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REAL SPECTRA OF COMPLETE LOCAL RINGS

M.E.Alonso (1)
C.Andradas (1)

We show that : (a) closures of a constructible sub_
sets of real spectrum (Spec.A) of comnlete noetherian
local ring A with formally real residue field R are con
structible.

(b) The connected components of constructible subsets of
Spec A are constructible if and only if R has finitely
many ordernigs We define also "semialgebroid" subsets
and we obtain for them similar properties to those of semi_
analytic germs subsets.

1. INTRODUCTION.

The pursuit of this paper is to study the real spectrum of
a complete local noetherian ring A (specrA), whose residue field
R has "some hypothesis of reality". Namely, our main results are:

a) If R is formally real, the closure of a constructible
subset of SpecrA is constructible

b) If R has only finitely many orderings, every construct
ible subset of SpecrA has a finite number of connect
ed comoonents, which are also constructible.

(see 3.3, 3.5, 3.16).

() Partially supported by the C.A.I.C.Y.T no. 2280/83
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In the case A is a polynomial ring over a real closed
field or the ring of a real analytic series, analogous results are
well known (see [1], [3] and [6], [8]) and our method to prove
(a) and (b) gives an alternative way to get them. Indeed in
the quoted papers the results are obtained , (as far as we know)
from the corresponding geometric ones for semialgebraic and semi
analytic germ sets respectively. Here we work backwards: we keep
ourselves in the real spectrum, we work out a "saucissonage" there
(see 2.5) and at the end we drop the geometric results from the
algebraic ones, 2.9 , 4.6 , 4.7,

The paper is organized as follows : in section 2 follow
ing closely Coste's "saucissonage", ([1] , theorem 2.3.1), we state
a kind of "abstract version" for real spectra which allows us to
study the behaviour of some topological notions in the real spectrum
under finitely generated extensions (see 2.7). In Section 3 we prove
the main results. €laims a) and b) before are easily reduced to
the case A = R[[xl,,.g,xn]]= F,- Roughly, the proofs of them run
by studying the relationship between Spechn_l[Xn] and Spec,, Fn
For b) we need to introduce a "constructible notjon" of path-con
nectedness.

Finally in Section 4 we introduce the semialgebroid sets,
which can be regarded as the "geometric support" of constructible
sets of Specr Fn s (R real closed field), in the same way that
semialgebraic sets and semianalytic germs are the geometric support
of constructible subsets of the real spectrum of finitely generated
R-algebras or the ring of real analytic series. Then we get the
basic properties of semialgebroid subsets, namely ; their closures
are constructible too, they have a finite number of connected-semi_
algebroid components and these are again semialgebroid and we get
also a finiteness theorem (see 4.7).
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2. ABSTRACT "SAUCISSONAGE".

We start by recalling some basic facts about real spectra
and setting some notations (see [1] chap, VII and [3] ).

(2.1) Let A be a commutative ring with identity and let Spec A
stand for its real spectrum. Given ¢ € SpecrA » supp o. denotes

the support of o , i,e. o N - q 3 % the ordering induced by ©

in the quotient field of A/supp o and K(q) its real closure

with respect to <o . We set my for the cannonical map my : A+ K(a)
and we write ma(f) = f(a) , for any f e A. Also we define
{f>0}:ﬂaeSmgAHm)>0} s and {f > 0}, V(f) := {f=0}

have thus the obvious meaning. The sets

r
D = i f. > 0}
f;s---sfr i=1 { 1
are a basis for a topology in SpecrA called Harrison Topology.
We shall always consider the real spectrum with this topology.

(2.2)  For asB € SpecrA we write B+o if B ca, that is, B

is a generization of o or o is a specialization of g. If 8 + a,
then I := supp o/supp B 1is a prime convex ideal of the ring
(A/suppB) € k(B) . Thus , the convex hull of (A/supp B)I in k(B)
is a convex valuation ring of k(B) , which we denote by Vg. Then
vg is henselian and its residue field, which we call k(a)* , is
real closed. Moreover , k(a)* {is an archimedean ordered extension
of k(a) , and the associated place AE: k(B) -~ k(a)* 1is order pre_
serving.

(2.3) We recall that a subset X ¢ Spec A s constructible iff
there is a sentence with parameters in A, wx(ax,...,an) such
that

X = {a € SpeCrA J k(a) = wx(al(a),---> an(a))

Constructible subsets of SpecrA are the open and closed
sets of the constructible topology which is compact and finer than
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Harrison's topology. As a consequence a constructible subset is
closed (rep. open) iff it is stable under specialization (resp.
generization).

(2.4) Let T be an indeterminate and consider
p : Spec, A[T]> Spec A ,

the natural map. Then, p {s open an onto ([3], 6.3). Given

f(T) e A[T], B e SpecrA[T] and o= p(8) , we shall write f(g) for
. (F(T)) = f(T)(B) , and f*(T) for the canonical image of f(T)
1?1 K(a)FT]'via Fhe map.na[T]: A[T] > k(a)[T] . Since the fiber

p "(a) is identified with Specrk(a)[T], ([3], 4.3), for any

g € p'l(a) using the notation above we have: f*(g) = f(g).

Finally let X c SpecrA be a constructible subset. A
semialgebraic section over X is a sectionof p, g : X+SpecrA[T]
such that £(X) 1is constructible. In particular, for g € X ,
g(g) = p'l(s) n g(X) is a constructible subset of
p™1(8) = Spec, k(g)[T]. Therefore k(g(p)) = k(8) and &(g)
is uniquely determined by the image T(g(g)) of T in k(g) .

In the following we will identify freely £(g) with T(g(g)).

A continuous semialgebraic function over X is a semialgebraic
section over X which verifies the following continuity condition
due to Schwartz [12]: for o, 8 € X with B+a we have
T(e(g)) e Vg and AS(T(g(B)))= T(g(a)) (or in short, making use
of the identification just mentioned Ag(E(B)) = £(a)). See also
[4] for equivalent definitions.

Now , we state a "saucissonage" in the abstract setting
of real spectra following closely the version that annears in [1]
Chap. II.

LEMMA 2.5. Let fi,....f € A[T] be a family of polynomials stable
under derivation . Then there is a partition Sl,‘..,sm of
SpecrA into constructible sets, and for every i=1,...,m
continuous semialgebraic functions €51 < vve < 51]1 5

E5 ° S; » SpecrA[T] such that :
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(1) For every o € S; » gil(u) seees gi]'(a) is the set
of roots of the non-zero polynomials Among

fHT) e o FHT) € k(a)(T]-

(2) For each k=1 ,...,5s , the sign of fﬁ(T) at
t e Kla) , o €S; , depends only on the signs of
t - E;il(d.) ,-..,t - g_i-li (a) 5

Proof.~  Every but the continuity of the gij's follows at once
from theorem 2.3,1 of [1] and the remark (2.3) above.

Now fix i. We prove that EjpreoEiy S, » SpecrA[T]
are continuous. Let a,B € Si’ B+a. Since {fl,...,fs} js stable
under derivation, each gij(“) (3 =1,...,15) s a simple root
in k(o) of some fR(T) e k(a)[T]. Let Vg and A8 be as in (2.2),
and notice that fB (T) e Vg[T] and AS(fmj(T)) = f%j(T) , for
j=1 ""’]i . Since VS is henselian, it follows that there
exist t; e V& k(g) such that f§ (t;)=0 j=1,...,1; and
Ag(tj) = Eij(“) . Since AE is order preserving we have t1<...<t]i.
Therefore, from part (1) we have gij(s) =t.,j=1,...,1: , and

J 1
we are done.

REMARK 2.6 With the notations of the lemma, we define the following
subsets of Spec  A[T]:

I“(IEI]')={B € p-l(si)lT(B) = E."J(D(B))} for i=1,...,8, j=1’""]‘i'

and

{2

(=5 € 0715915, 5(p(8))<T(B)<E; 541 (P(B))in K(B) 2K(P(8))3

for i=1,...,8 5 J =0,...,1i

where we set Ei,o = - and
it

Clearly these sets forma partition of p-l(Si). The sets
F$§) will be called graphs, while the sets rgg) will be refered
to as slices.

For any i € {1,...,s} and any choice of sign ?k(with [
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equal to >, <, =) , we define the constructible subsets

M =08 € p71(5;) | £,(T) (R) 2, 0, k=1,...,s }, which also build

a partition of p'l(Si). On the other hand, condition (2) of 2,5
implies that each fk takes the same sign (positive, negative or
zero) on Fg!) for all i,j and 1. Hence, every ri} coincide
with some M , so they are constructible. Moreover the ryj- are
open because they are stable under generization. Hence p : r(?)--si

is open and surjective for any 1 and j.

Throughout this paper we will use the notation of Remark
1.6 and we will refer to (si,(gij)) as a "saucissonage" of the
family {fl,..,,fs}.

As in the geometrical case, lemma 2.5 allows us to study
the behaviour of certain topological notions under finitely gener_
ated extensions as our next result shows. We point out first that
since constructible sets are compact in the constructible topology
(see (2.3)), if they have a finite number of connected components
(in Harrison's topology), then each of them must be constructible.

THEOREM 2.7. Let A be a ring.

(i) If every constructible subset of SpecrA has a finite
number of connected components (hence constructible),
the same holds for every constructible subset of SpecrA[T].

(i) If the closure of every constructible subset of SpecrA
is again constructible, the same holds for every construc
tible subset of SpecrA[T] described by monic polynomials.

Proof.- (i) Let C(:SpecrA[T] be constructible and Tet {f;,...,f}
be a set of polynomials describing C and their derivatives. We
apply lemma 2.5 to have a "saucissonage" (Si.(gij)) of {fy,..0nfgl.
By our hypothesis, up to a new partition of S%s we may assume that
they are connected. Moreover, after remark (2.6), C is union of
some Fg})'s, so it 1s enough to prove that the r1} 's are con_
nected. We consider the case 1=2 , since case 1=1 1is obvious.
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By (2.6), p : ng) + S; s open and surjective; moreover, for
every o €S; , p'l(a) {‘ng) is connected (it is an "open interval"

in Spec k(a)[T]). Hence the rgg)'s are connected,

(1) Let C, {f,...,f} and (S;.(E45)) be as above .
Where now the fi's are assumed to be monics.- Again after (2.6)
and with the notation there, it is enough to prove that every

FE}} is constructible.

But, take
{1 tg € p7I(S ) [£(T)(8)2,0 » k=1,... .5}
ij i k ‘k ’ PRI
with ? equal to >, <, =, (see (2.6)) and Tet us set
V=8 ep(S) fFUTIB) 7 0, k=1,u.0u8)

with 3k equal to > , <, = respectively . Notice that.by our
hypothesis on SpecrA Y s constructible. We write for simplic_
ity ' , S and £ for F%}) s S5 gij (i.e. either T is the
graph of £ or a slice bordered by & , see (2.6)). Obviously we
have f‘c Y , and we want to prove the equality. Let Bp € Y and
set ap = p(By) € S . By Thom's lemma , ([1], Prop 2.5.4) ,
p'l(ao) NnY is either a single point (namely B,) or a closed

interval, which is the closure of p'l(ao) fy T

Assume first we are in the second case. Since the fLs
are monic the fé’o's do not vanish identically, and so, the ?
are strict inequalities (> or <) . Consequently there exists

By > Bo » s.t. p{B;) =ap » Bf s an ordering in k(op)[T]
and ft°(s;)?k0 for all k=1,...,5. Now, take o; € S , a1 > ap
and denote by A : k(a;) + k(ag)*, » the place associated to this
specialization, (2.2). Since k(ao)* is an ordered extension of
k(ag)s the ordering defined by B) 1in k(ag)(T) extends to an
ordering in K(ag)*(T) which we still denote by g{ . Now, et

A k(o1 )(T) » k(ag)*(T) be an extension of A with MT) =T
(see [2]), and let g, be an ordering in k (oy)(T) , compatible
with X . We still denote by g1 the point in Specrk(al)[T] defined
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by R,. So, we have B, » g;' » B,. Since by our assumntion
fz°(T) #0 for every k and (f:l(T)) = fﬁ“(T) , we get:

sgn of ft‘(T) in (k(a;)(T),g,) =

sgn of £,°(0) in  (k(ao)(T).8})

(for al1 k). Hence, f:’(el)?k 0 and so g, eT .

Finally suppose p'l(au)f“ Y =8, . So k(By) = kla,).
We take og€ S , a; > apand consider ¢'1(a1)f\ Y. We have (see 2,6)

Elay) € plln)nT = p'l(al)(\ Y by Thom's lemma. In particular
E(o,) € T . On the other hand all roots of all fil(T) go via

A ¢ k(ay) > klog)*s © to roots of ft°(T). Hence, we can extend

£ to oq by setting £(ag) = A(£(ay)). Thus, since 7 is order
preserving we have E£(a;) ~ £(og). Hence £(a,) € n'l(ao)r1 Y = g,-
It follows that By = £(ap) € {£(a))} < r ,and 2.7 is proved.

COROLLARY 2.8. Let A be a ring such that every constructible
subset of SpecrA has a finite number of connected comno_
nents.ThenSpecrA[T] is Tocally connected.

Proof.- Let o € SpecrA[T] » and take an open neighbourhood
basis of o of constructible subsets. Let D be one of these
neighbourhoods. Then D has a finite number of connected compo
nents. Let D' be the connected componet of D with o€ D'.
Then D' 1is an open neighbourhood of o, since D' is open in
D. Obviously the family of these D' forms an open neighbourhood
basis of a .

COROLLARY 2.9. Let A be a finitely generated R-algebra , R a
formally real field. Then the closure of a constructible
subset of SpecrA is constructible. Moreover if R has only
finitely many orderings every constructible subset of SpecrA
has a finite number of connected components.
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Proof. We may assume A be a polynomial ring over PR, say in n
indeterminates. Then the proof is done by induction on n by using
2:7

3. REAL SPECTRA OF COMPLETE LOCAL RINGS .

Let us denote by Fyi the formal power series ring in n
indeterminates over a formally real field R.

In this paragraph we prove our main results, theorems 3.3
and 3.6. Both of their proofs work word by word for the ring of ana
lytic series over R. Shortly, the proofs of these results are done
by induction on n , using Weierstrass Preparation theorem , studing
carefully the relationship between Spec F . [X ] and Spec F .

The first result we state goes in that direction:

THEOREM 3.1. ("Going-down for.real spectra") [10]

Let A > B bearegular morphism between excellent rings. Then
the associated man f : Specr B -+ Specr A has the going-down
property , i.e. if a; » 0,= f(Bo) » Bo € Soec B , there
exists g, € Spec. B .8, +Bo and f(gy) = oy

REMARK 3.2. With the assumption of 3.1., if C 1is a con_
structible subset of Spec A, we have f'l(f)= f'I(C) . For recall
that o ¢ C implies that there exists B € C, with B-+qa .

Now we prove:

THEOREM 3.3. The closure ofaconstructible subset of Specr Fn is
also constructible,

Proof. For n=0 the result is obvious since every constructible
subset of Spech is closed (and open) . !le assume that it holds
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true for n-1 and let C Specr Fn be constructible. By Weierstrass
Preparation theorem [13,th.2.1.3] , we may assume C be described by
distinguished or Weierstrass polynomials in Xn [13,def.2.1.1] . This
follows at once from the easy fact that oiven o € Spec, Fn and u € Fn
a unity with u(0) = a € R~ {0}, the signs of u and a in o
coincide. Now Tlet C* be the constructible subset of Snec F. ;[X]
described by the same inequalities that C, and let

m : Spec, F, > Spec. F._,[X]

be the natural map. We nave n'l(c*) = C. On the other hand, by
the induction hypothesis and 2.7, C* is constructible. Thus
since by 3.2 nL(c*) = nl(c*) =C, C {is constructible.

COROLLARY 3.4. Let A be a Tocal complete noetherian ring with
formally real residue field. Then the closure of a construc_
tible subset of SpecrA is also constructible.

Proof.- Since A is equicharacteristic , by Cohen's theorem ,
A= R[[X1,....X;]]/1 . So the result follows readily from 3.3.

Recently, J.Ruiz has extended theorem 3.4 to any excel_
lent ring. On the other hand the result is false in general: H.Delfs
and J.M.Gamboa have found , [5] , a constructible subset of the
real spectrum of the ring of continuous functions whose closure is
not constructible.

We turn, now our attention to connectedness properties
of constructible subsets of Spechn. We assume first that R is
real closed. Since the maximal noint (i.e. the point with sunnort
the maximal ideal of Fn) is in the closure of any constructible
set, it is inmediate that any closed constructible subset is con_
nected (in particular Snec,, Fn). More in general we have:
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THEOREM 3.5. Llet F = R[[Xl,.e.,Xn]] be the ring of formal power
series over a real closed field R. Then, every constructible
subset of Specr Fn has a finite number of connected components
(hence also constructible).

We devote the rest of this section to the proof of theorem
3.5. To do it we need to mix up several ingredients which we sep_
arate in different Temmata. The first thing we do is to take a
closer look at the natural map m : Swec F, > Soec F_,[X ]

LEMMA 3.6. (a) For each r e R™ Tet

[-ror] ={a € Spec F_;[X ]]-r < X () < r in k(a)}. Then
imm = n [-r.r]

reR*
(b) Let feF _;[X] be aWeierstrass nolynomial in X .
Then V(f) € im .

Proof. (a) Letus call M= N _ [-r,r]. It is enough to show
reR
that for every o' € M there exists a € Spechn with 7(a) = o'.

Let m = mo-1 + (yn), where mo-1 is the maximal ideal of Fn-l‘ m
is a maximal ideal of F__,[X] and F =F _,[X] » the comnletion
of Fn-l[xn]m ‘

On the other hand, by the very definition of M, we have
supp o' m . Hence o' is "central" in the terminology of [9] and
it extends to o e Spec F, (loc. cit.).

(b) After (a) , we only have to prove that for any
o € Spec F__; , any root £ of f“(xn) € k(a)[xn] in k(o) is
infinitesimal with respect to R (i.e. -r< g <r in k(a) for
every r e R') .

et f=XP+a, XP"l4 . +a withaeF , and
nooo-1 " p-2 P LMy o o
ai(o) = 0. Then, E(E7 " +a, & + ...+ ap_l) = -a, which is
infinitesimal w.r.t. R. Since & is bounded by a nolynomial in the
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a;'s , either ¢ or g1+
w.r.t. R, So , after repeating the argument p times , we get

that £ is infinitesimal w.r.t. R,

et ag g has to be infinitesimal

Our second step towards the proof of 3.5 is to introduce a
notion of "path" -connectedness in Spec F, (definition 3.9 below).
This itself is based on the existence of "enough" constructible
points in Spechn . To explain what this means we point out first
that every one-dimensional point o € Spechn (i.e. ht(supp(a)= n-1)
is defined by a morphism &£: F > R[[t]] where in R[[t]] we fix
from now on the unique order with t > 0. Indeed , let
Py = SuPPa = (Gis-..s9g) F 4 B =F /p and set BY for the
normalization of B. Then B"i‘-’R[[t 1] and we may take ¢ = ¢|p
(up to a possible automorphism t--t). Moreover let (t%) be the
conductor of B in B” . Then there exists f e Fi such that
o(f + pa) =t2e+1. Consequently {a} = {g1 = ... = g5 = 0} n {f > 0},
what shows that o is constructible. Summarizing, in order to have
a precise reference to this fact we state :

PROPOSITION 3.7. Every one-dimensional point o € Spechn is
constructible,

Now the term "enough" constructible points means that we
can find constructible points in every constructible subset of
Spechn. This is an immediate consequence of the following well
known Lasalle's specialization theorem:

THEOREM 3.8. ([7]) .- Let K be an ordered field and R its real
closure. Let f1.-.-,fr € Fn and p € Spec Fn' Then if there
exists an ordering in F /p making all fi's positive, there
is a k-algebra local homomorphism ¢ : F /n =+ R[[t]] such that
¢(}}) >0 for all i,
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In what follows we shall denote by 0, the maximal noint
of Specr Fn (i.e. 0, 1is defined by the natural morphism Ey ™ R).
0n is a specialization of any point of Spec F, . Finally we shall
write 0: (resp. 0;) for the constructible point defined by
¢+ Fp>R[[t]] » o(x;) =0 , i =1,..00m-1, 9(x) =t (resp.
o(x,) = -t).

Here comes the '"path"-connectedness definition:

DEFINITION 3.9. Let X Specr Fn be a constructible set.
(a) Let a, BeX , dima =dimB =1. A constructible "path”
joining o and B 1is a connected constructible subset
Y Spec, F, such that o, g eY and Y=Yu {0} (where
Y is the closure of Y in Spec,. F,).

(b) We say that X 1is constructible - "path" - connected if
for any one-dimensional o, B € X there is a constructible
"path" Y joining o and g with Yc X.

As one should hope it holds

LEMMA 3.10. If X Spec,. i is constructible - "path" - con_
nected, it is connected.

Proof.- Straighforward from 3.7.

With this lemma, theorem 3.5 follows at once from the
following proposition:

PROPOSITION 3.11. Let X < Spechn be a constructible subset.
Then there exists a finite partition of X into construc_
tible subsets which are constructible - "path" - connected.

Our strategy to prove 3.11 is the following: we consider
the following diagram of natural maps

m
Spec, F, ~————— Spec, F,_ [X]

p
Spec,, Fn-l
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We use induction and the intermediate space Spec. F. ,[X ]. Indeed
we work here, joining any two one-dimensional points by means of
suitable constructible sets: their inverse images under m are "paths".

)q ,:'%a These constructible sets we
,/X: are to use are vertical segments
./“,' |'l’%‘1;"§m’ and graphs of continuous semial _
/,,g 9'_-_:“;‘ gebraic functions (see figure).We
ST P start with the latters:
S Spece Fo.y

LEMMA 3.12. Let Z Spec, F._, be a connected constructible set
and & : Z~»> Specr Fn-l [Xn] a continuous semialcebraic func
tion such that £&(Z) € V(f) , the zero set of some Weierstrass
polynomial ~ f e F__;[X ] . Then , Y = nl(g(z)) isa con
nected constructible subset of Specr Fn. Furthermore if
T=7y{0, 4} then Y=Yy {0)}).

Proof.- Let geF, and Dg = {g > 0}. Notice that, if ¢ 1is not
regular in X, taking g* = g-f*, we have Dg ny = Dg* 0y
and g* regular in Xn . So we may assume d be a Weierstrass
polynomial (in short W-p) in X,
Now, assume that there are open subsets, U]- C Specr Fn .
i=1,2, suchthat Ycliuy Uz and YN U, NU, =P . We want
to show that Y c U, or Y C U, . By compactness of theconstructible
topology we may assume that each Ui is construgtib]e (so it is a

finite union of sets of the form D = n D,. ). Moreover,
91,---,9,. i=1 g'l

as above we may assume the Ui defined by W-p in Xn’
Let us denote by U:.f the constructible subsets of

Specr Fn_l[Xn] defined by the same inequalities than U, in Spechn.

So, we have '(r(Ui) =uFn im(m). Also , we have E(Z) c U‘; v U¥

and U¥ n UF n £(zZ) =P , by 3.6(b) . Since &(Z) 1is connected,

it is E(Z)CU%‘ for some i , so YcCU;.

For the second nart notice that 0n € Y and that the
points of Y ~Y 1lie over Z~7Z =1{0,_;}. So, in Spec F _; [X/]
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they lie over n(O ) or "(0;) . Since f is W-p , neither
(0 ) » nor n(O l is in V(f) and we are done,

Next, let o, o, € Specr Fo o" € Spec,, Fr-1 be one
dimensional points , with p o mla) =p o v(a1 =q" . Let
a' =mla) » a; =7(ay) . Then o' ,a) €p Ha") = Spec,, K( o")[X,]
Moreover , since all points are of dimension one all the inclusions

Fo1/supp o € F_1[X ]/supp o' ¢ Fo/supp o e (F /supp a)¥ =R[[t]]

are finite. Hence k(a") = k(a') = k(a) , and analogously

k(a") = k(o) = k(a1). Therefore a'and a)correspond to (i.e.
are defined by) some values X (a') , X (a}) € k(a"), say a' and
aj. Assume w.l.0.g. that 0< a' < aj. Then we define the in_
terval joining o' and o as

S ! = {y € p'l(a“) = Spec, K(a")[X ]| @' < X (v) < ai} -

o]

We have:

LEMMA 3.13. Y = n'l(Sa.a.) is a constructible "path" joinina
p §
a and a; .

Proof - Firstly we show that Y = Y U {0,}. By (3.1) we have
Y- (S W ). Also S gt 1S p- (d")\) P (0n 1) Hence we
need 0n1y to show that neither n(O ) nor n(O ) liein S,
Since a" is one-dimensional, arguing as in the proof of 3. 7,
k(a") 1s a field of Puiseux series over R, say R((t))*. Moreover
a' e R[[t]]* and is infinitesimal w.r.t. R»3.6. Using a conductor
argument as in 3.7 we find peN evenand f e Fa -1 with £(0)=0
such that a/P < f(a") . It follows that Sy 'a i€ {ye Spec F,_1[Xn] |
IXp('y < f(y)} » since if y e S . ., fly) = f(a") Hence , for

y € S ol it is Xp(y) < f(y) , but this inequality does hold
ne1ther 1n n(o ) nor in n(On) (Geometrically speaking we find

a " parabola" Xg - f(X"""xn-l) which separates Sa.a; from

a'ol”
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the X - axis), Thus Y =Yy {0} .

To see that Y is connected, as in the proof of 3.12, we
need only to show that given g € Fn there is g* € Fn_l[xn] such
that Dg AY = D, MY, We use once more a conductor argument as
in 3.7. let t:F ;> R[[t]] be the morphism defining o" .

Set T(Xj) = xj(t) j=1.,...,n-1 ., Thus we have
g(xl(t),...,xn_l(t),Xn) =g t" u(t,X ) Yhere e=%1 ,

u(0,0) € R" ~ (0} and P(t,X ) = X + nfz
aj(O) =0, Now if (te) is the conduc%o? of Fn-llﬂu" in

R[[t]] » let seM even,s>e , Thus , for each j=1,...,m-1,
there is h; e F,_; such that T(hj) = {5 aj(t) . We claim that

j .
aj(t) X, with

=1 .
g* = (Xﬂ + mz hj Xg ) (which is a W-p) 1is the polynomial
j=1

we sought. Indeed , C = Dg NY and C* = Dg* NY are construc_
tible. Therefore , by 3.8 , to show that C = C* it is enough

to see that C~C* and C*~ C do not contain points of dimension
one, what is obvious by construction.

Now we are finally ready to prove the pronosition.

Proof of 3.11.- We proceed by induction on n. For n=0 it is
obvious since R is real closed. We assume it for F__, . Let

X Specr Fn . As mentioned in (3.3), up to a linear change of
coordinates we may assume X described by W-p in X, or con_
stants (if X = Specr Fn) . As above, we denote by X* the
constructible subset of Spec. F_ _, [Xﬁ] defined by the same
formula that X.

Let {fl,..,,fm} be a set of elements describing X ,
together with their derivatives with respect to X . We consider
a "saucissonage" (Si’ (Eij)) of the family {fi,....f X} . Up
to a refinement of the partition Si we may assume that
(a) {on-l} is a member of it, and (b) they are constructible
- "path" - connected.

Let now B' be a graph or a slice over some S;. Set
B = n'l(B') . Since X*~ p’1 (On_l) is a union of some B' ,
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X~ {0; ,On,O; } 1is a union of some B. Therefore it is enough to
show that each one if these B' 1is constructible - "path" - con_
nected. Llet o, B € B be one-dimensional points. We set a' = mi{a),
g' = mi{g) »,a" =pla') , B" =p('). Since 0, ; £ p(B') (we
have taken it out!) it is dima"” = dim 8" = dimo' = dimg' =1 .
By the induction hypothesis there is a connected constructible "path"
Z in Si = p(B") Jjoining o" and R". Now we distinguish two
cases:

(i) B' is a grﬁgh of some £ : S; > Spec, Fra1(Xnl -
Then by lemma 3.12, Y =1 (5ij(z)) B s a constructible "path"
joining o and B8 .

(ii) B' s a slice , Jgij » Eij+1 [, over S4 (see
(2.6)) Assume first, Eij # -, 5ij+1 #o . Let o',8' , 0" , B"
and we define n = %'(Ei,j +gi,j+1 ). Then, n 1is a semialgebraic
continuous function [12] and we call Y| =n(Z) , o} = (a") and
B, =n(g"). Since 51,j and Ei,j+1 verify a Weierstrass poly
nomial they are in particular integer over Fn-l . Therefore n is
integer over F__, , and verifies a monic polynomial in Fn_l[xn].
Applying Weierstrass preparation theorem it follows that n is a

root of a Weierstrass polynomial, Let Y, (resp. Yj) be the segments
joining o' with o] (resp. B' with g!) (see 3.13). Finally

we set Y =n l(Y}) ,j=1.2,3, and Y=Y, uY,uYs. Hence

Y B and by the lemmas before Y 1is a constructible "path"
joining o and B.

Notice that, since Xi belongs to the family that we
have used to make the "saucissonage" it can not be both 5ij =-og
Eij+1 = + o ., By the same reason , Eij 5 51j+1 do not change
their signs on Si’ Finally , if for instance is Eij = - o and
gij+1 > 0 (resp. < 0) the proof goes as above taking n= %— Eij+1
(resp. 25ij+1 ) .

REMARK 3.14, Let C Spechn be a constructible subset defined
by Weierstrass polynomials in L Then, if X* 1is a connected
component of C* , X = n’l(x*) is a connected component of C.

171



Alonso / Andradas

Proof.- Looking at the proof of 2.7, X* 1is union of graphs and
slices , which are given by sign conditions on some W-p . It is
easy to carry out that we may assume X* be a graph or a slice

lying over a connected subset of Specr Fn-l s

Assume X 1is not connected. Then X has a finite number
of connected components , which, Tooking at the oroof of 3.10
and 3.11 we know that are also constructible and defined by
elementsof F_,[X]. Hence, we may write X = AUB where A
and B are closed in X, AB#@ , ANB =0 and both defined
by elements of F__, [Xn]i__Let_E§ call M= im(n) . Thus
m(X) = X* " Mc A* {; B*c A* yB* . Moreover A*x NB* N X* N M =P
since we have , by 3.1, ol (A* N B* 1 X*) = n'l(A*) nvfIkB*)naFI(x*)
= AnBnX=AnBnX=p. Now, by (3.6) (a), and the
compacity of the constructible topology (2.3) there exists r € R¥,
with X* n [-r,r] ¢ B BF and AR NBFNX* N[r,r]=9 .
Consequently , if X* 1is a graph, by 3.6 , X*c Mc [-r,r] , and
we get a contradiction since X* is connected. If X* is a slice

bounded by two roots of some W-p, the same argument applies.
Finally, if X* dis an "unbounded" slice , the intersection
X* n [-r,r] 1ds also a slice (lying over the same connected subset

of Spec, F _, that X*) hence, by 2.6, is connected.

Our theorem 3.5 extends also to a more general situation.

COROLLARY 3.16 Let A be a Tocal complete noetherian ring with
formally real residue field having only finitely many orderings,
then every constructible subset C SpecrA has a finite
number of connected components.

Proof.- By Cohen's theorem A = R[[Xi,...,X;]]/I , for some ideal
I . Hence we assume A = R[[X]] = R[[X1,....X,]], where R has
only finitely many orderings.

Let Spec R = {yi,...,y }s R; the real closure of (R’Yi)
and m : Spec A~ Spec R , e; : Spec, R,[[X]]>Spec. A the natural
restriction maps. Since, the corollary holds for R,[[X]] , 3.5,
and X; = "-I(Yi) (i = 1,...,m) are a partition of Svec A into
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constructible sets, it is enough to prove that im(e ) = i We
work out the non trivial part X; € 1m(€ ). Take o € X; and let
Ah be the strict henselization of A w1th respect to o and (Ah)
its completion . Thus we have Spec (Ah) % Spec,, Ah-y» Spec A
Moreover o € imy , ¢ is surJect1ve > [9]s and R: [[X]] c (A )"
Hence o € imy o ¢cime; and the proof is comp]ete(

REMARK 3.17 Let m : SpecrA > Spech be , as above the canonical
map induced by the inclusion R -+ A . Since Spec R is totally
disconnected , and m is onto it follows that if R has infinitely
many orderings, SpecrA has infinitely many connected components,
what shows the converse of 3.16.

4. SEMIALGEBROID SETS.

(4.1) Through this paragraph R will be a real closed field and
= R [[Xso.sX]) = RI(H]]

We want to describe some "geometric support" for construc_
tible subsets of Spechn in the same way that semialgebraic sets
and semianalytic germs are respectively , the support of construc_
tible subsets of the real spectrum of finitely generated R-algebras
and the ring of analytic functions Op- We point out that our ap_
proach (together with Artin-Lang theorem in each case: algebraic
and analytic), allows us to obtain the basic properties of semi_
algebraic and semianalytic germs from those of their correspondying
constructible sets, namely: that the number of connected components
is finite; that they are semialgebraic or semianalytic and the
finiteness theorem (see [3] and [6], where they work in the opposite
direction).

(4.2) We start by considering parametrizations, that is R-algebra
local homomorphisms, © : F + R[[t]], and we denote the set of all of
them by  Hom,  (F ,R[[t]]), Given EcF and
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S e Homy o (F,R[[t]]) we define:

V(E) ={r € Hom, (F ,R[[]])] ©(f) =0 ¥ fekE}

Y(S) ={(f e F, |t(f) =0 VreS}.
We fix the ordering in R[[t]] making t > 0 and we set for f e F:
S(f) = {t e Hom, . (F R[[t]]) | <(f) >0}

The sets S(f) are a subbasis of a topology in Hom]oc(Fn,R[fﬂ])
which we call semialgebroid topology.

Our "geometric points" are going to be the "formal"
half-branches. In order to identify two parametrizations T ,
©' e Hom (F » R[[t]]) describing the same half-branch , we
define the following equivalence relation: t1' iff there is
an isomorphism ¢ of R[[t]]* (the Puiseux formal power series ring)
such that ¢ o 1=1',

We consider M = Homy . (F R[[t]])* /~ where
Homy o (F, » R[[t]])* = Homy . (F.R[[t]])™{0} and Ker 0 =4 ,
the maximal ideal of F,- We also provide M, with the quotient
topology (of the semialgebroid topology) that we still call semi_

algebroid topology.

On the other hand, as we have remarked , see (3.7) every
T € Homy (Fn,R[[ﬂ] )* defines a prime cone o e Spec, F = with
dim a. = 1 , and every one-dimensional point of Spec,, Fn can be
described in this way. Consequently we have

PROPOSITION 4.3, Themap 4 : Mn - Spechn T oA defines a
homeomorphism of Mn onto the subset H of all one-dimensional

points of Specr Fn’

Proof.- By the very definijtion of ~ and 3.7 , 4 is a bijection
Moreover for f e F it holds A(S(f)) = D(f) NH , so it is
homeomorphism.
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The space M, is the "formal" analogue to the affine
space R".

DEFINITION 4.4 A subset X Mn is semialgebroid if it belongs

to the lattice generated by the sets S(f) by a finite number
of Boolean operations : union, intersection and complementary.
m
Now , let S = 7§ (S(f;
i21 L
algebroid subset of Mn' We define the constructible subset of

Specr Fn:

seevsfs ) V(a.) be a semi
1 i -

Then

THEOREM 4.5. The map S -~ S defines a one-to-one lattice homo_
morphism between the lattices of semialgebroid subsets of Mn
and the constructible subsets of Specr Fn . Moreover this man
preserves openess.

Proof. For the first assertion it suffites to prove that S #

if and only if g #9 , and to do that we may assume that S

is basic , i,e., S =S(f;)N...Nn S(fr) NnVv(g). Let TeS.
Then if p = kert we have (g) F, €p, and T(fi) >N0 for all
i=1,...,r. Then a € {f, > 0""’fr > 0,9 =0} =S. Conversely
if o€ % then g € supp o and there is an order in the quotient
field of Fn/supp o in which f,,...,fr are positive. Thus by
3.8 we have @ # S(fi,....f) nV(supp a) € S(fy,...,f)NV(g) = S.

Finally for the moreover part we prove that the map
Dpreserves closedness ., Assume that § 1is closed. Then by 3.3
g is constructible , so by the part just proved, to show that
s =38 it is enough to show that S M =¥ nM . Take any .
neighborhood S(f,,...,f.) of v in M. Thena e D(f ,....f)n 3,
whence D(f ,...,f.) N ¥ #9 . Again by the first part of the
theorem we get S(f ,....f.)n S # 0, whence 1 € T=5=3%n M,
and we are done.
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THEOREM 4.6.

(i) Every semialgebroid set has a finite number of semial_
gebroid connected components(’).

(i1) The closure of a semialgebroid set is again semialgebroid.
Proof.- Inmediate from 4.5 together with 3,5 and 3.3 respectively.

THEOREM 4.7.  (Finiteness Theorem). If S 1is a closed (resp. open)
semialgebroid subset of Mn then S 1is a finite union of
sets of the form {fi > 0 ,...,f > 0} (resp. S(f;,...,f.)).

Proof.- mIf S is open then $ is open by 4.5. By pne compact_
ness of S in the constructible topology we have that S is a
finite union of sets of the form D(f,,...,f.) . Thus S is a
union of sets of the form S(f ,....f.)). The closed case follows
by taking complementaries.

Finally we point out that all statements in this section
remain true when we replace Fn by a quotient A = Fn/I where 1
is an ideal of Fn‘
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