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QUASILINEAR PROBLENMS

WITH SINGULARITIES

Satyanad KICHENASSAMY

We solve here some quasilinear problems with a8 sum of Dirac
masses at the right-hand side. For that purpose, we prove 8 regularity
theorem for nonlinear systems of the Hodge-de Rham type, and we
generalize de Giorgi's notion of perimeter to subsets of compacts
manifolds.

1. INTRODUCTION:

I.1: Main Result:

This paper is devoted to the study of
() -divIVuP?vu) = Au = it ¥ 8(x-a) ; u—0 as Ixl-oo

N
where l<p<oo, 3 €R’) mz1 N>2 y €R and me Y;=0
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(see Rem. 1 3).

We say that u solves (1) if |Puf™' € L‘,OC(IRN). and (1) holds In the
sense of distributions. We build solutions which moreover satisfy

ueC'®RN\(a,, ..,a}

(2)
u-2, "y ek-a) € LORY

where ¢ 15 aradial solution of Ay =6 in R namely

[ CIN,p) Ix®-NV/-1) ifpzN

(3) o0 = |
| CONN) Log(1/1xD) ifp=N

CN.P) = (p=1)(N-p)™ (Nuoy ™"

(4)
CNNY = (N @ =volBY)

It turns out that solutions of (1) may be "characterized” by their

local behaviour. More precisely our main result reads

THEOREM 1. (1) has a unigue solution satisfying (2)

rk_i.l:  The methods of the paper mav be adapteq to the case of

bounded domains with prescribed (bounded) boundary values
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Remark 1.2 Equation (1) is related to some models of quark

confinement discussed e.g. in Adler - Piran [1].

Remark 1.3.  The condition " Z] y; = 0" can be omitted when p<N (see
Rem. 2.3 ).

The proof of Theorem 1 will be broken up into 3 cases each of
which has necessitated special adapted tools. The most delicate cases are
those when p<N and p=N because the problem does not have a variational
structure.

i) p<N:. We consider some particular "approximate” versions of (1) for

which solutions may be estimated by symmetrization methods. we tnen

use regularity estimates (in C ' %) which are proved in Part 3. These
regularity results were motivated by, and extend, earlier work of
Unhlenbeck, Evans, Tolksdorf,Uraltseva and others ( [6,14,13,15] and earlier
references therein). The novelty of our results lies in that they pertain to
systems on differential forms, which do not contain pure "power-like”
nonlinearities.

i) p=N. Using conformal invariance we shift to the corresponding

problem on SN. We then symmetrize functions defined on the sphere so as
to recover estimates similar to those used for p<N. We shall need to
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define the perimeter of a measurable subset of a manifold (here SN), in the
spirit of the work of de Giorgi [S]. This construction is detailed in the
Appendix.

i11) p>N. Here the problem admits a variational structure, on the space

D "D(RN) (: completion of & (IRN) for Iqulle). We also indicate very

briefly how to use a similar argument on more general nonlinearities.

1.3 Organization of the text:

1. Introduction
2. Proof of Theorem 1
2.1. First case: p<N
2.2. Second case : p=N
2.3. Third case : p>N
3. Reqularity resuits
Appendix. Perimeter on manifolds.

Acknowledgements: The Author thanks HBrézis for his kind suggestions
and encouragements. and C.Bardos and L.Boutet de Monvel for helpful

discussions.
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2. PROOF OF THEQREM 1.
1 Fi <N
The proof is broken into 4 steps.

Step 1. Approximate problem: Define u® for £ small enough by

A =y

()

ot ew, PiBio,17¢)
where
e N,- 1
X" = Liciem HONED pea )

(XE denctes the characteristic function of E for any measurable set E).

Define the radial function Q)E by

P(x) for x| » €

(6) |p£()() =

lp/(p—l) + b

C, Ix ; forixl € ¢

the constants b, ,c. being adjusted so that ;pe € C‘(B(O,l/ £)), ¢ being the
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function defined in the introduction.
It is readily seen that:

€
X" == L ¢iem ¥i 0%-3)

(7) Azpf‘:(w £)

min(y, Y(e)) € tpe <Y over B(O,1/¢)

€

Thus,u” is expected to "tend” to a solution of (1),

otep 2. Limiting process: Extend o€ to RN by setting u® = 0forixl > 1/¢,

We need the following estimate:
LEMMA2.1: 3o ¥YKeeR" \(a,,...a ). 1

£
flu "Cl LI Cy.

Assume for the moment that this iemma has been proved. In that

case, utis uniformly bounded on every annular domain around any a,

Therefore, by the maximum principle on small balls around the points a,
u® - Y; tpe(x-ai) is bounded (independently of €) on such balls. On the other
hand there 1s a sequence £, — O such that uek tends pointwise on [RN\

to an element u of C’(!RN“.[a, ,., a_]) . This u thus satisfies

[a, by @ i

o
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Au=0 in IRN\[a, o @)y UX)=0(p) as Ixl—>oc
(8)
for every i, u(x) -y, p(x-a) is bounded near a,

Indeed, the maximum principle on the exterior of a large ball
gives u = 0(p) (thus, inparticular, u tends to zero at infinity).

That u satisfying (8) gives indeed a solution to (1) is proved 1n
Step 3

Let us now prove Lemma 2.1:

Proof of lemma 2 |- a) Let (u®)* be the decreasing rearrangement of

u¥l. As the rearrangement of X is amultiple of Ap® the estimates of
Talenti [9] imply that

(9) Wy < Cyp.
Now there isaq> p-1 such that ¢ € L%B(0,1)). Therefore
JeN e"x|2 o3 dx < C
By a theorem of Hardy-Littlewood,
-1

fRN € 8% < C.

This proves that for every KR
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t

b) Let us now take for K a ball B(a,R) (which does not contain any

of the ai's). We now have Au = 0 on K. Let us estimate

&
(10 U™ /2 (a,R74))

. , £ .
First note that it suffices to estimate llu "L"(B(a,R /29y Indeed it

is known that, multiplying Au = 0 by C°u, with 7, a suitable smooth
function, one can estimate (11).

We now use a classical trick [8] let § k> 0, 1>k, U = lul+k,
r=q/p> 1/p° withf = 1+p(r-1), and let

l af if kgl
FQO) =
(12) Y- - i

6(u) = sgnw) (FEOF@P" - Pkl

so that G'(u) = (B/r)F P(Q) if lul < 1-k ,F'® otherwise. We then pick
L € D(B(aR)) and compute (Au, L°G(u)). This gives, after use of Hlder's
inequality,

(13 Joam CIVFOP dx < Cly,q I9CF FOP ox.

Now (10) means that F(u) € Lp(Bia,P.).) S0 we let i—o0 ana then
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k—0 to obtain (by Sobolev)

(14) W e LNP/(N-Phgea py).

As N/(N-p) > 1 we may iterate this process t times with
p < a[N/(N-p) ]t

Remark 2.1:  This lemma remains true for p > N because (14) then

becomes: Il €L’ (B(a,R)) foranys > 1.

loc

¢) The reguiarity estimates of Part 3 now prove that ut s locally

bounded in some space C'**.

Lemma 2.1 is proved.

Step 3. Proof of existence completed. We now have to show that u
satisfying (8) solves (1). As p—0 at infinity it will follow that u- 2. ¥,
tp(x-ai) is bounded. It therefore suffices to prove

LEMMA 22 If ueC'(B(O,IN0]), Au=0 gnB(O,1N0)

and u - p € LZ7(B(O, 1)), then
Au=b m DUBO0.1))

Proof of Lemma 2.2: Let u_(x) = utox)/g® ™D 1/oamar. Ay =0,
b b
and u, is bounded so that by Lemma 1, {7y | 15 locally bounded in
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1/2<|Ixi<1. This proves that

(15) (Vu - Vp)(x) = o(Vy(x)) as x—0.

Then compute for T, 1. € C0°°(B(0,l)) ,.=00on{lxl<r), 1on

(Xl > 2r] and V7 |<C/rr,
IB(O.!) IVuP~29u.9C dx = lim, o ]B(o,” IVuI”'Z‘Vu.an(, dx
= 1M, _g oo,y -IVUP2TuLT, dx
=1im__, 13(0,1) —IVwIp'2V¢.C,Vnr dx
= 1(0). g.e.d.
Step 4. Proof of uniqueness: Let u, v be solutions of (1), (3). We shall
prove that VA > O, u+A > v, which clearly proves u > v, and by symmetry
Uay,
Let A,p >0 ,1smooth such that
bt ming gem X-21> 20
n = IVl < Trp.

0 if  min e X-al <0

Then T = 7(v-u-A)* € w" PR and is compactly supported As{ =0
near (a, ,.., a_}, ({,Au) = 0 and
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vasen) WDUF270 - [OVP20V, Dy - v) ax +

(16)

-2 25,
* Licicm J[pglx—aiidp;v;m)\} (PUP“Qu-IovP Ty, 9u-v) dx = 0.

For every i, (15) proves that [PuP™29u-I9vP 29y = o(IV9P ' (x-a))
as x—a, Therefore as p¥O the second term of (16) goes to O (recall that

U - v is bounded). Thus Vu = Vv a.e. on (u+A<gv]. In other words, v<u+A.
Theorem 1 is proved (for p < N).

Remark 22.  We never used the property 2.y, = 0. Theorem 1 is thus
also true for p<Nand 2. y, = 0.

2 n =N
a)Conformal invariance : In this case, as [pl—oo at both 0 and infinity,

an estimate such as (9) is clearly impossible ( W 3 0, p(x)=C
Log(1/IxD) ). On the other hand, the problem is conformally invariant and
thus equivalent to its analogue on the N-sphere.

More precisely, let m: SN RN denote the stereographic projection
from the North pole. It is easily seen that (1) is equivalent to (SN being

endowed with its customary Riemannian structure)

291



KICHENASSAMY

N-2
~diveN (VOIN — 90) = T, 0 ¥, 60x - T (3))

(17)

G(North) =0 ; (=u.m

Remark 2.3:  One might think that there is a new singularity at the North
pole. This does not occur because if A G is the 1.h.s. of (17),
A G = 0 on V\[North} where V is any neighborhood of the pole, and we know

that u is bounded (because u-0). Therefore V u € LN‘M(V) if Vissmall

enough and the singularity is removable: u is of class C] near the pole (cf.
Lemma 2.1 above).

b) Symmetrization on S Nanq end of proof- Let us solve (17) We define
9 = Yo7, 9° =T So that

A fp‘ = /\(Azp‘)on where A(x) 1s the Jacobian of . it 1S therefore

sufficient to prove that solutions of

>
<
1
—
Qo
o
()]

;< C

with f € C% satisfy an L bound for some q > N-1 indeeq such a bound will

{FY

enable us to obtaina C Jocal bound on solutions of approximate

problems, just as in the case p<N.

Now 1t is enough to consiger solutions of

. 2 IN-2) /2
(18) A, U= -dIVeN (2wt P 2 gy = ¢
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indeed, if Ue solution of (18), satisfies an L% bound (uniform in £), we may
pass to the limit as €0 (using the fact that Ue is bounded in C'** in

terms of, say, the L* norm of f)-similarly, one may approximate functions
such as X° by smooth ones. Let us therefore shift our attention to (18).
Standard results now show that u is itself smooth. Its regular values are

therefore dense, and for t regular value of u,

H™((u=t)) = P(u>t))
by equation (33) of the appendix). Federer's co-area formula gives.
(19 -d/dt(,,, IVul dx ) = P((u>t)) ae.

(moreover, the r.h.s. is in LY(R)). Let

2)(N—2)/2

2 +
®(t) = ]m (€2 + [9ul IVul™ = (AU, (u-07)

$ 1s nonincreasing and one has a e

(20) -d'(t) « |

u>t

<l

(To prove (20), just consider ($(t+h)-d(t))/h).

Let us now define the symmetrization of u as follows.
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if (t) = mes(u>t) and 0gs< IS = [qu 14V, let

(21)

u*(s) := inf [teéR ; p(t)<s).

Note that u is not assumed to be nonnegative. u and u* are

N
equimeasurable,and for F Borel, .[SN Fwdv = jols | F(u*) ds (adapt the

proof of the corresponding result in PN).
We are now going to estimate u*. But first of all, we assume, as we
may, that u is added a constant in (18) so that
mes(u>0) and mes(u<0) are both < I5\1/2.

Define C ¢ R,” - R,", decreasing, by

2 t2)(N-2)/2

Ce((ﬁ + t) = 1/1.
-1/(N-1) ' .
We check that Ce(s) 25 and that C 5 is convex on R
Jensen's inequality now gives
a/dt(f,,, (29uH™ 249y’ av p(t)
(22) C, < ae.
d/at(f ., IVul av) J d/at(f,,, 19ul v )

[Proof: replace d/dt by a difference quotient and use Jensensinequality].
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inserting (19) and (20) Into (22) now gives:

1-1/N 1-1/N

(23) oMo

Y is nonincreasing, so is its singular part w.r. to the Lebesgue

) 2 Cp.

measure dt. We may thus integrate (23) for t>0
If 120, t<CLog(p(0)/p(t)) < C Log (ISV/2p(t))
so that if s < ISV/2,

0 < u* < CLog (ISM)/2s) .

Similarly, one obtains a bound on the negative part of u*. Finally,

we see that IluIILq(SN) is bounded for any g>1, in terms of |ifl|, 1 only,

uniformly in €. ged.
The proof of Theorem in this case is now completed as before.

Remark 2.3 We may treat the case when Zi y; = 0 as well: performing
an inversion,one may create a new singularity with -zi Y, as coefficient.
This brings us back to the case we have just treated. We may thus consider

that if 2. ¥; # 0, there is one more singularity, "at infinity”,

2.3:. Third case: p>N:

a) Existence: We first solve
Aug, = leism Y, 6(x-3a) for Ixl <R
(24)
U = 0 for Ix[=R
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Lo " -1 p 1,
by minimization of p []BR VUl 6 = L i e ¥i Ua(®) ] over W, P(Bp)

Letpe¢ b(tRN), 7= 1 near [a,,...,am}, supported by BR with R,<R,
0

: - -1
fixed. Let also 0y = |BROI IBR Up(X) dx.
ij VU dx = <, Duy-0y) >

because Zm <m ¥ = 0 (this is the only place where we use this

assumption). This quantity is estimated by Poincaré’s inequality on BR ;
0

p ~
ij IVugP dx € C Il 9ug-0p) "wo"”(BR)

€ C (HVUR“LD(BR ) + " UR"'OP "LD(BR ) )

Therefore, [V (u,-0)I L"(B) 1s uniformiy bounded. Now, by

reguiarity, we obtain a bound on the modulus of continuity of Vu, on every
ball which does not contain any of the points a, We can then pass to the
hmit R—»oo |, to obtain a solutionu of Au=0on IRN\[a,,...,am], and as u
converges in c'ona large sphere containing all singularities, uy can be
compared to the solution of Au= 2, . ¥, 8(x-3) with u (restricted to
that sphere) as boundary value. Thus u satisfies (1). That u tends to a limit

at infinity (which we can assume to be 0) follows from Harnack's
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inequality (as in [10] for instance).

b) Unigueness: If uandv are solutions of (1),(3), then for every A>0,
(u-v-\)* is compactly supported. One then argues as in the case p<N.

Remark 2.4 The reason why singularities are characterized by their
“growth” may be seen in various different ways: let u satisfy Au =0 in
BC1\(0].

- If u=0(yp) as x—=0, then IvuP~" € L' and there is a constant ¢
such that Au = ¢b. Indeed, it is classically shown (see e.q. [3]) that if Dis a
vector field in L', and if div D = 0 in B(1)\{0}, then 3 ¢ such that div D = cb.

- If u=0(p), finer scalings prove that for some c, u ~ cy, 50 that
u-cy € L,oc°° » AU = ¢8. The argument runs as follows: let u_ (x) = '

(p-N)/(p-1)

u(ox)/o , € = 1im sup, , u/y. There is 0, -0, and a sequence (x ) of

unit vectors such that x —»>x_ (IX_|=1), u; (x)->c C(N,p). Restrict ug to an
n

annulus; modulo extraction, Ug 2V <Co with equality at x_. By the

n
strong maximum principle, vsCyp (see [10]); and the maximum principle on

annular domains gives u/g - ¢ as x-0. Therefore, ¥£>0, ug(y+£)p+C and

o0

thus u-cp € L,

The case p=N requires a second scaling of the type 4, = u-C Log 0.
At an isolated singularity, u=cy + y + o(1) (y=const.).

- That u-cypelL * = Au = cb can be given yet another proof based

loc
on capacity estimates [7,8). Tracing the constants in Serrin’'s results gives

the conclusion (without using regularity estimates).

Remark 2.5: One might also have minimized directly [[IVuP/p - < y,u > ]
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withy=2, y, 8(x-a) over D "(RM). The point is that we are then dealing
with functions moduio constants. A similar approach is valid in more

general cases, replacing Sobolev by Orlicz-Sobolev spaces.

Remark 2.6: After this work was completed, we learned that Boccardo and
Gallouét have obtained some existence results for Au = y bounded measure,
on bounded domains [4]. Their result differs from ours in that they do not
obtain sharp regularity results and do not study the precise behaviour of

solutions at a singularity.

3. REGULARITY RESULTS:

The purpose of this part is to extend some known regularity
results. We consider the following type of equation:

(P) - div (p(Vu®) Yu) = 0

0

on, say, the unit ball. p: IR+ - IR+ is not assumed to satisfy any

homogeneity condition but rather some growth condition. For the sake of
simplicity, we shall restrict ourselves to p(t) = Log(t+1) but one might
have considerd much more general nonlinearities with p(0+) = 0. The

argument works in particular for p(t) = Y , 0 > 0 (see Unlenbeck [14]).
For -1/2 < 0 < 0, the same result holds, and we prove it by a duality
argument, given at the and of this section.
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we rewrite the equation as a system on differential forms: w = du

solves:
(P) dw = 0 C U = 0 in B(O, 1),
where d and & denote exterior differentiation and codifferentiation.

THEOREM 2.  There exists an & > O such that if
IB(U O(lw!2)|w|2 av < a
and w solves (P), then

““”CO""(B(O,UZ)) < C(a).

In other words, u solytion of (P, is locally of class gk

N.B. We shall never use the fact that the degree of the differential form
wis 1.

Proof of Theorem 2. The argument breaks into two steps. The first is an

L estimate, the second is the Holder estimate. We are adapting here the

argument of [14].
First Step: L > estimate:
Let Q = lwl?, and define H by H(0) = 0 and H'(t) = p(t) + 2tp'(t). Note

that p/(p+2tp’) is bounded above and below by positive constants. write o
for p(Q) and similarly for H, ¢',... .
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LEMMA 3.1. i) There is a uniformly elliptic operator with bounded
coeffictents, L= -3,(a"¥(x) 3, . ), such that
L(H@)) < -Cp IVwl’
i) YHeH'  (BO.
This lemma, together with the weak Harnack inequality, shows that
H (and thus Q, and W) is bounded.

Proof of Lemma 3.1: (Sketch) i) Compute  (w,8,8'(pw)) and recall that
-3,0' = d6+6d. One obtains
i) with
a™® = 6°° - (p/H ™

where b 15 quadratic in w and does not depend on p

11) The idea is of course to "differentiate the equation” We shall
use a differential quotient method. But we must first show that dw =0
implies (locally) that w = dg where p has weak derivatives which may be
estimated in terms of Js(n Log (lwl+ 1lwi? dx. This in turn necessitates the

extension of the Calderon-Zygmund inequality to the relevant Orlicz space,

which is straightforward in this example. If A, | denotes the e

differential quotient of step h, one then obtains ii) by writing (1 being
smooth, compactly supported in B(1))

(1]2Ah,ixp,{_\,h’i 6(pw)) =0
in which one lets h—0 .
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Let us first introduce some notation:
Flw) = p(@w ;  Klw)=+pQ) w.
We now prove a lemma which asserts, grossly speaking that either
W(0) = 0 and w is HOlder continuous at O, or w is close to a nonzero
constant form - which by Lemma 3.3 below, again implies Holder
continuity.

LEMMA 3.2 Let ) €(0,1),QsM, M(r) = sup,,. lw)P. Then, there s a

C > 0 such that for every r > 1/4, gne of the following holds:
D Mr) < (1-X) M(4r),

113w, Iu0|2 <M,
.[B(r) D(‘w0l2) lw-wol dx < cr A Me4r) p(M(4r))
and if Qp = plwyl®),  0(0y)Q, > VN MAR) p(M(4r)  with
v(0+) = 1.

Proof of Lemma 3.2:  Assume that i) is false. By change of variables, we
may assume r=1/4. Let M‘ =M(1/4). For the first part of ii), use the fact

that H(M)-H(Q) is a supersolution of an elliptic operator, so that its inf,
viz. HM)-H(M, ), is bounded below by Cly .., (H(M)-H) dx. On the other hand,

by Poincaré, if fy ;4 K(W) = Klw,),

~

(25) Jota KW -KWI? dx < Cly 4 IVK(WF ox
and VKW < Cp IZwl. Now, p ITWI < -C L(H(Q)). Multiply this

inequality by UQ (1 smooth, compactly supported) and replace terms such

as [Hmf by I (H-H{M)) m}? After some tedious calculations, we obtain
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(26) Jo1s4 © 19WF 0 € C 5y (HED-HQ)) ax,
and we thus bound
27 Joct /4 (W) = KWy dx

by CCHIMI-H(M, ) € CM-M do(M).

One then shows that p(Q,) < lK(w)—K((,ao)l2 / Iw-w012 and as i) is

false by assumption, M-M, < AM.

As for the last part of ii), we have:

fsc1/4) (/(MR(M)) - ¥(Qp0(Q,))) dx
< Jgaaya ((V(MP(M)) - V(QE(Q))) + (F(Qp(Q)) - ¥(0,0(Q,))))0x
< Jgzya [CCHIMD-H(Q@)/ ¥ (Mp(M)) + IK(W)-K(we)l)alx
< CHM O/ N) 7 Y (Mp(M) < COY MY (Mp(M))

by the preceding estimates. Therefore, ¥(Q,0(Q,))/¥(Mp(M)) — 1 as A—>0+.

The Lemma is proved.

Now take A with A/v(\) < € and such that
p(Qy)Q > VOMMP(M) = Q, > I M,
where 7 and € are defined in the next Lemma. Then apply the preceding
lemma tor = 47 Either i) is true for every integer i, and w(0) =0,

lw(x)l < CIxl® for some 8 > 0, or 1) is true for i = o and the following can

be appealed to:
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LEMMA 3.3:  There exists €,v > O such that if w is a solution of (P) on B(1)
and if w, s a constant form with kgl < M = supy ) I, then

) foeqy I0-wpl° X < €M and

i) lwgl” > WM
imply that  lw(x) - w(O) < C¥MIxI""? on B(1/2).

This clearly ends the proof of Theorem 2.

Proof of Lemma 3.3: The idea is similar to that of [14], but one must check
each estimate in the present setting. We just outline the construction. We

writeasinStep 1, w=dy ; Wg = dwo and define y as the solution of

the linearization of
| &(pdy) + déy = 0 on B(1),
l Y prescribed on 3B(1)

at ‘DO' (This is relevant to our problem because we may choose & = 0). We
ask that y = -, on 3B(1). Then let ¢J = dy and w = L-(W-w,). One

proves that
2 -2 2 0148
(28) Jocry W dx € Cv 7 () -0 dx)

for some positive B. This is the basic estimate.

Now Tet L, = W + Jyq 5 W(X) dx and define recursively w, , from
W;, S w, was defined from Wg but replacing x+w(x) by x> (r'x) We

then observe that w, "tends to w(0). On the other hand, constructing
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similar sequences W, for any x,y inB(1), one gets, if r is fixed and

x'wi,y

it x,y,satisfy r*! ¢yl g,

i 2,1/2
IWO-WY & O ([ -wy|<)

as desired.
This ends the proof of our regularity theorem.

Let us now give a duality theorem which will enable us to extend

the preceding results in a very significant way. Indeed, assume tht J(t) is
a convex function such that J(0) = 0, J(t) = to(t2). Then, if Jis its
conjugate, and J " = t p (t), we see that to any solution of (P), we may

associate a solution of (P ) d8=0 ; 6(31619)8) = 0 by setting
6=" p(lwlz)w ( * = Hodge duality).

If (P ) satisfies a regularity theorem, and if the assignement
8 » w is (locally) Holder continuous, one obtains a regularity result for

(P) too. In particular,

THEOREM3:  Let p be any real number > 1Uf [g, lwl® < oo, dw =0,
80wl®?w) =0 inB(1), then w is Jocally Holder continuous

Remark 3.1: In 2 dimensions we notice that this duality correspondence
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associates to any "p-harmonic” function (i.e. solution of
div(IVu|°'2 Vu) = 0) a "p/(p-1)-harmonic” function. For p=2, this is nothing

but the correspondence between conjugate harmonic functions. Note also

that the conjugate of a p-harmonic u of the form rUg(x/le) is again of the

same form.

APPENDIX: PERIMETER ON MANIFOLDS.

In this section, we propose a method of construction of the
perimeter of a general measurable subset of a compact oriented
Riemannian manifold ™. It generalizes a work of E. de Giorgi [S]. We shall
use freely notions of calculus on manifolds, for which we refer the reader
to [2] for instance. We just recall that if A = d6+6d is the Laplacean on
k-forms over Wi,there exists a heat kernel ek(x,y,t) which is a smooth

double k-form (see e.qg. Patodi [7]) and satisfies dxek(x,y,t) = 6yek+](x,y,t),

where dy denotes exterior differentiation w.r. to x and éy

codifferentiation w.r. toy. Thus, for any bounded k-form 8,

(29) 0x,t) = | e (xy,t) A= 6(y)
m

satisfies

6, + 28 =0 fort > 0

and, 1f 8 is smooth, 6(x,t) = 8(x) uniformly as t\0
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a) Definition of the perimeter:
we first need a lemma.
LEMMA A1 Thereis C, depending only on M such that if u € L=(m)
("Initial valye"), u(t) := e, *u,, then the function

ot =] e®lautiav
0 m

1S ponincreasing over R+*
DEFINITION: limuo fx (t) := P(E) € oo is the perimeter of
£

the measurable subset E of

(We more generally call P(u) the limit of fu (t) as t\O for any quL°°<m ).)
0

Remark A.1:. This is exactly de Giorgi's perimeter if M is replaced by
R™. In that case C can be taken equal to 0.

Proof of LemmaAl;  We may assume u, € C®(M) because the heat

kernel is smoothing. Let du = w.

d/dt u(t) + Au(t) =0
d/dt w(t) + Awlt) = 0.

Let J be a smooth convex even function . and assume that

J(t) = tp(t‘?) with p smooth. Let Q = lez, H defined by H(0)=0 and
H'(t) = p(t) + 2tp'(t). We need the following lemma: (from now on, the letter
C stands for a generic constant).
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LEMMA A2:  Ineach local chart (with local coordinates (x*)),
¢:-¢ has, if g:p(lwl2 ), Q=lwt
(300 Cw,-V,¥ % (W) 3 -V, *H(Q) + C min(p,p+ 200V Wl

|

Proof of Lemma A 2; write w =kl u'dxl withw, = w; .,
g o By
antisymmetric,
IVul2 = k!'] wl,o(w',o‘ where ; denotes covariant differentiation.
W,V 0(v°‘(pw)) =

= k17 (9¥09%0 200w K ) -

| x o=, o, X
-(V W )XoV W +20'kD 0w W, wl)]

2

= k!"va{(p+2()p')w'vaw'] - IVwI© - 29'(w,vo(w)(w,V°((,J).

Now, taking normai coordinates at x,, we note that

O)
0< (w,vo(w)(w,vcxw) <Q qu!QZ

As 20'9%0, = k1a® | (30) follows, by distinguishing the cases

!
whenp' > Oandp € 0.

f roof of Lemma A.1: By Weizenbdck's formulae,

31 Dw = -v"‘vaw + Riw)
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where |R(w)l € y lwl, with a constant y depending only on curvature. As
wt+Aw =0, fort > 0 one has

| ((pw,wt)+(—V“Vo((pw),w)'r(‘k(pw),w)) dv = 0.
m

Taking (30) into account yields:

[ Cmin(p,0+200) IFWIZ 4V + d/dt [ JwD v <C [ ol av.
m m m

Assume now that pQ < CJ(lwl). We then have

(32) arat (e[ Jb av) < 0
m

we want (32) with "J(t) = It|". Therefore, we set Js(t) = (82+t2)'/ z

pe(t) = (£2+t2)' 12 and tzps(tz) < Je‘ Letting €O N equation (32)
written for J=J, we obtain that t — ] lwl AV is nonincreasing. P is thus
m

well defined.
b) Properties of P:
1) Characterization of functions with measures as derivatives: If uis

smooth and if t is a regular value of u, {u=t} is a smooth

submanifold of M ,and one has, if \p(x is a smooth vector field,

o
Iu>t vo('p av = -Iugt @avau / 1Vul do
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where do is the measure on {u=t] induced by the Riemannian structure of T

Thus, Xiust) has weak derivatives which are measures. One has:

(33) 9%yl = sup -V aw“ av = HV 1 ((u=t))

90" < 1 Jusa

Thus, P({u>t}) represents indeed the perimeter of (u>t] in the
ordinary sense. This fact is made more precise by the following result:

THEOREM 4 Let ueL™ (m). The following properties are equivalent.

1. P(U) <
2. All derivatives of first order of u are measures.
In case one of these holds,
“ -
(34) SUP g%y <1 Im -uv%p, aV = P(u),

Proof of Theorem 4 l.=>2 Itisenough to define X(u) where X is a

smooth vector field. Let X = x“aa in local coordinates -aa(x“.) 1s its

formal adjoint X*.
Let v be a smooth function on M and v(t) the solution of the heat equation

such that v(0) = u. Define the measure Uy by
Uy 0 > <9, XV()> = [ gXutt) av.
m
As P(u) < 0, we know that IIXv(t)IlLt <C.Thus 3t — oo such that y, —
n

(vaguely).

Now,
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< |p,Xv(tn)> = P(p)

and

<y, Xv(tn) >=< S(tn)(-X'm) , U(x) >

where S denotes the semigroup of the heat equation. Now, as tn - 0,

S(tn)( -X*p)—> -X*p and we have proved that

(35) plp) = < X"y, u > g.ed.
Note that [lul < P(u).

2= 1. Weknow here that du is a 1-form with measures as coefficients
(a “current of order 0").Let v(t) = S(t) u. If t>0,

v(E)(X) = ]m eoUy.t) A T uly)

av(t)x) = | deg(x,y,t) A, * uly)
m

y

=] b LA S .
[m e, (xy,t) A, " uly)

y

Ify= q)o(dx“ isa 1-form such that lp‘xmpo( = 1,
<avit)y > = ]m(xp(x),]m(ael(x,y,t),v(y)) dv(y) ) dv(x)
=< 6e](x,y,t),np®u >

= < b<e (xy,0,p00>, uly) > = < S(thy,du >
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(u being L™ Fubini applies).
Thus,

V(DI 1= supyy < Vi)Y > < lhpl oo Jm Idul

(where [ Idul stands for S| < | < U > ). This shows that llav (e,
m Pl <

is bounded and that its limit P(u) is < | ldul < oo. ge.d.
m

ii)Poincaré-type inequality.

[HEOREMS: There is a constant S such that if ueL™ (N'=N/(N-1))
(36) infg (| tu-ct™) "™ <5 pew)

Remark A2: This gives an isoperimetric inequality if u = XE‘

Proof of Theorem S:  (36) is clear for smooth u. Let, for ueL ", v(t) =
S(t) u. Take (tn)\o. We have:

N /N
P(v(tn))>5(fm vt )-ct AT avy T

u being bounded, we may assume that c(tn) - C__. On the otherhand, v(tn)

2 and also in LN' (because u is bounded). Moreover, by definition,

P(v(tn))fP(u). This proves (36).

=yinL
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