem 3.5, Proposition 3.6, and Lemma 6.3 and 6.4. Namely,
since by (6.2) A is uniformly continuous, for every (x,v),

(X,v) € 0 x RY we have
~ o~ ~ 2 ~ 2
l1A(x,v) - A(x,vV)] < o(lx=-x|", |lv=-vl®) ,

where w(s,t) > 0 is a bounded continuous function,
w(0,0) = 0 , which we may assume concave in t and in-

creasing in both variables. Hence from the last inequality,
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2 2,2 2
IerV(u w)l“dz < C IQrw(r »lu-u_1%) 1Vul“dz

+cC {m(rz,lu—u I2) + m(O,Iu-wlZ}IVulzdz
Qr r

I+ II .

Now, with g > 2 from Lemma 6.4,
_ (g-2) /q 2/9
I<cC rn+2(§ 0(r?, lu-u |2)q/(q 2) g $. Ivul9az
Q. r Q..

which by the boundeness of ® , Jensen's inequality, and
(3.11), is

IA

2 _ 2 (g-2)/q 2
C w(r ,er|u u | “dz) IQ4r|Vu| dz

<C m(rz, cr® IQ I\7u|2dz)(q—2)/q JQ Ivul%dz .
r 4r
by Proposition 3.6. By the same reasoning,

1T <c ™2 [m(rz,fQ Iu-url2 dz)(q_z)/q-ﬂn(o,}Q
r

: (erlelqdz)z/

n+2[

Iu—wlzdz(q_z)/q]
r

IA

¢ r w(r?, c ™ I Ivul2dz) (4-2)/q
Q2r

2/
+ w(0,c ™ |V(u-w)|2dz)(q'2)/q] . (f ququz)
Qr Qr

(by Proposition 3.6, the Poincaré inequality for u - w ,

and Lemma 6.4),

<cw(x? ¢ 1vul2az) (4-2)/a Jo 1vul2az

"
Qor 4kr

(by Lemma 6.3 and Theorem 3.5).

3) Insert the last two estimates into (6.16). Then, setting
R = 4kr

J K [(E e ( V| S Ivul2d
Vul®dz < C ) + y(z,,R ] Vu z .

Q, (2g) R 0 0 (2)

where p € (O,R/(4k)) and

Ivul2dz) (472)/q

2 -n
¥v(z5,R) = w(R", CR "~ |
o QR(zo)
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Since trivially the last inequality also holds for
p € [R/(4k) ,R] we have, setting o(z.,p) = p °f IVul%dz:
0 Qp(zo)

For every R > O with QR(zo) D and all t € (0,1) ,

-(n+2)

(6.17)  ©(zg,T R) < C 7°(1+t ¥(zg/R)) @(zg,R) .

Note that w(zo,R) is small when w(zo,R) is. Now the
conclusion of (6.13) from (6.17) is a standard procedure
which we repeat for the reader's convenience (compare [7]).
Given o € (0,1) , take Tt~ € (0,1) such that 2 C.t 2-20_

O 1°0

Then choose R and some small €0 > 0 in such a way that

1.

(6.18) w(zo,R) < g

and

n+2

V(zguR) (= w(R%, C olzg,R)) (T72/d) ¢ ¢ P¥2

Then from (6.17),

w(zo,TOR) < téam(zo,R) < €g

n+2

hence also w(zo,ToR) < 14 .

Therefore we obtain by induction

w(zo,th) < rgkaw(zo.R) » K EN ,

which easily implies for arbitrary p € (O,R) ,

w(zolp) <cC pza '

where C = = (n+2a) p=2a

€00
By continuity of w(zo,R) w.r.t. Zq € D, if (6.18) holds
then also ¢(z,R) < €0 for all z in some neighbourhood

U(zo) of 2q and repeating the arguments we conclude

20

¢(z,p) £C p for all z € U(z

O) ’
thereby proving (6.13).
Hence, in view of the remarks made at the beginning of

the proof, the set Q' where u is HOlder continuous is
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open and clearly contains the set

— 2
{z, € Q|Tim R ™ | [Vul “dz
° | RO+ Qg (20)

i.e. for the complement S = D\Q' ,

o} ,

€ D|Tim R * |
R+0 Qg (2)

Thus the LP-estimate (3.11) yields (6.14), which concludes
the proof.

S c {z IVulzdz > 0} .

(]

QED.

6.3. Proof of Theorem 6.2.

As in [11], this is more or less a by-product of the
preceding proof. Again let Q' < D be the regular set,
and let Q" < € Q' be an arbitrary compactly contained
subdomain. Then for zg € Q" and Q4kr = Q4kr(zo) c Q"
and o € (0,1) we have from the proof of Theorem 6.1
(k as in Lemma 6.4),

20,

(6.19) Ivul2dz < ¢ 2% ,

-n
: JQ4kr
where C depends now on o and dist (Q", 3 Q') but not
on zy . Let w be the solution of (6.4) in Qr(zo) . This
time using (6.7), compare u with w to obtain for

p € (O,r)

2 n+4 2
prIVu—(Vu)pI dz < C (%) IQIIVu-(Vu)rl dz
+ C | IV(u—w)Izdz
Q

n+4 2
£ € (%) JQrIVu-(Vu)r| dz +
cutr?, cxr™ f, Ivul2az) (372 /4 {5 Ivul?dz ,
2r 4kr

by step 2 of the last proof (gq > 2) ,
= (*)

By the CB assumption on the coefficients Azg '
w(s,t) < (sB+t8) , which together with (6.19) gives
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n+4 g-2
(*) < C (9) [ 1Vu-(Vu) _|%az + ¢ e (2+8557)
r Qr r
; g-2
Choosing a close enough to 1 so that o(2+B 5 ) > 2, we
obtain

2 I 2 2 2y
jQDIVu—(Vu)pI dz < C (r) jQrIVu-(Vu)rl az + c r2¥
where 2y = a(2+69§g) -2>0 .

By [7], Lemma 2.1, p. 86, we conclude that

2y
IQ qu—(Vu)plzdz <cC (%) JQ qu-(Vu)rlzdz + szY '
p r

which implies Vu € cY(Q";8) for every Q" c = Q' , and
hence Vu € CY(Q';6) .

QED.

(We were not yet able to conclude from the boundedness of
Vu (on every Q") that of Vw also, by which one could
get that actually vy = B.)
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