D
[-A elt

Werk

Titel: On the structure of quadratic congruential sequences.

Autor: Lehn, Jurgen; Eichenauer, JUirgen

Jahr: 1987

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0058 | log11

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

manuscripta math. 58, 129 - 140 (1987) manuscripta
mathematica
© Springer-Verlag 1987

ON THE STRUCTURE OF QUADRATIC CONGRUENTIAL SEQUENCES

Jiirgen Eichenauer and Jiirgen Lehn

Sequences of integers defined by a quadratic congruential formula are
divided into non-overlapping subsequences of length d. The structure
05 the set of the resulting points in the d-dimensional Euclidean space
R" 1is studied. The analysis is restricted to the case of sequences
with maximal period length since such sequences are of special interest
in connection with pseudo random number generation.

1. Introduction

The most common method for generating uniformly distributed pseudo ran-
dom numbers to be used for simulations is the linear congruential me-

thod. The generators are of the form

(1) X 4 = b ex + c(mod m), O < x <m, n >0,

n+l

where m is a (large) positive integer and x , b, and c¢ are non-

o’
negative integers less than m. This type of generators goes back to

Lehmer [8] and Rotenberg [12].

If the generator (1) has maximal period length m it is well known
(see e.g. [31, [4]1, [5], [7], [10] and [11]) that the vectors

(xo’xl”"’xd-l)’ (xl,xz,...,xd), <ok

of d consecutive pseudo random numbers form a shifted lattice, so-

called a grid, in the Euclidean space Rﬁ.

Moreover Afflerbach [1] showed that the vectors of non-overlapping
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d-sequences

(xo’xl""’xd-l)’ (xd""’XZd-l)’

form a grid in Rg.

These results made it possible to develop numerical methods for de-

termining generators with a 'good" lattice structure (see e.g. [2],

[3], [4] and [5]) by adjusting the parameters m, b and c.

Marsaglia [9] however regards this lattice structure as a defect
caused by the linearity of (l). In [6] a simulation problem is de-
scribed which supports Marsaglia's judgement. This suggests the study
of non-linear congruential sequences. Results on the period length for
certain non-linear congruential generators are given in [6] and are

also known for quadratic congruential generators of the form

(2) = a -xi +b tx + c¢(mod m), O < x <m, n =20,

X
n+l n+l

where m 1is a positive integer, X s b, and c¢ are non-negative in-
tegers less than m, and a 1is a positive integer less than or equal

to m (see Knuth [7], p. 25).

In this paper the structure of the set of all vectors

(3) (xo,x],...,xd_l), (xd’xd+l""’x2d-l)’

of non-overlapping d-sequences generated by (2) will be discussed in
the case of the quadratic congruential generator (2) with maximal pe-

riod length m.

The proof of the main result of this paper follows the ideas in
Afflerbach [11].

2. Notation and definitions

m
Let m = pll L -p:k denote the factorization of the modulus m in-

to prime numbers with Py <Py < +er < Py Then the quadratic congru-

ential generator (2) has maximal period length m if and only if the
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following conditions are fulfilled (see [7], p. 34, and p. 526):

4) (1) ¢ 1is relatively prime to m,
(ii) a =0 (mod pi) and b =1 (mod Pi) for every prime fac-

tor p; 2 3, 1 <1<k,

(iii) a = b-1 (mod 2) if P, =2 and m, =1,
a =b-1 (mod 4) and a =0 (mod 2) if P; =2 and
m, 2 2 and

1
(iv) a =0 (mod 9) or a‘c =6 (mod 9) if 9 divides m.

The second condition b = 1 (mod 9) in the or-part of (iv) given in
[7] is not necessary.

Here the quadratic congruential generators are assumed to have ma-
ximal period length. Without loss of generality a = b-1 = 0 (mod 2)

if P, =2 and m, =] since x2 = x (mod 2). Then there exist posi-

tive integers UL P ERRETL N with a; <my and aj $ 0 (mod pi) for
1 <1i <k and
aj ak
a=a *p, SERILS S

Let

be the divisor of m with
ui = [(mi —ai +1)/21, 1 <i <k,

where [y] denotes the greatest integer less than or equal to y.

For every positive integer n let
Z(n) = {0,1,...,n-1}

denote the set of all non-negative integers less than n. For every

positive integer n, divisor t of n, and z e Z(t) let
Zn(t,z) ={yet+z e Z(n)| y € Z(n/t)}

be a subset of Z(n). For every non-negative integer n define a

function fn on Z(m) by
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£ =£¢ (), 022
fl(x) = a 'xz +bex+c (mod m), O < fl(x) <m, and
fo(x) = X.

Then fn(x) is the nth successor of x when the quadratic congruen-
tial generator (2) is applied. For every positive integer n define a

function @, on Z(m) by
an(x) = al(fn_l(x)) °an_1(x), n 22, and
ul(x) = 2ax +b.

For some fixed integer d 2 2 let
e = ged(d,m)

be the greatest common divisor of d and m and let
v = lem(e,u)

be the least common multiple of e and p defined above. Since e
divides m there exist non-negative integers CEERETLA with

e. <m,, 1 <1<k, and
i i
el ek
€ =P, *.ee P -
Thus
V1 Yk
V=Pt tPp

with v, = max(ei,ui), 1 £i < k. Define

. m, -V, —a,. P 1 <1<
Al = max( 17V "3 el), i<k,

and
Al A2 Ak
Py Py *eee Py for P, 2 3
A=
max(A, -1,e.) A A
1 1, 2 Lok £ -2
P, 2 ils P or p,
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. 2m, —a, d . < v, ow that . =V, =-a, S o =) .
2u1 m, ; and w, vy sh at m, -v, -a, 2ul v, < Vss

1 <i < k. This and e; < v, give Ai < Vi, 1 <1i<k, i.e. A

divides v. It is easy to show that A=v if and only if

(5) Hy < e for P, =2 and

IA

. e, Or
ul 1

. >e., and m. —a. 1is even fo .2 <1i <
uy i i ; is ev r op; 3, 1 i k,

are satisfied. For every X, € Z(m) let
Vd'xo = {(fjd(xo), iy fjd+d_l(xo))| j e Z(m/e)}

denote the set of all vectors (3) generated by the quadratic congruen-
tial generator (2) with starting value X, . Since e divides m by

Lemma 1 below

vd’xo = {(x,fl(x),...,fd_l(x))l x € 2 (e,x!)}

1]

where x; € Z(e) 1is an integer with x; X (mod e). Therefore
X, € Z(e) 1is assumed without loss of generality. For every X, € Z(e)

let

G ={g=v+m-u ¢ Zd| vevVy , uce z%)

» X

d,x
(s o

be the periodic continuation with period m of Vix where Zd de-
b
o

notes the set of all d-tupels of integers. For every z e Z(v) let
Vd(z) = {(x,fl(x),...,fd_](x))] X € Zm(v,z)}

be a subset of Vd for some x_ € Z(e) and let
sX, o

Gy(z) = {g =v+m-ue Zdl veVi(z), ue z)

be the periodic continuation with period m of Vd(z). It is obvious
that the sets Vd(z), z € Z(v), and Gd(z), z € Z(v), are pairwise

disjoint, and that for every X € Z(e)
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\'4 = \\_// Vd(z) and

o z eZV(e,xo)

Gd,x = \\,_// Gd(z)

o z eZv(e,xo)

since e divides v. Given Byr 98y € Rg where Bp>---28q are

linearly independent, the set
e Z}

G={g=g, +ug +...+u € Rg| Upyeee,u

a8d d

is called a grid or shifted lattice with basis 8psees8gs and g

is called the shift-vector.

In the sequel it will be shown that Gd(z) forms a grid for every
z € Z(v). Therefore Gd - is a superimposition of v/e grids for
’

every x € Z(e). °

3. Some technical lemmas

LEMMA 1. Let the parameters a, b, and c¢ 1in the definition of the

function £, satisfy conditions (4). Let t be a positive integer

dividing m. Then

x (mod t)

"

ft(x)

for every x e Z(t).

PROOF. Since t divides m there are non-negative integers t; <m,
1 <i<k, with
£ "

t=p, .. Pp -
Now it is easy to check that the conditions (4) are also fulfilled
with the modulus t instead of m. Therefore the quadratic congruen-
tial generator (2) with modulus t instead of m has maximal period
length t. Thus it follows from the definition of the function £,
that
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fc(x) x (mod t)

for every x € Z(t). |

LEMMA 2. Let the parameters a, b, and c¢ in the definition of the

function f] satisfy conditions (4).

Then for every z e Z(u) and x € Zm(u,z)
fn(x) = an(z) o (x-z) + fn(z) (mod m)

for all positive integers n.

PROOF. The lemma is proved for fixed z ¢ Z(u) and
X=y*u+ze¢ Zm(u,z) by induction on n. The definition of f

and the factorizations of a and u show

£,(x) =a- (y-u+2)2 + b (y-utz) + ¢
9 a|+2u] ak+2uk
o

+ (2-a+2+b) *y -u+a -z2 +b .z +c

1]
()
(=}
~<
o

mn

ul(z) . (x-z) + f](z) (mod m)

since Zui +ai 2 m,, 1 <i <k, by the definition of HpseeesH

Thus the assertion is valid for n=1.

K

Now assume that the assertion is valid for 1 < j < n-1 and some
fixed n 2 2. Then it follows from the definition of fn and o

and the factorization of a and u that

£.(x) = £4E (%))

asCa_ (2) y-u+f _ ()b (a_ (2) "y u+Ey  (2) +c

2 a|+2“l ak+2uk

2
a, an_l(z) Yyt P Y e Py

+(2-a-f _(2)+b) »a _,(2) cy-u

2
+ a -fn_](z) +b -fn_l(z) +c
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o (£, 1) ca (@) y-u+f (f _ (2))

an(z) . (x-z) + fn(z) (mod m). 0

LEMMA 3. For every s € Z()) and z,52, € Zv(x,s)

v °(l,a|(z]),...,ad_l(z])) = v -(l,al(zz),...,ad_](zz)) (mod m) .

PROOF. Let some s € Z()A) and 2,2, € ZV(A,s) be fixed. By the de-

finition of o and A and the factorization of a

a](zl) al(zz) (mod m/v).

The assumption Z),2y € Zv(x,s) yields fn(zl) = fn(zz) (mod 1) for

every positive integer n. Thus
an(z]) = an(zz) (mod m/v)

for every positive integer n by the definition of a- This proves

the lemma. 0O

4, Main results

The main result of this paper is formulated in the following theorem.
By Lemma 2 it can be shown that the set Gd(z) is a grid for every

z € Z(V).

THEOREM. Let the parameters a, b, and c¢ 1in the definition of the

function fl satisfy conditions (4). Then for every z e Z(v) the

8 iy & s d 4 3
get Gd(z) is a grid in the Euclidean space R~ with shift-vector

8o(2) = (2,£,(2),...,f,_,(2))

and basis
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g](z) =V '(l)a‘(z)""!ad_l(z)))

gz(z) = (O’mioy'--,o)’

gd(z) (0,0,...,0,m).

PROOF. Let z € Z(v) be fixed. Let g denote some element of the
set Gd(z). By the definition of Gd(z) and Vd(z)

g = (x,fl(x),...,fd_](x)) +m-u

for some x € Zm(\),z) and u eZd. Now u divides v and v di-
vides m since v = lcm(e,u), e = gcd(d,m), and u divides m.

Therefore Lemma 2 shows that
g = (l,al(z),...,ad_l(z)) « (x-z) + (z,fl(z),...,fd_l(z)) + m-u.
Define the integers

;] = (x-z+m 'u])/\),

u, =u,-u, -a](z),

(=4
al 4
[

= ug -y -ad_](z).

Then g can be written in the form

(1]
|

= (z’fl (z),.. "fd_l (2))

~

+ (vﬁl,vﬁ'lal(z) + mzz,...,vﬁ'lad_l(z) + mud)

go(z) + Elv(l,al(z),...,ad_l(z)) + (O,GZm,...,de)

go(z) + ulgl(z) + uzgz(z) + ...+ udgd(z).
Now assume

g = g,(2) + g (z) + ... +Uyg,(2)

o~ ~
for some integers Upseensly. Then define
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[le/m],

(=}
[}

e
[

g = Uy *ua(a),

ug = Uyt wey (2,

and y = El - u]m/v € Z(m/v). Thus x = yv + z € Zm(v,z) and

(]
I

- (z,f] (z),.. .’fd-](z))

~

+ (G]v, u]val(z) + :zm,...,clvad_l(z) + udm)

(z,f](z),...,fd_l(z))

+ (yv +um, (yv +ulm)a](z) +32m,...,(yv-+u]m)ad_1(z) +;hm)

(l,al(z),...,ad_l(z)) . (x-z) + (z,fl(z),...,fd_l(z)) + m-u.

Therefore Lemma 2 shows that

g = (x,fl(x),...,fd_](x)) + m-u € Gd(z).
Since |det(g](z),...,gd(z))| - 9m8Y  the vectors g(2),...,84(2)

are linearly independent and form a basis of the grid Gd(z). O

The Theorem and Lemma 3 yield the following

RESULT. For every X, € Z(e) the periodic continuation Gd o with
—— I—— b

o

eriod of the set V of all vectors (3) of non-overlapping d-

petiod m Of the gt ¥, . 92all ¥ectocs (3) of nonoyerlapping do
sequences generated by the quadratic congruential generator (2) with

starting value X is a superimposition of v/e grids Gd(z),

zZ € Zv(e,xo), as are described in the Theorem.

For every s ¢ Zk(e,xo) there are v/\A grids Gd(z), z € Zv(A,s),

having the same basis but different shift-vectors.
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5. Remarks

For a = 0 (mod m), i.e. in the linear case, the Result coincides

with that in [1].

To get more information about the distribution of non-overlapping
vectors (3) generated by the quadratic congruential generator (2) the
basis gl(z),...,gd(z) of the grids Gd(z), .z € Z(v), have to be
reduced to bases with vectors of minimal length (see e.g. [3], [4],
and [5]). In [2] a fast algorithm for the calculation of reduced

lattice bases is presented.

If the number v/e of grids Gd(z), z € Zv(e,xo), forming the

superimposition G4 x
)

the quadratic congruential generator (2) should be chosen in such a

is small the parameters a, b, and c of

way that the reduced lattice bases of all grids consist of vectors of
nearly the same length. If v/e is large the reduced lattice bases of

most if not all grids should have this property.

The following example illustrates the Result. In the case of the

quadratic congruential generator

52461°xi+7200-xn+1 (mod 23%), 0<x .. <23% nzxo0,

P
n+l o+l

and dimensions d with d $ O (mod 23) the set G is a super-

2 2 d,%o
imposition of 23 grids Gd(z), z € 2(23%), as described in the
Theorem. For every s € Z(23) there are 23 grids Gd(z),

zel 2(23,5), having the same basis but different shift-vectors.
23
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