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CONVERGENCE RATES FOR INTERMEDIATE PROBLEMS *
Christopher Beattie and W. M. Greenlee

Convergence rate estimates are derived for a variant of Aronszajn-type
intermediate problems that is both computationally feasible and known to be
convergent for problems with nontrivial essential spectrum. Implementation
of these derived bounds is discussed in general and illustrated on differential
eigenvalue problems. Convergence rates are derived for the commonly used
method of simple truncation.

1. INTRODUCTION. The method of intermediate problems of Weinstein and
Aronszajn provides a systematic way of generating improvable lower bounds

to eigenvalues of self-adjoint operators. In a previous paper [6], we considered

conditions sufficient to guarantee the convergence of these estimates for vari-
ations of the intermediate problem technique applied in settings that include
nontrivial essential spectrum and relatively unbounded perturbations. Such
settings occur in a great many quantum mechanical eigenvalue problems, for
example. In this paper, we approach the related question of how fast this
convergence can occur as a function of problem size.

Convergence rates for intermediate problems were first derived by Wein-
berger [21] for intermediate problems of constraint (Weinstein) type for a
particular choice of approximating vectors. Somewhat later Fix [11], Birkhoff
and Fix (8], and Poznyak 18, 19] obtained rate of convergence results for vari-
ants of Aronszajn’s method with bounded or relatively bounded base operator
perturbations.

In this paper we derive convergence rate estimates for a particular variant
of Aronszajn’s method known variously as “truncation including the remain-
der” [5, 6], or as “Aronszajn’s method with a truncated base problem” (14].
This is the only method of Aronszajn type known to be both computationally

* The work of the first author was partially supported by AFOSR Grant
84-0326. The work of the second author was partially supported by NSF
Grant MCS-8301402
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feasible and convergent for problems with nontrivial essential spectra. The
constructions involved with truncation including the remainder inevitably re-
sult in perturbations off the base operator that are not relatively bounded
whenever the operator itself is unbounded, hence the previously known rate
estimates are not applicable. It is useful to point out additionally that since
Aronszajn’s method with a truncated base problem is dominated by Aron-
szajn’s method without truncation [4], we simultaneously obtain convergence
rates for other variants of Aronszajn’s method as well.

In Section 2, we review the main constructions and convergence results
for intermediate problems of Aronszajn type incorporating truncation includ-
ing the remainder. Criteria for exactness of estimates are introduced that
directly motivate the convergence rate results. In Section 3, we derive con-
vergence rate results under the hypothesis of boundedness for the operator
of interest. We extend these results to the unbounded case in Section 4, and
to the computationally practical case of simple truncation in Section 5. Fi-
nally in Section 6, we present a technique for implementing the convergence
rate estimates that have been derived, and illustrate through applications to

differential eigenvalue problems.

2. THE APPROXIMATION METHOD. The method we focus on is a vari-
ant of the original Aronszajn method of intermediate problems that was intro-
duced in [4] and analyzed independently in [5] and [14] and in the later joint
work [6]. The notation used here is adopted directly from [14].

Let ¥ be a separable complex Hilbert space with norm || « | and inner
product (u,v). Let A be a self-adjoint operator on a domain D(A) dense in X.
We suppose that A is bounded below with spectrum that begins with isolated
eigenvalues of finite multiplicity,

A1(4) < A2(4) < --- < Ao(4),

and corresponding orthonormal eigenvectors uy, uz,---. Here Aoo(A) denotes
the lowest limit point of the spectrum of A. If A has compact resolvent, then
by convention we set Aoo(A) = co. The closure of the quadratic form (Au,u)
is denoted by a(u).

To apply the method of intermediate problems, we require knowledge of
another closed quadratic form, ao(u), satisfying ao(u) < a(u) for all u € D(a).
Specifically, we require that the spectral problem for the self-adjoint operator

Ao corresponding to ao is solved explicitly and that the spectrum of Ao also
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begins with isolated eigenvalues of finite multiplicity,
A1(40) < Az(A4o0) < -+ < Aoo(4o),

with corresponding orthonormal eigenvectors u§, u3,---. The second mono-
tonicity theorem implies that Aoo(Ao) < Aoo(A), and furthermore, for each ¢
such that A;(A) < Aoo(Ao), it is true that A;(Ao) exists and A;(4o) < Ai(A).
Without loss of generality, we may assume that the difference between ag and
a is strictly positive, that is

P

a(v) = a(u) — ao(u) 2 o || u |7,

for some a > 0 and all v € D(a).
Now, pick a real parameter 4 such that A;(Ao) < v < Awo(Ag), with

7 < Aco(Ao) if Ap has an infinity of eigenvalues below Ao(Ao). Define the
truncation of Ap at ~, as

(2.1) A" = AoEy-[Ao] + (I — E-[40))

where E [Ao] is the right continuous resolution of the identity for Ag. Observe
that Ag’) has the same action as Ap on the finite dimensional subspace,

U3 = R(E,-[Ao]) = E,-[Ao] - X,

and acts as scalar multiplication by « on vectors in (UJ)L. The corresponding

quadratic form, a.((f), may be used to define a second positive form,

a(u) = a(u) — a§ (u) > a(u) > o[ u |2

One may easily observe that D(é@) = D(a), @ is a closed quadratic form,
and the corresponding self-adjoint operator is given by A=A- A(()'Y) on
D(A) = D(A).

The method of approximation to be considered is simply Aronszajn’s
method with the truncated base operator Ag’), instead of the original base
operator, Ao (cf. [4, 14]). The method proceeds by selecting a set of trial
vectors {pi}2; C D(A) and defining for each n,

n

(22) Pnu = Z (u,A-Pi)biijy

Hj=1

where [b;;] is the matrix inverse to [(p;,fipj)]?’j=1. It is an easy exercise to
verify that P, is the projection onto P, = span;=1,... n{p:i} that is orthogonal
with respect to the inner product induced by a.
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For each n, we define the intermediate form
ap(u) = a(()") (u) + @(Ppu) for u € D(a,) =X
with the corresponding self-adjoint operator
An = AL 4+ AP,.

Since the subspaces {P,} are nested and increasing with n, it follows from

Bessel’s inequality in the Hilbert space induced by &, that for all v € D(a),
ag”(u) < an(u) < apy1(u) < a(u).

For each 7 such that A;(A) < v, the second monotonicity principle then pro-
vides

Xi(Ao) = Xi(A87) < -+ < Xi(Ang1) < -+ < Ai(A).

Thus the intermediate operators, {A,}, have eigenvalues that provide improv-
ing lower bounds to the eigenvalues of A as the index n is increased. For a
discussion of methods to explictly compute intermediate operator eigenvalues
see [3] or [24].

The first criteria for the convergence of Aronszajn’s method were given
by Aronszajn in 1951 [1] and later proved by Bazley and Fox in 1961 (2] for
the case that both A and Ao have compact resolvent and A is a relatively
bounded perturbation of Ag. The general case allowing for the existence of
essential spectra and unbounded perturbations was considered in detail in [5,

6, 9, 14]. We summarize the situation for our setting in the following theorem.

Theorem 2.1. If the set of vectors {p;}°, is dense in D(A) with respect to
the norm || Au || then lim A;(A,) = Ai(A) for each ¢ satisfying Xi(A) < 7,
n—oo
and liminf X\;(A,) > ~ for each i satisfying A;(A) > ~.
n—o0

One would expect that a particular choice of approximating vectors,
{p:}1_, exists that leads to exact estimates, i.e., A;(An) = Xi(4) for a finite
index n.

Theorem 2.2. Suppose the convergence criteria of Theorem 2.1 are satisfied.
Define U7 = R(E.,-[A]). If, for all n sufficiently large,

(2.3) R(P,) = P D U7,
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then for sufficiently large n, X\;(An) = Xi(A) for each ¢ such that X;(A)
< .

Proof. Define U) = R(Ej-[Ay]) and let I be the largest index for which
A1(A) < 4. Pick € such that 0 < € < v — A1(A). By Theorem 2.1, there
exists a sufficiently large index N such that n > N implies A;(A,) > v — € for
t>I+1. Thusforn > N,dim U~ ¢ =1.

Now pick v € U7~ ¢ and observe that by hypothesis, (2.3) holds for n > M,
for some M > 0. Hence for n > maz(N, M),

Apv = Aé")v + APnv = A(()")v + Av = Av,
implying that A, and A have the same action on U7~ ¢ and that
Ai(A4R) = Xi(4)
fori=1,..,1

Corollary. If the convergence criteria of Theorem 2.1 hold and for all n

sufficiently large,
(2.4) R(P}) = AP, D span{U",UJ},

then for sufficiently large n, A\;(An) = Xi(A) for each ¢ such that X;(A) < ~.

Proof. Observe first that P: = AP,A~1. Now if v € U7, then Av €
span{U7,UJ}. So for sufficiently large n

P Av = Av

implying that

P,v=v

for all v € U7. Thus (2.3) holds.g

We are able to derive convergence rates by gauging the distance between
an eigenvalue estimate X;(A,) and an exact eigenvalue X;(A), in terms of
a notion of separation between the approximating subspaces, AP,, and the
“exact” subspaces, suggested by the Corollary to Theorem 2.2. The notion of
distance between subspaces that we use we refer to as the containment gap,

and is related to the usual notion of gap between subspaces [16].
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Definition 2.3. Let M and N be two closed subspaces of ¥ with dimN >
0. The containment gap between M and N is defined as

I—
(M) = E o ”(”% = (IT-Q)P |,

where @ is the orthogonal projection onto M and P is the orthogonal projection

onto N.

Observe that 6 (M) is not symmetric in N and M (unlike the gap of [16])
and that 6y (M) =0 if and only if M D N.

3. CONVERGENCE RATES FOR BOUNDED A. We use the truncation of
A at ~, defined as

A = AE,-[A] + (I - B, [4]),
in order to introduce an auxiliary self-adjoint operator
Ay = A + Py(AD — ()P,

where P, is defined as in (2.2). Observe that the quadratic form, a!,, corre-
sponding to A/, satisfies

@ (u) = af” (u) + ™ (Pau) — af" (Pau)
< al" (1) + a(Pat) — al” (Patt) = an(u).

Thus the second monotonicity principle gives
Ai(47) < Xi(4n) < Xi(4) = 1i(4M)

for all 7 such that A;(4) < 7.

The importance of such a construction lies essentially in the fact that
Al — Agﬁ is compact. Now, if A is bounded, @ generates the topology of X,
so that under the convergence criteria of Theorem 2.1, P, — I and P, — I,
both in the strong operator topology. These observations are sufficient to
conclude that 4!, — A uniformly, implying in turn that

A,'(A:l) — Xi(4) and )\,'(An) — Xi(A)

as n — oo (cf. [14]). We refine these estimates here in order to derive conver-
gence rates for A;(A,) which in turn imply convergence rates for A;(4,). For
brevity, we refer to A;(Ao) as A? and X;(A) as A; in what follows.
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We proceed by decomposing A},

(3.1) A' = E, + By,
with
!
Enu = Zk(Az - 7)[("” ug)ug - (uy P,:uz)P,:uZ],
and
n i R
Bnu = Zk(’\k — ¥){u, Pyug) Pyug + yu.

The single primed sum denotes that the summation is carried out over all k
for which )\2 < ~ and the double primed sum denotes that the summation is
carried out over all k for which Ax < «. Since P; — I strongly, it is evident
from (3.1) that E, — 0 and B, — A("), both uniformly, as n — co (assuming

the convergence criteria of Theorem 2.1).
Lemma 3.1. We have
I Bn |I< (v = A3)er6m (APn)

where M = UJ and a; is independent of n.

Proof. From (3.1) we have
!
| En |l = e 1> O =N, uf = PruR)ug + (u, Prud) (uf — Prud)] |

< (=203 Prul ) [ ud - Prud |l -

Since P, is a-symmetric for each n, and a is bounded, we have the uni-
form bound || P} ||=|| Pn ||< &, where £ is the condition number of A!/2,
k =|| A2 |||| A=1/2 ||. We then obtain

— pP*
I Enll< (v~ ’\?)IO(I + k) sup M—nu’u’
omey Tl

where Ip is the number of terms in the primed sum. Let @, be the orthogonal
projection onto R(P;) = AP,. Then

| (I=Pull=ll (I=Pa)(I —Qn)u < (1+£) [ (I-Qn)ul,
and so

I_ n
| En |I< (v — AN Io(1+ k)? sup ——~———“ (7~ @n)u | 1
0#uelUy KAl
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In a similar way we may obtain an estimate of the closeness of B, to

A,
Lemma 3.2. We have
| Ba— A [|< (v = A1) e2bx [AP]
where N = U7 and a; is independent of n.
Proof. Simply write
"
Bpu— AMy = Zk(’\k = ), Pouk) Pyuk — (u, ur)uk]
n
= Zk(/\k — ) [{w, Pyuk — uk) Pruk + (u,ur)(Pruk — uk)].
Hence,
n
I Bau— ADu|| <3 10k = llll w lll Piuk = uk || (1+ || Prus )]

and
n
| Bn— AT < (v= )1 +4)D o | Prwe —uk || -

As in Lemma 3.1 we proceed to find

1Ba— A < (y= AT +5)? sup LT =Gnlull
0£ucUT Il |l

where I is the number of terms in the double primed sum.g

It is easy to combine the estimates of Lemmas 3.1 and 3.2 to obtain error

estimates.

Theorem 3.3. If a is bounded then for each i such that \;(A4) < v, we have
the estimates

INi(A) = Xi(An)| < (7 = A arbu(APn) + (v = A1) azén (AP)

for M =UJ and N = U".

Proof. Since \;(A%) < Ai(An) < Ai(A) we have

Mi(4) = Ad(An)] < M(4) — Ai(4L)]
<|IAL = AD | < | Eq || + || Ba— a1
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4. EXTENSION TO UNBOUNDED A. A number of technical difficulties
arise for the estimates of Theorem 3.3 when A is unbounded. To begin with,
A is then unbounded as well and so, it could happen that P, fails to converge
strongly to I so that {P,} may not be uniformly bounded. The preceding

arguments then fail to produce necessarily finite constants for a; and a3 in
our estimates.

We are able to bypass these difficulties by using the device of [14] in
introducing the auxiliary operator

A= AW 4,

where u is chosen sufficiently large so that the corresponding quadratic form
satisfies a(u) > (%) Il  ||?, with « as in Section 2. See [14] for a proof that
such a p necessarily exists. We have then

o™ (u) = o (u) + &(u),

and we apply Aronszajn’s method to this decomposition of a(#) in the following
way.

Given the approximating vectors {p;}?2,, generate {f;}2, by p: =
zi—lfip,' for each i = 1,2,---. Define projections onto P, = spani=y,... n{Pi}
by

n ~
Pou= Y (u,Ap)bi;p;
1,7=1
where [l;.-,-] is the matrix inverse to [(ﬁ;,zﬁj)]. Observe that P, is an orthogonal
projection with respect to the inner product induced by Z.(u). Furthermore,
for each n, R(I — Py) - KerP, = KerP, = R(I — P,,), where KerP, denotes
the kernel of P,, and 11}3,, = .‘iPn. Define intermediate operators

A" = AV + AP,
Our construction implies that A;(A::) < Xi(Ar) < Xi(A) for each ¢ such that

Ai(4) < 4. In fact since P, is orthogonal with respect to fz(u, v), we have for
u € D(a),

The desired generalization of Theorem 3.3 comes directly now.
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Theorem 4.1. For each i such that \;(A) <y we have
IX:(4) = Ai(An)| < (v = A erdm(APn) + (v = M) azbu (APn),
where M = UJ and N = U".

Proof. The bounded case has been considered in Section 3. Suppose A is
unbounded. We first construct A and {A”} as specified above and observe that
it is sufficient to estimate |A;(A(#)) — X;(A")|. Since A(*) and A are bounded,
Theorem 3.3 implies

IX(AW) — X (A1) < (7 = A rbu(AB) + (v — A1) azbu(ABy).
The conclusion follows, since by construction f:iﬁ,. = fiPn.l

5. SIMPLE TRUNCATION. Following the constructions of Section 2, sup-
pose that the operator A has the decomposition

A= Ao+ A,

where A is a positive symmetric operator. In particular, D(A) C D(Ao). We
select vectors {p;}¢2, C D(A) and define

n
Rpu = Z (u,Ap,')b.‘jpj,
i,7=1
where [b;;] is the matrix inverse to [(p;,ﬁpj)]. Pick an integer v so that
A%,1 > A0 and let AY represent the truncation of Ao at A%, ;. Define a

doubly indexed family of intermediate operators by
AY = AY + AR,.

This differs from the intermediate operators we formed in section 2 in that
we omit the truncation remainder Ag — Ay from A. Hence the projections
R,, here are independent of v, whereas in section 2, P, did depend on the
truncation point.

The notion of the spectral truncation of an operator was originally devel-
oped in order to reduce the Weinstein-Aronszajn perturbation determinant to
a rational function in finite form (cf. 2, 22]). This idea forms the basis of a
number of numerical schemes for computing tight lower bounds to operator
eigenvalues (cf [3, 23]), and was shown to be convergent in [2] for operators

without essential spectra when A is bounded relative to Ao.
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Defining A” = AY + A, we have from Theorem 4.1 the following lemma.
Lemma 5.1. For each 1 such that A\;(A) < A0, ; we have
(A7) = (A7) < (AD41 = A esbu[ARn]
+ (AD41 = Ar)azbu (AR
where M = Uf and N = R(E,-[A¥]) witht =)0, ,, and R, = R, - H.
In order to obtain a rate estimate on |A;(A4) — X;(A%)], it remains only to

estimate |A;(A) — X;(A¥)|. Without loss of generality we assume that A and
Ao are positive definite.

Lemma 5.2. For each i such that X;(4) < A%, ,,

[A:(4))?

Pi(4) = M(4)| < as i i,

where a3 is independent of v.

Proof. Evidently,
[1/X:(4) —1/7:(4%)| < [|A™ = (A") 71|

Since D(A) C D(Ao),
A—AY C A — Af
and
AY[ATY — (AY) YA C AY[A5! - (AY)"Y Ao,

where C indicates that the operator on the right extends that on the left.
Thus we have

AT - (A%)7 = (A7) 71454 - (45) Ao

Since R(A™!) = D(A) C D(Ao), AoA™! is bounded. A bound on the term
(A¥)~1A¥ may be obtained by first writing

(A7) 7145 = (4)7V2((4%) 72 (A5) /7 AE) 2

Now, || (A¥)~2||< || (45)~Y2|| = 1/(A9)/2. The bracketed expression is
bounded by 1 uniformly in v since A§ < A”. Finally, || (45)Y/?|| = (A\041)"/2.
Thus,

-y -1 < A2+1 i ATl (Au)—l ”” AnA~! ” = asg
”A - (A ) ” = T(; ” 0 0 0 (A2+1)1/2’

219



Beattie-Greenlee
where a3 =|| AgA~! || /(A9)/2. We may conclude that

Xi(A)Xi(AY)[1/Xi(4) — 1/X0:(4Y)| < aa%%%‘j

As 2
|A:(A4%) — Xi(4)] < aa%‘%—z"

Lemmas 5.1 and 5.2 may now be combined. The following theorem proves
convergence of simple truncation, and estimates the rate of convergence, if also

Ap has compact inverse.
Theorem 5.3. For each 1 such that X\;(4) < 9,,,

IXi(A4) — M(AD)] < (7= X)) 16m[ARn]
[A:(4))?

+ (’Y — )\l)aZJN[A}Z,.] =+ aaw

were M = Ul and N = R(E,-[A¥] with 7 = )0 ,.

6. APPLICATIONS. In order to apply the preceding estimates to differential
eigenvalue problems, we first introduce a convenient means of dominating
|| ¥ — Qnu || in terms of the spectral projections of an auxiliary operator B.
Now Q@ is the orthogonal projection in ¥ onto R(P.), thus if the elements
{px} are chosen so that the vectors {Apy} are orthonormal in X,

n

Qnu = Z(u,jipk)lipk, ueX.
k=1

Then the vectors py are orthonormal in the Hilbert space D(A) provided with
the norm || Au I, v € D(A), and the orthogonal projection, Qn, in this space
onto span{pi,---,pn} is given by

n
Quu = Z(Au,Apk)pk, u € D(A).
k=1

Thus for u € X,

6= Qu = A(E~u = Y (A(A), Ape)pe)
k=1

= A(I - Qn)A u.
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Now let B be a positive definite self adjoint operator in ¥ such that
D(B) € D(A) and || Au ||< 8| Bu ||, 8 > 0, for all u € D(B). Further
suppose that the vectors px have been chosen to be eigenvectors of B and
let Q. be the orthogonal projection in ¥ onto span{pi,---,pn}. Then B
commutes with Q,, and for any u € ¥ such that A='u € D(B),

w—Qnull =AU - Qn)A  ul|
= | A(I = Qn)I - Qn)A™'u]|
< A - Qn)A™u|
<BIB(I-Qn)A  u]
<B |- Qn)BA  u].

So assume that B~! is compact and let
O0<py<pp <+ <pg-- /oo

be the eigenvalues of B enumerated as usual according to multiplicity, with
corresponding eigenvectors {px } orthonormal in ¥. Let w = A~y and assume
that w € D(B7) with 7 > 1. Then

(o]

I (I-Qn)Buw|*= Y uilips,w)*
k=n+1
=%
= Y WlBp,Bw)
k=n+1
oo
= > ui ¥ |(px,BTw)[?
k=n+1
[
<127 Y |(pr, B0
k=n+1
— o) s now,

where o is the usual Landau symbol. Thus if 7 > 1 and A~'u € D(B"),
(6.1) (I - Qu)BA  u|| = o(kl3}) as n— oo,
To implement this estimate first note that

A= (A=) + Y (1= 2w udud.
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In particular, A is a finite rank perturbation of A — 4. We may also assume
that -« is not an eigenvalue of A, without loss of generality. Then the following
formula expresses A~! in terms of (A —~)~!: for u € X,

Alu=(A-9)"lu

’
= 2, (s (A=) T ud)y = AV 2ei (v = A VA (A )M,

where / now denotes summation over all indices 7, j such that A? and A} are

both less than «, and [c;;] is the matrix inverse to
(65 + (v = A V2 (v = A) V3w, (A — ) ud)].

Herein 6;; is the Kronecker symbol.
Hence we see that if for all A; and A7 less than ~, both u; and (A=)
are in D(B7) with 7 > 1, (6.1) and Theorem 4.1 imply that

Xi(4) = Xi(4n)| = 0(rq3]) as n— oo

Theorem 5.3 also yields a corresponding estimate in the case of simple trun-
cation.

As an example, let ( be a bounded domain in R2, ¥ = L%(Q1) and, for
u € H} () — the closure of C§°(0) in the Sobolev space H!(f2) — let,

a(u) = /;z(|grad u|? + qlu|?)dz,

where ¢ is a smooth non-negative function on 1. We further assume that Q
is locally similar by C1! homeomorphsisms to a convex domain so that the
regularity results of Kadlec [15] imply that D(4) = H?(Q) N H}(?). Note
that this means

Au=—-Au+gqu in 1, v=0 on 910,

where A is the Laplace operator. Let
ao(u) = / lgrad u|?dz, u € Hy(Q),
a

ie.,
Aou=—Au in 0, vu=0 on 90,
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and further assume that Q2 is such that the eigenvalue problem for Aq is
explicitly solvable. To implement the estimate (6.1), let B = Ao so that
pr = u) and px = A2. Then

Bu; = Aou; = A\juj — quj € H*(Q) n HE(Q),
and so
Adu; = (Aj — ¢)%u; + (Aq)u; + 2 grad ¢ - grad u; € H'(Q),
so that u; € D(B”) = D(AY) for all r < 9/4 (cf. [12]). In addition,
Ao(A—7)7Mu§ = uf + (v~ q)(4 - )" 'uf € H*(Q) n Hy (),

and
AS(A =)l = (A + v — q)ud + (Ag) (4 — ) u?

]
+2 grad ¢ - grad((4 — v) " 'u))

+(1—9)*(4-")""uj € H'(Q),
so that (A — )~ 'u? € D(Ag) for all 7 < 9/4. Thus since A3 ~ (constant) n
as n — oo (cf. [10]), (6.1) and Theorem 4.1 imply that

[Ai(A) = Ai(An)|=0(n"") as n— oo forall 7<5/4.

If also grad ¢ = 0 on 99, then A3u; and A3(A —~)~'u{ are in H}(0) so that
uj and (A — )" u] are in D(AS/?). Hence
IAi(4) = Ai(4n)] = 0(n"%?) as n — co.

If, in addition, 89 is smooth, then AJu; and A3(A —~)~'u? are also smooth

on Q (cf. [17]) so that u; and (A —7)~'uf are in D(A7) for all 7 < 13/4. In

this case,
[A:(4) = Xi(An)| =0o(n™” as n— oo forall 7<9/4.

More rapid rates of convergence now follow from further special conditions on
q near 9f1.

As a second example we estimate the rate of convergence in a differen-
tial problem with non-trivial continuous spectrum—the first such estimate of
which we are aware. We consider an eigenvalue problem for the radial equa-

tion of quantum mechanics at zero angular momentum. As potential we take
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a “potential well” function, ¢, which is smooth on [0,00) with ¢(0) < 0 and
such that:

(6.2) g is strictly increasing on [0, z1] to a positive maximum at z,;

(6.3) ¢ is decreasing on [z1,00) with ¢(z), ¢'(z), ¢"(z), and ¢"'(z) tending to
zero as r — oo; and

(6.4) g€ L%(0,00).

Hypotheses (6.2) and (6.3) can readily be relaxed, but are consistent with
typical potential well considerations, and ease the exposition.
Now for u € H}(0,00), let

a(u) = /ooo(lu’lz + glu[?)dz.

Then with ¥ = L%(0,00), D(A) = H%(0,00) N H}(0,00), and the eigenvalue
problem for A means,

—u”+qu=2Xu on (0,00), u(0)=0, ue€ L?*0,oc0).

We assume that the potential well is “deep enough” that A has at least one
negative eigenvalue.

An explicitly solvable lower bound problem is obtained from
—u”"+gu=2>xu on (0,00), u(0)=0, ue€ L*0,00),
with go the “square well” potential:

_J4q(0)+~, 0L z< o,
%(z) = {’7, z > zo.

Herein zo is the unique zero of g, i.e., g(zo) = 0, and v < 0 is great enough
that all negative eigenvalues of A are less than 4. The negative number ~
will, as previously, be our truncation point—and has been added to the usual
square well potential so that &(u), and therefore @(u), are positive definite.

This eigenvalue problem is obtained from the quadratic form,
(o]
ao(u) = / (|w'|? + go|u|?)dz, u € H}(0,00),
0

and D(Ao) = D(A) = H?(0,00) N HL(0,0).
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To implement the estimate (6.1), let B be the harmonic oscillator
operator with Dirichlet boundary condition at zero, i.e.,

d? 2
B=-gm %

with D(B) = H2(0,00)NH{}(0,00)ND(z?). As usual, D(z%) = {u € L%(0,00):
J3 z*u?(z)dz < co}. Then B is self-adjoint on D(B) (cf. [20]), and pr =
4k — 1. Now since u; € H}(0,00) it follows from (6.3), (6.4), and (7] that

uj(z)| = O(exp[—|};|"/*z

(6.5) _ (1/2|/\j|1/2) /0’ q(v)dy + o(1)]) as z — oo.

Thus an application of the Cauchy-Schwartz inequality to 1-¢(y) in the integral
in (6.5) establishes that u; decays exponentially as £ — oo. The analogous
estimate holds for u?. Now the differential equation

—¢" =+ (Q(z) - 7)11) = 0, TE (Oa OO),
has solutions ¥; and v, satisfying,
¥1(z) = exp[|n|"/? + (1/2]7]'/?) /0 q(v)dy + o(1)] as z— oo,

and,

P2 (z) = exp[—|y|/ %z — (1/2[~|"/?) / q(y)dy + o(1)] as z — oo
0

(cf. [7]). Use of 1 and %, to construct the Green’s function for A — « estab-
lishes that

l[(A =) ""uf)(2)| = Ofexpl(e — AF|*/*)z]) as =z — oo,

where € > 0 is arbitrarily small.
It now follows by the methods of the preceding example and the
identity,

L e =- [ A=l

= /w(l +q(y) — 7)uf(y)dy,
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that B%u; € H'(0,00) N D(z?), and that B?(4 —~)~'u$ € H"(0,00) N D(z?)
for all 7 < 1/2. Thus by [13], both u; and (A —~v)~'u? are in D(BT) for all
7 < 9/4. Hence (6.1) and Theorem 4.1 imply that

[Xi(4) — Ai(4n)|=0o(n77) as n— oo forall 7<5/4.
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