

Werk

Titel: Quasilinear problems with singularities.

Autor: Kichenassamy, Satyanad

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0057|log20

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

QUASILINEAR PROBLEMS

WITH SINGULARITIES

Satyanad KICHENASSAMY

We solve here some quasilinear problems with a sum of Dirac masses at the right-hand side. For that purpose, we prove a regularity theorem for nonlinear systems of the Hodge-de Rham type, and we generalize de Giorgi's notion of perimeter to subsets of compacts manifolds.

1. INTRODUCTION:

1.1: Main Result:

This paper is devoted to the study of

(1)
$$-\operatorname{div}(|\nabla u|^{\rho-2}\nabla u) := Au = \sum_{i=1}^{m} \gamma_i \delta(x-a_i) ; u \to 0 \text{ as } |x| \to \infty$$

where
$$1 , $a_i \in \mathbb{R}^N$, $m \ge 1$, $N \ge 2$, $y_i \in \mathbb{R}$ and $\sum_{i=1}^m y_i = 0$$$

(see Rem. 13).

We say that u solves (1) if $|\nabla u|^{p-1} \in L^1_{loc}(\mathbb{R}^N)$, and (1) holds in the sense of distributions. We build solutions which moreover satisfy

(2)
$$\begin{cases} u \in C^{1}(\mathbb{R}^{N} \setminus \{a_{1}, ..., a_{m}\}) \\ u - \sum_{i=1}^{m} y_{i} \varphi(x - a_{i}) \in L^{\infty}(\mathbb{R}^{N}) \end{cases}$$

where φ is a radial solution of $A\varphi = \delta$ in \mathbb{R}^N namely

(3)
$$\phi(x) = \begin{cases} C(N,p) |x|^{(p-N)/(p-1)} & \text{if } p \neq N \\ \\ C(N,N) |Log(1/|x|) & \text{if } p = N \end{cases}$$

(4)
$$C(N,p) = (p-1)(N-p)^{-1}(N\omega_N)^{-1/(p-1)}$$

$$C(N,N) = (N\omega_N)^{-1/(p-1)} \qquad \omega_N = \text{vol}(B^N)$$

It turns out that solutions of (1) may be "characterized" by their local behaviour. More precisely, our main result reads

THEOREM 1: (1) has a unique solution satisfying (2)

Remark 1.1: The methods of the paper may be adapted to the case of bounded domains with prescribed (bounded) boundary values

Remark 1.2: Equation (1) is related to some models of quark confinement discussed e.g. in Adler - Piran [1].

Remark 1.3. The condition " $\sum_{ij} \gamma_{ij} = 0$ " can be omitted when p<N (see Rem. 2.3).

1.2 Methods:

The proof of Theorem 1 will be broken up into 3 cases each of which has necessitated special adapted tools. The most delicate cases are those when p<N and p=N because the problem does not have a variational structure.

i) $\underline{p < N}$: We consider some particular "approximate" versions of (1) for which solutions may be estimated by symmetrization methods. We then use regularity estimates (in $C^{1,\alpha}$) which are proved in Part 3. These regularity results were motivated by, and extend, earlier work of Uhlenbeck, Evans, Tolksdorf, Uraltseva and others ([6,14,13,15] and earlier references therein). The novelty of our results lies in that they pertain to systems on differential forms, which do not contain pure "power-like" nonlinearities.

11) $\underline{p=N}$: Using conformal invariance we shift to the corresponding problem on S^N . We then symmetrize functions defined on the sphere so as to recover estimates similar to those used for p<N. We shall need to

define the perimeter of a measurable subset of a manifold (here S^N), in the spirit of the work of de Giorgi [5]. This construction is detailed in the Appendix.

iii) $\underline{p>N}$: Here the problem admits a variational structure, on the space $\mathfrak{D}^{1,p}(\mathbb{R}^N)$ (: completion of $\mathfrak{D}(\mathbb{R}^N)$ for $\|\nabla u\|_{L^p}$). We also indicate very briefly how to use a similar argument on more general nonlinearities.

1.3 Organization of the text:

- 1. Introduction
- 2. Proof of Theorem 1
 - 2.1. First case: p<N
 - 2.2. Second case: p=N
 - 2.3. Third case: p>N
- 3. Regularity results

Appendix. Perimeter on manifolds.

<u>Acknowledgements:</u> The Author thanks H.Brézis for his kind suggestions and encouragements, and C.Bardos and L.Boutet de Monvel for helpful discussions.

2. PROOF OF THEOREM 1:

2.1 First case : p<N:

The proof is broken into 4 steps.

Step 1: Approximate problem: Define u^{ϵ} for ϵ small enough by

(5)
$$du^{\varepsilon} = \chi^{\varepsilon}$$

$$u^{\varepsilon} \in W_0^{-1,p}(B(0,1/\varepsilon))$$

where

$$\chi^{\varepsilon} = \sum_{1 \leq i \leq m} \gamma_i (\omega_N \varepsilon^N)^{-1} \chi_{B(a_i, \varepsilon)}$$

($\chi_{\mbox{\footnotesize{E}}}$ denotes the characteristic function of E for any measurable set E).

Define the radial function ϕ^{ϵ} by

(6)
$$\phi^{\varepsilon}(x) = \begin{cases} \phi(x) & \text{for } |x| > \varepsilon \\ c_{\varepsilon} |x|^{p/(p-1)} + b_{\varepsilon} & \text{for } |x| \leqslant \varepsilon \end{cases}$$

the constants $b_\epsilon^{}$,c $_\epsilon^{}$ being adjusted so that $\phi^\epsilon\in C^1(B(0,1/\epsilon))$, $\,\phi$ being the

function defined in the introduction.

It is readily seen that:

(7)
$$\chi^{\epsilon} \longrightarrow \sum_{1 \leq i \leq m} \gamma_{i} \, \delta(x - a_{i})$$

$$A\phi^{\epsilon} = (\omega_{N} \epsilon^{N})^{-1} \, \chi_{B(O, \epsilon)} \longrightarrow \delta(x)$$

$$\min(\phi, \phi(\epsilon)) \leq \phi^{\epsilon} \leq \phi \quad \text{over } B(O, 1/\epsilon)$$

Thus, u^{ϵ} is expected to "tend" to a solution of (1).

Step 2: Limiting process: Extend u^{ϵ} to \mathbb{R}^N by setting $u^{\epsilon} = 0$ for $|x| \ge 1/\epsilon$. We need the following estimate:

LEMMA 2.1:
$$\exists \alpha : \forall K \subset \mathbb{R}^N \setminus \{a_1, ..., a_m\}, \exists C_K$$

$$\|u^{\epsilon}\|_{C^{1,\alpha}(K)} \leq C_K.$$

Assume for the moment that this lemma has been proved. In that case, u^{ϵ} is uniformly bounded on every annular domain around any a_i . Therefore, by the maximum principle on small balls around the points a_i , $u^{\epsilon} - \gamma_i \; \phi^{\epsilon}(x-a_i)$ is bounded (independently of ϵ) on such balls. On the other hand there is a sequence $\epsilon_k \to 0$ such that u^{ϵ_k} tends pointwise on $\mathbb{R}^N \setminus \{a_1,...,a_m\}$ to an element u of $C^1(\mathbb{R}^N \setminus \{a_1,...,a_m\})$. This u thus satisfies

(8)
$$| Au = 0 \quad \text{in } \mathbb{R}^{N} \setminus \{a_{1}, ..., a_{m}\}; \quad u(x) = O(\phi) \text{ as } |x| \to \infty$$
 for every i , $u(x) - \gamma_{i} \phi(x - a_{i})$ is bounded near a_{i} .

Indeed, the maximum principle on the exterior of a large ball gives $u = O(\phi)$ (thus, in particular, u tends to zero at infinity).

That u satisfying (8) gives indeed a solution to (1) is proved in Step 3

Let us now prove Lemma 2.1:

Proof of Lemma 2.1: a) Let $(u^{\epsilon})^*$ be the decreasing rearrangement of $|u^{\epsilon}|$. As the rearrangement of χ^{ϵ} is a multiple of $A\phi^{\epsilon}$ the estimates of Talenti [9] imply that

$$(9) (u^{\varepsilon})^* \leqslant C\psi.$$

Now there is a q > p-1 such that $\phi \in L^q(B(0,1))$. Therefore

$$\int_{\mathbb{R}^N} e^{-|x|^2} |\varphi(x)|^q dx \leqslant C.$$

By a theorem of Hardy-Littlewood,

$$\int_{\mathbb{R}^{N}} e^{-|x|^{2}} |u^{\varepsilon}|^{q} dx \leq C.$$

This proves that for every $K \subset \subset \mathbb{R}^N$

(10)
$$\| u^{\varepsilon} \|_{L^{q}(K)} \leq C_{K}$$

b) Let us now take for K a ball B(a,R) (which does not contain any of the a_i 's). We now have Au = 0 on K. Let us estimate

(11)
$$\| u^{\varepsilon} \|_{W^{1,p}(B(a,R/4))}$$

First note that it suffices to estimate $\| u^{\varepsilon} \|_{L^p(B(a,R/2))}$. Indeed it is known that, multiplying Au=0 by $\zeta^p u$, with ζ a suitable smooth function, one can estimate (11).

We now use a classical trick [8]: let β , k > 0, 1 > k, $\hat{u} = |u| + k$, r = q/p > 1/p' with $\beta = 1 + p(r-1)$, and let

(12)
$$\begin{cases} \hat{u}^r & \text{if } k \leqslant \hat{u} \leqslant 1 \\ F(\hat{u}) = & \\ r!^{r-1} \hat{u} - (r-1)!^r & \text{if } \hat{u} \geqslant 1 \end{cases}$$

$$G(u) = sgn(u) \left\{ F(\hat{u})F'(\hat{u})^{p-1} - r^{p-1}k^{\beta} \right\}$$

so that $G'(u) = (\beta/r)F'^{p}(\hat{u})$ if |u| < 1-k, F'^{p} otherwise. We then pick $\zeta \in \mathcal{D}(B(a,R))$ and compute (Au, $\zeta^{p}G(u)$). This gives, after use of Hölder's inequality,

$$(13) \qquad \int_{B(a,R)} \zeta^p |\nabla F(\hat{u})|^p dx \leqslant C \int_{B(a,R)} |\nabla \zeta|^p F(\hat{u})^p dx.$$

Now (10) means that $F(\hat{\mathbf{u}}) \in L^p(B(a,R))$ So we let $i \to \infty$ and then

 $k\rightarrow 0$ to obtain (by Sobolev)

(14)
$$|u|^r \in L^{Np/(N-p)}(B(a,R)).$$

As N/(N-p) > 1 we may iterate this process t times with $p \le q [N/(N-p)]^t$.

Remark 2.1: This lemma remains true for $p \ge N$ because (14) then becomes: $|u|^r \in L^s_{loc}(B(a,R))$ for any s > 1.

c) The regularity estimates of Part 3 now prove that u^{ϵ} is locally bounded in some space $c^{1+\alpha}.$

Lemma 2.1 is proved.

Step 3: Proof of existence completed: We now have to show that u satisfying (8) solves (1). As $\phi \rightarrow 0$ at infinity it will follow that $u - \sum_i \gamma_i \phi(x-a_i)$ is bounded. It therefore suffices to prove

LEMMA 2.2: If
$$u \in C^{1}(B(0,1)\setminus\{0\})$$
, $Au = 0$ on $B(0,1)\setminus\{0\}$
and $u - \varphi \in L^{\infty}(B(0,1))$, then
$$Au = \delta \qquad \text{in} \quad \mathcal{D}'(B(0,1))$$

Proof of Lemma 2.2: Let $u_{\sigma}(x) = u(\sigma x)/\sigma^{(p-N)/(p-1)}$, 1/2 < |x| < 1. Au $_{\sigma} = 0$, and u_{σ} is bounded so that by Lemma 1, $|\nabla u_{\sigma}|$ is locally bounded in

1/2<|x|<1. This proves that

(15)
$$(\nabla u - \nabla \phi)(x) = o(\nabla \phi(x)) \text{ as } x \rightarrow 0.$$

Then compute for ζ , $\eta_r \in C_0^\infty(B(0,1))$, $\eta_r = 0$ on $\{|x| < r\}$, 1 on $\{|x| \ge 2r\}$ and $|\nabla \eta_r| \le C/r$,

$$\begin{split} \int_{B(0,1)} & |\nabla u|^{p-2} \nabla u. \nabla \zeta \; dx = \lim_{r \to 0} \int_{B(0,1)} & |\nabla u|^{p-2} \nabla u. \eta_r \nabla \zeta \; dx \\ & = \lim_{r \to 0} \int_{B(0,1)} & -|\nabla u|^{p-2} \nabla u. \zeta \nabla \eta_r \; dx \\ & = \lim_{r \to 0} \int_{B(0,1)} & -|\nabla \psi|^{p-2} \nabla \psi. \zeta \nabla \eta_r \; dx \\ & = \zeta(0). \end{split}$$

Step 4: Proof of uniqueness: Let u, v be solutions of (1), (3). We shall prove that $\forall \lambda > 0$, $u+\lambda \geqslant v$, which clearly proves $u \geqslant v$, and by symmetry u=v.

Let $\,\lambda$, $\varrho>0\,$, η smooth such that

$$\eta = \begin{cases} 1 & \text{if } \min_{1 \le i \le m} |x - a_i| > 2\varrho \\ \\ 0 & \text{if } \min_{1 \le i \le m} |x - a_i| < \varrho \end{cases}; |\nabla \eta| < C/\varrho.$$

Then $\zeta = \eta(v-u-\lambda)^+ \in W^{1,\,p}(\mathbb{R}^N)$ and is compactly supported As $\zeta = 0$ near $\{a_1,..., a_m\}$, $(\zeta,Au) = 0$ and

$$\int_{\{v \geqslant u + \lambda\}} \eta(|\nabla u|^{p-2} \nabla u - |\nabla v|^{p-2} \nabla v, \nabla u - \nabla v) dx +$$

$$(16)$$

$$+ \sum_{1 \leqslant i \leqslant m} \int_{\{\varrho \leqslant |x - a_i| \leqslant 2\varrho; v \geqslant u + \lambda\}} (|\nabla u|^{p-2} \nabla u - |\nabla v|^{p-2} \nabla v, \nabla \eta)(u - v) dx = 0.$$

For every i, (15) proves that $|\nabla u|^{p-2}\nabla u - |\nabla v|^{p-2}\nabla v = o(|\nabla \phi|^{p-1}(x-a_i))$ as $x \to a_i$. Therefore as $\varrho \not = 0$ the second term of (16) goes to 0 (recall that u - v is bounded). Thus $\nabla u = \nabla v$ a.e. on $\{u + \lambda \leqslant v\}$. In other words, $v \leqslant u + \lambda$.

Theorem 1 is proved (for p < N).

Remark 2.2: We never used the property $\sum_i \gamma_i = 0$. Theorem 1 is thus also true for p<N and $\sum_i \gamma_i \neq 0$.

2.2: Second case: p=N:

a)Conformal invariance: In this case, as $|\phi| \to \infty$ at both 0 and infinity, an estimate such as (9) is clearly impossible ($(u^{\epsilon})^* \ge 0$, $\phi(x) = C$ Log(1/|x|)). On the other hand, the problem is conformally invariant and thus equivalent to its analogue on the N-sphere.

More precisely, let $\pi \colon S^N \to \mathbb{R}^N$ denote the stereographic projection from the North pole. It is easily seen that (1) is equivalent to (S^N being endowed with its customary Riemannian structure)

$$\begin{cases} -\text{div}_{S} N \left(|\nabla \hat{\mathbf{u}}|_{S} N^{N-2} |\nabla \hat{\mathbf{u}}| \right) = \sum_{1 \le i \le m} \gamma_{i} \delta(\mathbf{x} - \pi^{-1}(a_{i})) \\ \hat{\mathbf{u}} \left(\text{North} \right) = 0 \quad ; \quad \hat{\mathbf{u}} = \mathbf{u}_{o} \pi \end{cases}$$

Remark 2.3: One might think that there is a new singularity at the North pole. This does not occur because if \hat{A} \hat{u} is the l.h.s. of (17),

 \hat{A} $\hat{u}=0$ on V\{North} where V is any neighborhood of the pole, and we know that u is bounded (because u \rightarrow 0). Therefore ∇ u \in L $_{loc}^{N}$ (V) if V is small enough and the singularity is removable: u is of class C 1 near the pole (cf. Lemma 2.1 above).

b) Symmetrization on S^N and end of proof. Let us solve (17) We define $\hat{\phi} = \phi_0 \pi$, $\hat{\phi}^{\epsilon} = \phi^{\epsilon}_0 \pi$ so that

 $\hat{A} \hat{\phi}^{\epsilon} = \Lambda (A \phi^{\epsilon})_{o} \pi$ where $\Lambda(x)$ is the Jacobian of π . It is therefore sufficient to prove that solutions of

$$\widehat{A} \ u = f \quad \text{on } S^{N} \quad ; \quad \|f\|_{L^{1}} \leqslant C$$

with $f \in C^{\infty}$ satisfy an L^q bound for some q > N-1 indeed such a bound will enable us to obtain a $C^{1+\alpha}$ local bound on solutions of approximate problems, just as in the case p<N.

Now it is enough to consider solutions of

(18)
$$A_{\epsilon} u := -div_{S} N \left((\epsilon^2 + |\nabla u|^2)^{(N-2)/2} |\nabla u| \right) = f \quad ;$$

indeed, if u_{ϵ} , solution of (18), satisfies an L^q bound (uniform in ϵ), we may pass to the limit as $\epsilon \to 0$ (using the fact that u_{ϵ} is bounded in $C^{1+\alpha}$ in terms of, say, the L^{∞} norm of f)-similarly, one may approximate functions such as χ^{ϵ} by smooth ones. Let us therefore shift our attention to (18). Standard results now show that u is itself smooth. Its regular values are therefore dense, and for t regular value of u,

$$H^{N-1}(\{u=t\}) = P(\{u>t\})$$

by equation (33) of the appendix). Federer's co-area formula gives.

(19)
$$-d/dt(\int_{u>t} |\nabla u| dx) = P(\{u>t\})$$
 a.e.

(moreover, the r.h.s. is in $L^1(\mathbb{R})$). Let

$$\Phi(t) := \int_{u>t} (\varepsilon^2 + |\nabla u|^2)^{(\mathsf{N}-2)/2} |\nabla u|^2 = (\mathsf{A}_\varepsilon u \,,\, (\mathsf{u}-t)^+)$$

Φ is nonincreasing and one has a e

(20)
$$-\Phi'(t) \le \int_{u>t} f \le ||f||_{L^1}$$

(To prove (20), just consider $(\Phi(t+h)-\Phi(t))/h$).

Let us now define the symmetrization of u as follows.

Note that u is <u>not</u> assumed to be nonnegative, u and u* are equimeasurable, and for F Borel, $\int_{S^N} F(u) \, dV = \int_{0}^{|S^N|} F(u^*) \, ds$ (adapt the proof of the corresponding result in \mathbb{R}^N).

We are now going to estimate u*. But first of all, we assume, as we may, that u is added a constant in (18) so that

mes(u>0) and mes(u<0) are both $\leq |S^{N}|/2$.

Define
$$C_{\varepsilon}: \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}$$
, decreasing, by

$$C_{\varepsilon}((\varepsilon^2 + t^2)^{(N-2)/2} t) = 1/t.$$

We check that $C_{\epsilon}(s) \geqslant s^{-1/(N-1)}$ and that C_{ϵ} is convex on \mathbb{R}_{+}^* Jensen's inequality now gives

$$(22) \quad C_{\epsilon} \begin{bmatrix} d/dt (\int_{u>t} (\epsilon^2 + |\nabla u|^2)^{(N-2)/2} |\nabla u|^2 \, dV \\ \\ d/dt (\int_{u>t} |\nabla u| \, dV) \end{bmatrix} \qquad \psi'(t) \\ \leq \qquad \qquad a.e.$$

[Proof: replace d/dt by a difference quotient and use Jensenlinequality].

Inserting (19) and (20) into (22) now gives:

(23)
$$-\psi' \ge C\psi^{1-1/N} C_{\epsilon}(C/\psi^{1-1/N}) \ge C\psi.$$

 ψ is nonincreasing, so is its singular part w.r. to the Lebesgue measure dt. We may thus integrate (23) for $t\!\geqslant\!0$

 $\label{eq:theorem} \text{If $t\!\geqslant\!0$,}\qquad t\leqslant C\;\text{Log}(\psi(0)/\psi(t))\leqslant C\;\text{Log}\;(|S^{N}|/2\psi(t))$ so that if $s<|S^{N}|/2$,

$$0 \le u^* \le C \operatorname{Log}(|S^N|/2s)$$
.

Similarly, one obtains a bound on the negative part of u*. Finally, we see that $\|u\|_{L^q(S^N)}$ is bounded for any q>1, in terms of $\|f\|_{L^1}$ only, uniformly in ϵ . q.e.d.

The proof of Theorem in this case is now completed as before.

Remark 2.3: We may treat the case when $\sum_i \gamma_i \neq 0$ as well: performing an inversion, one may create a new singularity with $-\sum_i \gamma_i$ as coefficient. This brings us back to the case we have just treated. We may thus consider that if $\sum_i \gamma_i \neq 0$, there is one more singularity, "at infinity".

2.3: Third case: p>N:

a) Existence: We first solve

(24)
$$\begin{cases} Au_{R} = \sum_{1 \le i \le m} \gamma_{i} \delta(x-a_{i}) & \text{for } |x| < R \\ u_{R} = 0 & \text{for } |x| = R \end{cases}$$

by minimization of $p^{-1}[\int_{\mathsf{B}_{\mathsf{R}}} |\nabla \mathsf{u}_{\mathsf{R}}|^p \, \mathrm{d} x - \sum_{1 \leqslant i \leqslant m} \gamma_i \, \mathsf{u}_{\mathsf{R}}(a_i)] \text{ over } \mathsf{W}_0^{-1,p}(\mathsf{B}_{\mathsf{R}}).$

Let $\eta \in \mathcal{D}(\mathbb{R}^N)$, $\eta = 1$ near $\{a_1,...,a_m\}$, supported by B_{R_0} with $R_0 \leqslant R$, fixed. Let also $\hat{u}_R = |B_{R_0}|^{-1} \int_{B_R} u_R(x) \, dx$.

$$\int_{\mathsf{B}_{\mathsf{p}}} \left| \nabla \mathsf{u}_{\mathsf{p}}(\mathsf{x}) \right|^{\mathsf{p}} \, \mathsf{d} \mathsf{x} \, = \, < \, \varrho \, \, , \, \, \eta(\mathsf{u}_{\mathsf{p}} \text{-} \hat{\mathsf{u}}_{\mathsf{p}}) \, > \,$$

because $\sum_{1 \le i \le m} y_i = 0$ (this is the only place where we use this assumption). This quantity is estimated by Poincaré's inequality on B_{R_0} :

$$\begin{split} \int_{B_{R}} |\nabla u_{R}|^{p} \, dx & \leq C \, \| \, \eta(u_{R} - \hat{u}_{R}) \, \|_{W_{0}^{-1,p}(B_{R})} \\ & \leq C \, (\|\nabla u_{R}\|_{L^{p}(B_{R}^{-})} + \| \, u_{R} - \hat{u}_{R}^{-} \|_{L^{p}(B_{R}^{-})}) \\ & \leq C \, \|\nabla u_{R}\|_{L^{p}(B_{R}^{-})} \end{split}$$

Therefore, $\|\nabla(u_R - \hat{u}_R)\|_{L^p(B_R)}$ is uniformly bounded. Now, by regularity, we obtain a bound on the modulus of continuity of ∇u_R on every ball which does not contain any of the points a_i . We can then pass to the limit $R \to \infty$, to obtain a solution u of Au = 0 on $\mathbb{R}^N \setminus \{a_1, ..., a_m\}$, and as u converges in C^1 on a large sphere containing all singularities, u_p can be compared to the solution of $Au = \sum_{1 \le i \le m} \gamma_i \delta(x - a_i)$ with u (restricted to that sphere) as boundary value. Thus u satisfies (1). That u tends to a limit at infinity (which we can assume to be 0) follows from Harnack's

inequality (as in [10] for instance).

b) Uniqueness: If u and v are solutions of (1),(3), then for every $\lambda>0$, $(u-v-\lambda)^+$ is compactly supported. One then argues as in the case p<N.

Remark 2.4: The reason why singularities are characterized by their "growth" may be seen in various different ways: let u satisfy Au = 0 in $B(1)\setminus\{0\}$.

- If $u = O(\phi)$ as $x \to 0$, then $|\nabla u|^{p-1} \in L^1$ and there is a constant c such that $Au = c\delta$. Indeed, it is classically shown (see e.g. [3]) that if D is a vector field in L^1 , and if div D = 0 in B(1)\{0}, then \exists c such that div D = $c\delta$.
- If $u=O(\phi)$, finer scalings prove that for some c, $u\sim c\phi$, so that $u-c\phi\in L_{loc}^{\infty}$, $Au=c\delta$. The argument runs as follows: let $u_{\sigma}(x)=u(\sigma x)/\sigma^{(\rho-N)/(\rho-1)}$, $c=\lim\sup_{x\to 0}u/\phi$. There is $\sigma_n\to 0$, and a sequence (x_n) of unit vectors such that $x_n\to x_{\infty}(|x_{\infty}|=1)$, $u_{\sigma_n}(x_n)\to c$ C(N,p). Restrict u_{σ} to an annulus; modulo extraction, $u_{\sigma_n}\to v\leqslant c\phi$ with equality at x_{∞} . By the strong maximum principle, $v=c\phi$ (see [10]); and the maximum principle on annular domains gives $u/\phi\to c$ as $x\to 0$. Therefore, $\forall \epsilon>0$, $u\leqslant (\gamma+\epsilon)\phi+C$ and thus $u-c\phi\in L_{loc}^{\infty}$.

The case p=N requires a second scaling of the type $\hat{u}_{\sigma}=u-C\ Log\ \sigma.$ At an isolated singularity, $u=c\phi+\gamma+o(1)$ ($\gamma=const.$).

- That $u-c\phi \in L_{loc}^{\infty} \Rightarrow Au = c\delta$ can be given yet another proof based on capacity estimates [7,8]. Tracing the constants in Serrin's results gives the conclusion (without using regularity estimates).

Remark 2.5: One might also have minimized directly $[\int |\nabla u|^p/p - < \nu, u >]$

with $\mu = \sum_i \gamma_i \, \delta(x - a_i)$ over $\mathfrak{D}^{1,p}(\mathbb{R}^N)$. The point is that we are then dealing with functions modulo constants. A similar approach is valid in more general cases, replacing Sobolev by Orlicz-Sobolev spaces.

Remark 2.6: After this work was completed, we learned that Boccardo and Gallouët have obtained some existence results for $Au = \mu$ bounded measure, on bounded domains [4]. Their result differs from ours in that they do not obtain sharp regularity results and do not study the precise behaviour of solutions at a singularity.

3. REGULARITY RESULTS:

The purpose of this part is to extend some known regularity results. We consider the following type of equation:

$$(P)_{0} - \operatorname{div} (\rho(|\nabla u|^{2}) \nabla u) = 0$$

on, say, the unit ball. ϱ : $\mathbb{R}_+ \to \mathbb{R}_+$ is not assumed to satisfy any homogeneity condition but rather some growth condition. For the sake of simplicity, we shall restrict ourselves to $\varrho(t) = \text{Log}(t+1)$ but one might have considerd much more general nonlinearities with $\varrho(0+) = 0$. The argument works in particular for $\varrho(t) = t^{\sigma}$, $\sigma > 0$ (see Uhlenbeck [14]). For $-1/2 < \sigma < 0$, the same result holds, and we prove it by a duality argument, given at the and of this section.

We rewrite the equation as a system on differential forms: $\omega = du$ solves:

(P)
$$d\omega = 0$$
 ; $\delta(\varrho(|\omega|^2)\omega) = 0$ in B(0,1),

where d and δ denote exterior differentiation and codifferentiation.

THEOREM 2: There exists an $\alpha > 0$ such that if $\int_{B(1)} \rho(|\omega|^2) |\omega|^2 dV \le a$

and ω solves (P), then

$$\|\omega\|_{C^{0,\alpha}(B(0,1/2))} \le C(a).$$

In other words, u solution of (P)₀ is locally of class $C^{1,\alpha}$.

N.B. We shall never use the fact that the degree of the differential form $\boldsymbol{\omega}$ is 1.

Proof of Theorem 2: The argument breaks into two steps. The first is an L^{∞} estimate, the second is the Hölder estimate. We are adapting here the argument of [14].

First Step: L[∞] estimate:

Let $Q=|\omega|^2$, and define H by H(0) = 0 and H'(t) = $\varrho(t)$ + $2t\varrho'(t)$. Note that $\varrho/(\varrho+2t\varrho')$ is bounded above and below by positive constants. Write ϱ for $\varrho(Q)$ and similarly for H, ϱ',\ldots .

LEMMA 3.1: i) There is a uniformly elliptic operator with bounded coefficients, $L = -\partial_{\alpha}(a^{\alpha\beta}(x) \partial_{\beta} .)$, such that $L(H(Q)) \leqslant -C\rho |\nabla \omega|^2$ ii) $\sqrt{H} \in H^1_{loc}(B(1))$.

This lemma, together with the weak Harnack inequality, shows that H (and thus Q, and ω) is bounded.

Proof of Lemma 3.1: (Sketch) i) Compute $(\omega, \partial_i \partial^i(\rho \omega))$ and recall that $-\partial_i \partial^i = d\delta + \delta d$. One obtains i) with

$$a^{\alpha\beta} = \delta^{\alpha\beta} - (\rho'/H')b^{\alpha\beta}$$

where b is quadratic in ω and does \underline{not} depend on ϱ

ii) The idea is of course to "differentiate the equation" We shall use a differential quotient method. But we must first show that $d\omega=0$ implies (locally) that $\omega=d\phi$ where ϕ has weak derivatives which may be estimated in terms of $\int_{B(1)} Log (|\omega|+1)|\omega|^2 dx$. This in turn necessitates the extension of the Calderon-Zygmund inequality to the relevant Orlicz space, which is straightforward in this example. If $\Delta_{h,i}$ denotes the i^{th} differential quotient of step h, one then obtains ii) by writing (η being smooth, compactly supported in B(1))

$$(\eta^2 \Delta_{h,i} \varphi, \Delta_{h,i} \delta(\varrho \omega)) = 0$$

in which one lets h→0.

Second step: Hölder estimate.

Let us first introduce some notation:

$$F(\omega) = \rho(Q)\omega$$
; $K(\omega) = \sqrt{\rho(Q)} \omega$.

We now prove a lemma which asserts, grossly speaking that either $\omega(0)=0$ and ω is Hölder continuous at 0, or ω is close to a nonzero constant form – which by Lemma 3.3 below, again implies Hölder continuity.

LEMMA 3.2 Let $\lambda \in (0,1)$, $Q \le M$, $M(r) := \sup_{|\mathbf{x}| \le r} |\omega(\mathbf{x})|^2$. Then, there is a C > 0 such that for every r > 1/4, one of the following holds:

i)
$$M(r) \leq (1-\lambda) M(4r)$$
,

ii)
$$\exists \omega_0 ; |\omega_0|^2 \leq M$$
,
$$\int_{B(r)} \rho(|\omega_0|^2) |\omega - \omega_0| dx \leq Cr^N \lambda M(4r) \rho(M(4r))$$
 and if $Q_0 = \rho(|\omega_0|^2)$, $\rho(Q_0)Q_0 \geq v(\lambda) M(4r) \rho(M(4r))$ with $v(0+) = 1$.

Proof of Lemma 3.2: Assume that i) is false. By change of variables, we may assume r=1/4. Let $M_1=M(1/4)$. For the first part of ii), use the fact that H(M)-H(Q) is a <u>supersolution</u> of an elliptic operator, so that its inf, víz. $H(M)-H(M_1)$, is bounded below by $C\int_{B(3/4)} (H(M)-H) \, dx$. On the other hand, by Poincaré, if $\frac{1}{1}B(1/4)$ $K(\omega)=K(\omega_0)$,

and $|\nabla K(\omega)|^2 \le C\rho |\nabla \omega|^2$. Now, $\rho |\nabla \omega|^2 \le -C L(H(Q))$. Multiply this inequality by η^2 (η smooth, compactly supported) and replace terms such as $\int H\Delta \eta^2$ by $\int (H-H(M)) \Delta \eta^2$. After some tedious calculations, we obtain

(26)
$$\int_{B(1/4)} \rho |\nabla \omega|^2 dx \le C \int_{B(1/2)} (H(M) - H(Q)) dx,$$

and we thus bound

(27)
$$\int_{B(1/4)} |K(\omega) - K(\omega_0)|^2 dx$$

by $C(H(M)-H(M_1)) \leq C(M-M_1)\varrho(M)$.

One then shows that $\varrho(Q_0)\leqslant |K(\omega)-K(\omega_0)|^2/|\omega-\omega_0|^2$ and as i) is false by assumption, M-M₁ \leqslant λ M.

As for the last part of ii), we have:

$$\begin{split} \int_{B(1/4)} \left(\sqrt{(M\varrho(M))} - \sqrt{(Q_0\varrho(Q_0))} \right) dx \\ & \leq \int_{B(1/4)} \left\{ \left(\sqrt{(M\varrho(M))} - \sqrt{(Q\varrho(Q))} \right) + \left(\sqrt{(Q\varrho(Q))} - \sqrt{(Q_0\varrho(Q_0))} \right) \right\} dx \\ & \leq \int_{B(3/4)} \left\{ C(H(M) - H(Q)) / \sqrt{(M\varrho(M))} + |K(\omega) - K(\omega_0)| \right\} dx \\ & \leq C \ H(M) \ (\lambda + \sqrt{\lambda}) \ / \ \sqrt{(M\varrho(M))} \ \leq \ C(\lambda + \sqrt{\lambda}) \sqrt{(M\varrho(M))} \end{split}$$

by the preceding estimates. Therefore, $\sqrt{(Q_0 \varrho(Q_0))}/\sqrt{(M\varrho(M))} \to 1$ as $\lambda \to 0+$. The Lemma is proved.

Now take λ with $\lambda/\nu(\lambda)<\epsilon$ and such that

$$\varrho(Q_0)Q_0>\nu(\lambda)M\varrho(M) \ \, \Rightarrow \ \, Q_0>\eta\;M,$$

where η and ϵ are defined in the next Lemma. Then apply the preceding lemma to $r=4^{-i}$. Either i) is true for every integer i, and $\omega(0)=0$, $|\omega(x)| \leq C|x|^{\theta}$ for some $\theta>0$, or ii) is true for $i=i_0$ and the following can be appealed to:

LEMMA 3.3: There exists $\varepsilon, v > 0$ such that if ω is a solution of (P) on B(1) and if ω_0 is a constant form with $|\omega_0|^2 < M = \sup_{B(1)} |\omega|^2$, then

i)
$$\int_{B(1)} |\omega - \omega_0|^2 dx \le \varepsilon M$$
 and

ii)
$$|\omega_0|^2 \ge vM$$

imply that $|\omega(x) - \omega(0)| \le C\sqrt{M} |x|^{1/2}$ on B(1/2).

This clearly ends the proof of Theorem 2.

<u>Proof of Lemma 3.3:</u> The idea is similar to that of [14], but one must check each estimate in the present setting. We just outline the construction. We write as in Step 1, $\omega = d\phi$; $\omega_0 = d\phi_0$ and define ψ as the solution of the linearization of

$$\begin{cases} \delta(\varrho d\phi) + d\delta\phi = 0 & \text{on B(1),} \\ \phi \text{ prescribed on } \partial B(1) \end{cases}$$

at ϕ_O . (This is relevant to our problem because we may choose $\delta\phi=0$). We ask that $\psi=\phi-\phi_O$ on $\partial B(1)$. Then let $\widetilde{\omega}=d\psi$ and $w=\widetilde{\omega}-(\omega-\omega_O)$. One proves that

(28)
$$\int_{B(1)} w^2 dx \le C v^{-2} \left(\int_{B(1)} |\omega - \omega_0|^2 dx \right)^{1+\beta}$$

for some positive β . This is the basic estimate.

Now let $\omega_1 = \omega_0 + \int_{B(1/2)} \widetilde{\omega}(x) \, dx$ and define recursively ω_{i+1} from ω_i , as ω_1 was defined from ω_0 , but <u>replacing</u> $x \mapsto \omega(x)$ by $x \mapsto \omega(r^1 x)$ We then observe that ω_i tends to $\omega(0)$. On the other hand, constructing

similar sequences $\omega_{i,x}$, $\omega_{i,y}$ for any x,y in B(1), one gets, if r is fixed and if x, y, satisfy $r^{i+1} \le |x-y| \le r^i$,

$$|\omega(x)-\omega(y)|\leqslant Cr^{1}\left(\int_{B(1)}|\omega-\omega_{0}|^{2}\right)^{1/2}$$

as desired.

This ends the proof of our regularity theorem.

Let us now give a duality theorem which will enable us to extend the preceding results in a very significant way. Indeed, assume tht J(t) is a convex function such that J(0) = 0, J'(t) = t ϱ (t²). Then, if \overline{J} is its conjugate, and $\overline{J}' = t \, \overline{\varrho} \, (t^2)$, we see that to any solution of (P), we may associate a solution of (\overline{P}): $d\theta = 0$; $\delta(\overline{\varrho}(|\theta|^2)\theta) = 0$ by setting

$$\theta = * \varrho(|\omega|^2)\omega$$
 (* = Hodge duality).

If (\overline{P}) satisfies a regularity theorem, and if the assignement $\theta\mapsto\omega$ is (locally) Hölder continuous, one obtains a regularity result for (P) too. In particular,

THEOREM 3: Let p be any real number > 1.If $\int_{B(1)} |\omega|^p < \infty$, $d\omega = 0$, $\delta(|\omega|^{p-2}\omega) = 0$ in B(1), then ω is locally Hölder continuous.

Remark 3.1: In 2 dimensions we notice that this duality correspondence

associates to any "p-harmonic" function (i.e. solution of $\operatorname{div}(|\nabla u|^{p-2}|\nabla u)=0$) a "p/(p-1)-harmonic" function. For p=2, this is nothing but the correspondence between conjugate harmonic functions. Note also that the conjugate of a p-harmonic u of the form $r^{\sigma}g(x/|x|)$ is again of the same form.

APPENDIX: PERIMETER ON MANIFOLDS.

In this section, we propose a method of construction of the perimeter of a general measurable subset of a compact oriented Riemannian manifold \mathcal{M} . It generalizes a work of E. de Giorgi [5]. We shall use freely notions of calculus on manifolds, for which we refer the reader to [2] for instance. We just recall that if $\Delta = d\delta + \delta d$ is the Laplacean on k-forms over \mathcal{M} , there exists a heat kernel $e_k(x,y,t)$ which is a smooth double k-form (see e.g. Patodi [7]) and satisfies $d_x e_k(x,y,t) = \delta_y e_{k+1}(x,y,t)$, where d_x denotes exterior differentiation w.r. to x and δ_y codifferentiation w.r. to y. Thus, for any bounded k-form θ ,

(29)
$$\theta(x,t) = \int_{\mathcal{M}} e_{k}(x,y,t) \wedge * \theta(y)$$

satisfies

$$\theta_t + \Delta \theta = 0$$
 for $t > 0$

and, if θ is smooth, $\theta(x,t) \rightarrow \theta(x)$ uniformly as two

a) Definition of the perimeter:

We first need a lemma.

LEMMA A.1: There is C, depending only on m such that if $u_0 \in L^{\infty}(m)$ ("initial value"), $u(t) := e_0 * u_0$, then the function $f_{u_0}: t \to \int_{m} e^{-Ct} |du(t)| dV$

is nonincreasing over R+*

<u>DEFINITION</u>: $\lim_{t \downarrow 0} f_{\chi_E}(t) := P(E) \le \infty$ is the perimeter of the measurable subset E of

(We more generally call P(u) the limit of $f_{u_0}(t)$ as t\0 for any $u_0 \in L^\infty(m)$.)

Remark A.1: This is exactly de Giorgi's perimeter if m is replaced by \mathbb{R}^{N} . In that case C can be taken equal to 0.

Proof of Lemma A.1: We may assume $u_0 \in C^{\infty}(m)$ because the heat kernel is smoothing. Let $du = \omega$.

$$d/dt \ u(t) + \Delta u(t) = 0$$
$$d/dt \ \omega(t) + \Delta \omega(t) = 0.$$

Let J be a smooth convex even function , and assume that $J(t)=t\varrho(t^2) \text{ with } \varrho \text{ smooth. Let } Q=|\omega|^2, \text{ H defined by H}(0)=0 \text{ and } H'(t)=\varrho(t)+2t\varrho'(t). \text{ We need the following lemma: (from now on, the letter C stands for a generic constant).}$

LEMMA A.2: In each local chart (with local coordinates (x^{α})), cre has, if $\varrho = \varrho(|\omega|^2)$, $Q = |\omega|^2$

(30)
$$C(\omega, -\nabla_{\alpha} \nabla^{\alpha} (\rho \omega)) \ge -\nabla_{\alpha} \nabla^{\alpha} H(Q) + C \min(\rho, \rho + 2Q\rho') |\nabla \omega|^2$$

Proof of Lemma A.2: Write $\omega = k!^{-1} \omega_l dx^l$ with $\omega_l = \omega_{i_1 \dots i_k}$, antisymmetric,

 $|\nabla \omega|^2 = k!^{-1} |\omega|_{j,\alpha} \omega_j^{|\alpha|} \text{ where } ; \text{ denotes covariant differentiation}.$

$$\begin{split} (\omega, \nabla_{\alpha} \nabla^{\alpha}(\varrho \omega)) &= \\ &= k!^{-1} \{ \nabla^{\alpha} [(\varrho \nabla^{\alpha} \omega_{1} + 2\varrho'(k!)^{-1} \omega^{J} \omega_{J;}^{\alpha} \omega_{1}) \omega^{J} \} - \\ &- (\nabla_{\alpha} \omega^{J}) (\varrho \nabla^{\alpha} \omega_{1} + 2\varrho'(k!)^{-1} \omega^{J} \omega_{J;}^{\alpha} \omega_{1}) \} \\ &= k!^{-1} \nabla_{\alpha} [(\varrho + 2Q\varrho') \omega^{J} \nabla^{\alpha} \omega_{1}] - \varrho \, |\nabla \omega|^{2} - 2\varrho'(\omega, \nabla_{\alpha} \omega)(\omega, \nabla^{\alpha} \omega). \end{split}$$

Now, taking normal coordinates at x_0 , we note that

$$0 \le (\omega, \nabla_{\alpha} \omega)(\omega, \nabla^{\alpha} \omega) \le 0 |\nabla \omega|^2$$

As $2\omega^l\nabla^\alpha\omega_l=k!\,Q_j^\alpha$, (30) follows, by distinguishing the cases when $\varrho'\geqslant 0$ and $\varrho'\leqslant 0$.

End of the proof of Lemma A.1: By Weizenböck's formulae,

(31)
$$\Delta\omega = -\nabla^{\alpha}\nabla_{\alpha}\omega + \Re(\omega)$$

where $|\mathcal{R}(\omega)| \le \gamma |\omega|$, with a constant γ depending only on curvature. As $\omega_t + \Delta \omega = 0$, for t>0 one has

$$\int_{\mathcal{M}} ((\varrho \omega, \omega_t) + (-\nabla^{\alpha} \nabla_{\alpha} (\varrho \omega), \omega) + (\mathcal{R}(\varrho \omega), \omega)) \ dV = 0.$$

Taking (30) into account yields:

$$\int_{\boldsymbol{m}} C \min(\varrho,\varrho+2Q\varrho') \left|\nabla \omega\right|^2 dV + d/dt \int_{\boldsymbol{m}} J(|\omega|) \, dV \leqslant C \int_{\boldsymbol{m}} \varrho \left|\omega\right|^2 dV.$$

Assume now that $\rho Q \leq CJ(|\omega|)$. We then have

(32)
$$d/dt (e^{-Ct} \int_{m} J(|\omega|) dV) \leq 0$$

We want (32) with "J(t) = |t|". Therefore, we set $J_{\epsilon}(t) = (\epsilon^2 + t^2)^{1/2}$ $\varrho_{\epsilon}(t) = (\epsilon^2 + t^2)^{-1/2}$ and $t^2\varrho_{\epsilon}(t^2) \le J_{\epsilon}$. Letting $\epsilon \ge 0$ in equation (32) written for $J = J_{\epsilon}$, we obtain that $t \to \int_{m} |\omega| \, dV$ is nonincreasing. P is thus well defined.

b) Properties of P:

i) Characterization of functions with measures as derivatives: If u is smooth and if t is a regular value of u, $\{u=t\}$ is a smooth submanifold of $\mathcal M$, and one has, if ϕ^{α} is a smooth vector field,

$$\int_{u>t} \nabla_{\alpha} \phi^{\alpha} dV = -\int_{u=t} \phi^{\alpha} \nabla_{\alpha} u / |\nabla u| d\sigma$$

where do is the measure on $\{u=t\}$ induced by the Riemannian structure of m. Thus, $\chi_{\{u>t\}}$ has weak derivatives which are measures. One has:

$$(33) \qquad \|\nabla\chi_{\{u>t\}}\| = \sup_{\phi_{\mathbf{w}}\phi^{\alpha}} \leq 1 \quad \int_{\{u>t\}} -\nabla_{\alpha}\phi^{\alpha} \ dV = H^{N-1}(\{u=t\}).$$

Thus, $P(\{u>t\})$ represents indeed the perimeter of $\{u>t\}$ in the ordinary sense. This fact is made more precise by the following result:

THEOREM 4: Let $u \in L^{\infty}$ (M). The following properties are equivalent.

- 1. $P(u) < \infty$
- 2. All derivatives of first order of u are measures. In case one of these holds,

(34)
$$\sup_{\varphi^{\alpha} \varphi_{\alpha} \leq 1} \int_{\mathcal{M}} -u \nabla^{\alpha} \varphi_{\alpha} dV = P(u).$$

Proof of Theorem 4: 1. \Rightarrow 2. It is enough to define X(u) where X is a smooth vector field. Let $X = X^{\alpha} \partial_a$ in local coordinates $-\partial_{\alpha}(X^{\alpha})$ is its formal adjoint X*.

Let ϕ be a smooth function on $\mathcal M$ and v(t) the solution of the heat equation such that v(0)=u. Define the measure ψ_t by

$$\mu_{\mathsf{t}} \cdot \phi \rightarrow \langle \phi, \mathsf{X} \mathsf{v}(\mathsf{t}) \rangle = \int_{m} \phi \mathsf{X} \mathsf{u}(\mathsf{t}) \, \mathsf{d} \mathsf{V}.$$

As P(u) < 0, we know that $\|Xv(t)\|_{L^1} \le C$. Thus $\exists t_n \to \infty$ such that $\mu_{t_n} \longrightarrow \mu$ (vaguely).

Now,

$$< \phi$$
, $Xv(t_n) > \rightarrow \psi(\phi)$

and

$$<\phi$$
 , $Xv(t_n)>= , $u(x)>$$

where S denotes the semigroup of the heat equation. Now, as $t_n\to 0$, $S(t_n)(-X^*\phi) \to -X^*\phi \text{ and we have proved that}$

(35)
$$y(\phi) = \langle -X^* \phi, u \rangle$$
 q.e.d..

Note that $\|\psi\| \leq P(u)$.

2. ⇒ 1. We know here that du is a 1-form with measures as coefficients (a "current of order 0").Let v(t) = S(t) u. If t>0,

$$v(t)(x) = \int_{m} e_{0}(x,y,t) \wedge_{y} u(y)$$

$$dv(t)(x) = \int_{m} de_{0}(x,y,t) \wedge_{y} u(y)$$

$$= \int_{m} \delta e_{1}(x,y,t) \wedge_{y} u(y).$$

If
$$\varphi = \varphi_{\alpha} dx^{\alpha}$$
 is a 1-form such that $\varphi^{\alpha} \varphi_{\alpha} = 1$,
 $< dv(t), \varphi > = \int_{m} (\varphi(x), \int_{m} (\delta e_{1}(x, y, t), v(y)) dV(y)) dV(x)$
 $= < \delta e_{1}(x, y, t), \varphi \otimes u >$
 $= < \delta < e_{1}(x, y, t), \varphi(x) > , u(y) > = < S(t) \varphi, du >$

(u being L^{∞} , Fubini applies). Thus,

$$\|\mathrm{d} v(t)\|_{L^{1}} = \sup_{|\phi| \leqslant 1} < \mathrm{d} v(t), \phi > \leqslant \|\phi\|_{L^{\infty}} \int_{\mathcal{M}} |\mathrm{d} u|$$

(where $\int_{\mathcal{M}} |du|$ stands for $\sup_{|\phi| \le 1} < du, \phi >$). This shows that $||dv(t)||_{L^1}$ is bounded and that its limit P(u) is $\leqslant \int_{\mathcal{M}} |du| < \infty.$ q.e.d..

ii)Poincaré-type inequality.

THEOREM 5: There is a constant S such that if $u \in L^{\infty}$, (N'=N/(N-1))

(36)
$$\inf_{c \in \mathbb{R}} \left(\int_{m} |u - c|^{N'} \right)^{1/N'} \leq S P(u).$$

Remark A.2: This gives an isoperimetric inequality if $u = \chi_F$.

Proof of Theorem 5: (36) is clear for smooth u. Let, for $u \in L^{\infty}$, v(t) = S(t) u. Take $(t_n) \ge 0$. We have:

$$P(v(t_n)) \ge S(\int_{m} |v(t_n) - c(t_n)|^{N'} dV)^{1/N'}$$

u being bounded, we may assume that $c(t_n) \to c_{\infty}$. On the otherhand, $v(t_n) \to u$ in L^2 and also in $L^{N'}$ (because u is bounded). Moreover, by definition, $P(v(t_n)) \not = P(u)$. This proves (36).

REFERENCES

- 1. Adler S.L., Piran T. Relaxation methods for gauge field equilibrium equations. Rev. Mod. Phys. <u>56</u> n°1,1-40 (1984)
- 2. Aubin T. Nonlinear Analysis on Manifolds, Monge-Ampère equations.

 Berlin-Heidelberg-New York. Springer 1980
- 3. Brézis H., Coron J.-M., Lieb E. Harmonic maps with defects. to appear.
- 4. Boccardo L., Gallouët T. in preparation
- 5. de Giorgi E. Su una teoria generale della misura (r-1) dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura ed Appl. 4^è ser. 36, 191-213 (1954)
- 6. Evans L.C. A new proof of $C^{1,\alpha}$ regularity for degenerate P.D.E.. J. Diff Eq. 50,315-338 (1982)
- 7. Patodi V.K. Curvature and eigenforms of the Laplace operator J. Diff. Geo. <u>5</u>, 233-249 (1971)
- 8. Serrin J. Local behavior of solutions of quasilinear equations. Acta Math. <u>111</u>, 247-302 (1964)
- Serrin J. Isolated singularities of solutions of quasilinear equations.
 Acta Math. 113, 219–240 (1965)
- 10. Serrin J. Singularities of solutions of nonlinear equations. Proc. Symp. Appl. Math. 17, 68-88 (1965)
- 11. Talenti G. Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura ed Appl. (4) 120, 159–184 (1979)
- 12. Tolksdorf P. On the Dirichletproblem for quasilinear equations in domains with conical boundary points. Comm P.D.E <u>8</u>, 773-817 (1983)

13. Tolksdorf P. Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq. <u>51</u>, 126–150 (1984)

14. Uhlenbeck K. Regularity for a class of nonlinear elliptic systems.

Acta Math. 138, 219–240 (1977)

15. Uraltseva N.N. Degenerate quasilinear systems. L.O.M.I. 7, 184-222 (1968)

Département de Mathématiques et d'Informatique Ecole Normale Supérieure 45 rue d'Ulm 75230 Paris Cedex 05 FRANCE

(Received July 8, 1986; in revised form October 30, 1986)