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THE CONFORMAL STRUCTURE OF RIEMANN SURFACES
WITH BOUNDARY PARAMETRIZING MINIMAL SURFACES

Reinhold BShme

Let F denote a sunface with boundary 3F, being contained in a
Riemann surface R, Auch that R\ F 48 somedisk. 1§ we vary the
boundary curve w, parametrizing 3F, we will get a manifold Q
of neal dimension ég-3, such that any w € Q@ bounds some Fo and
any Local deformation ¥ of F 48 conformally equivalent to fust
one Fm for w € Q.

This nesult also implies that none 04 the conformal invariants
0f R will be an invariant of this F , sdince ££ts neighbonrs
{F,lo € @} cover all possible deformations of F at all.

It is the purpose of the present paper to present a local model
for classes of Riemann surfaces with boundary if conformal iso-

morphisms are factored out.

We want to imitate an approach of R. Courant [ 4], who studies
parallel slit domains as a class of normal domains under the
relation of the conformal equivalence among multiply connected
subdomains of the complex sphere ]P1 . Therefore we fix a compact
Riemann surface R of genus g and study subdomains F C R, which
have smooth boundary and R\ F is a disk. Then conformal equi-
valence is a nontrivial relation.

Our result is a local one, we construct a manifold @ of real di-
mension 6g-3 such that any ? near F is conformally equivalent

to one point there. This may be surprising, it states that any

F € R has "forgotten" all conformal invariants which belong to
the manifold R.
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Namely, if G = F U F and E = ? U F denote the Schottky doubles
of F and ¥, then our model @ can be implemented very formally
into the Teichmiiller space T(2g) of all compact surfaces of genus
2g, which has complex dimension 6g-3 (see e.g. [7]). From the
results of Douady and others (see [5]) it is clear, that the
symmetric Riemann surfaces as for example G = F U F, is

a submanifold S C T(2g) of real dimension 6g-3. But then any
point of that manifold S will correspond to a point in 2 from
our construction.

Naturally, our present construction is purely local, and if
their would exist an elaborated version of the index theorem
of Atiyah and Singer (as loosely announced in [2]) for mani-
folds with boundary, e.g. for F € R, then the dimension 6g-3
would be an easy consequence of this theorem. But here we try
to give a very elementary and selfcontained version of how to
compute the index of the Cauchy-Riemann operator under Plateau
boundary conditions. This will easily allow an application to
the index formula of BShme and Tromba [ 3], not only for sur-
faces of the type of the disk but for arbitrary genus.

Our method of proof imitates the paper [ 3], obtaining a natural
manifold structure in the orbit of the reparametrizing group

of diffeomorphisms of 3F, such that the solution set of the
classical Plateau problem is a zero set M in a trivial bundle n
with the base space I of admissible boundary curves.

We thank F. Tomi for his encouragement. A different approach
to the present questions was given by Fischer and Tromba [ 10].

206



BOHME

Definition 1:

If R is a compact Riemann surface of genus g, we denote F C R
any submanifold with boundary which has the following proper-
ties: 9F is a real analytic curve and regularly diffeomorphic
to S1. The manifold D = R \ F is conformally equivalent to the
unit disc in ¢.

For the study of smooth functions on F we define several
Sobolev spaces fixing the regularity class. We fix two inte-
gers r and s,r » s » o. We take any metric on R which is com-
patible with its conformal structure for the definition of the

space L2(F,¢). Then we get

Definition 2:

We define holomorphic functions, holomorphic differential forms

and holomorphic vector fields on F:

A(F) := A(F,¢) := {f : F>¢|f € B (F,¢) up to the boundary}
E(F) := EX(F) := {ws F > TF| w € H® up to the boundary}
V(F) := VE(F) :={v : F » TF| v € il up to the boundary}.

In principle, we will need a finite atlas of F in order to
make all H -norms explicitely well defined, but the following

argument does the same too.

Lemma 1:

There exist v, € V(F) and w, € E(F) such that V(F) = A(F) - v,
and E(F) = A(F) - W, since Ve and w, do vanish nowhere.
Proof:

The manifold with boundary F is contained in an open surface

¥ C R and the bundles TF and T*¥ are necessarily trivial,[6].
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Definition 3:

We define the following spaces of boundary values for functions

or vector fields on F:

r-1/2

H(3F) = H(3F,¢) = H (3aF.¢)

r-1/2

and V(3F) = V(3F,TR) = {u : 3F » TRlaF|u € H (3F) 1} .

If n € V(3F) vanishes nowhere and is orthogonal to 3F in all
its points, then the normal bundle N on 3F can be identified

pointwise with R - n(p), p € 3F.

¥-1/2_ g ections in the bundle N,

then we get T'(N) C V(3F,TF) and r(n) * w¥~1/2

If r(N) denotes the space of H

(3F,R) .

Lemma 2:
There exists a continuous well defined linear mapping
ext: H(3F,$) »~ H' (F,¢) such that ext(f) = g if 9|5F = f

and Ag = 0, g harmonic on F.

Proof:
This follows trivially from Dirichlet's principle and regula-

rity theory.

Lemma 3:
There exists a continuous well defined linear mapping

ext: V(3F) » HY (F,TF) with ext(u) = v, - ext (3-) .
(o]

ext(u) is holomorphic if and only if ext(%—) is holomorphic.
o
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Proof:
A multiplier on a holomorphic function gives a holomorphic re-

sult nontrivially only if the multiplier is itself holomorphic.

Definition 4:

We define the subspace V1 = v1(aF) C V(3F) by the property
ext(V1) = V(F). We have a natural projection r, ¢ V(3F) » r(n),

being an orthogonal projection in any fibre.

Lemma 4:

The projection r, ¢ V(F) » Ir(N) is a Fredholm operator.

Proof:

This follows easily from the estimates of Agmon, Douglis and
Nirenberg (II) [ 1] . Namely, near the boundary, the operator ry
is equivalent to an equation for u in a half space

{z|Im z > 0}, and we get 9: u = 0, Rea(u) = g.
dz

This is an elliptic system. We can compute the index of r,
step by step. If for any complex function £ the function Rea(f)

denotes its real part, we have:

Lemma 5:
The mapping Rea: A(F) -+ H(3F,R) is Fredholm of

index]R (Rea) = 1-2g.
Proof:

The dimension of the kernel of this mapping is 1. The dimension

of its cokernel is 2g. Namely the dimension over the reals
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of the vector space of holomorphic differentials on F which

have purely imaginary periods,equals 2g.

Lemma 6:

Let g : F » ]P1 denote a meromorphic function withcut poles or zeroes
on 3F, and g denotes its multiplication operator. Then

Rea o ¢ : A(F) » H(3F) is well defined and a Fredholm operator
with index of 1-2g + 2#(9-z> (g) , where 4£(P-2) (g) denotes the

number of poles of g minus the number of zeroes of qg.

Proof:
We simply have to check that any pole of g increases the
source space with 2 dimensions and any zero of g decreases

this dimension again with 2.
Theorem 1:

The index of the projection ry ¢ V(F) - r(N) equals 3-6g.

The proof depends on several propositions.

Proposition 1:

If F C R is sufficiently large and 3F C R sufficiently close
to a circle around a point ¢ in R\ F, then there exists a
meromorphic vector field v, on R, which has no poles along

3F and satisfies (v, ,n ) > e, >0 in any point of 3F, n being

the normal field of definition 3.
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Proof:

It is easy to construct a differential dx on R, which is mero-
morphic, and has exactly at ¢ _ a pole of order 1 and no zeroes
or other poles nearby. Then the vector field vy i= d)("1 satis-
fies our proposition, if 3F is a circle around T, and the

leading term of the Taylor series of \£ at ¢ satisfies the

inequality well.

Corollary 1:
The vector field vy od F - TF satisfies that its number P of
poles minus its number Z of zeroes in F is

H(P-2) (v,) (F) = 2g-1.

Proof:

The differential dyx satisfies trivially it(Z—P)(dx)(F) = 2g-1,

since one pole of dx is outside F.

Proposition 2:

If o  : V > H(3F,R) is defined by po (V) = (v,vy ) [ g, then
+ T (N)

the index of Py ¢ V - H(3F,R) and the index of ry ¢ %

coincide.
Proof:

Using proposition 1 and the properties of vy there, it is

easy to construct a homotopy between both operators.
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The product (v,v1 ) is a real scalar product and can be eva-
luated equivalently as Rea(v - ;1) in the complex notation

for functions along 3F.

Proposition 3:

If pq ¢ V(F) » H(3F,IR) is defined by p1(V) := Rea dyx(v),
with dx as in proposition 1, then the index of R and the

index of o coincide.
Proof:
Since dyx = (v1)_1, this proposition just rewrites the former

one.

Proposition 4:

The index of pq ¢ V(F) - H(3F,R) equals 3-6g.

Proof:

The index is additive under the composition of Fredholm
operators. In general, Rea dx(v) = Rea dx(fvo), where

v € V(F) and £ € A(F) are not restricted. If we define

q ﬂ=dx(v°), then we know the number of poles and zeroes
of g on F.

1;(9-2)(q)(F) = 2g-1. Therefore the index of the operator

Rea © q is 1-2g + 2(1-2g) = 3-6g, from lemma 6.

Proof of Theorem 1:

Under the assumptions of proposition 1 we have constructed

a homotopy between the mapping ry ¢ V(F) » T(N) and the#
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mapping p, @ V(F) » H(3F,IR), if I'(N) and H(3F) are identified.
Therefore proposition 4 implies theorem 1 under the assump-
tions of proposition 1. We only have to generalize its
assumptions in the theorem itself. It is easy to construct

a homotopy of domains, i.e. a one-parameter family F(t) of
domains in R, continuous in t, such that F(0O) satisfies pro-
position 1 and F(1) is arbitrary. Only the definition of the
spaces V1(3F(t)) is necessary, since these are not always
conformally equivalent. But using a family of quasiconformal
isomorphisms near identity between these domains F(t), one
can construct isomorphisms between these spaces V1(aF(t)),

depending continuously on t.

Theorem 2:

The kernel of the linear mapping r, : V1(3F) + I'(N) has dimen-

sion O, if g > 1, and dimension 3, if g = 0.

Proof:

Any v € ker rye v # O, is a holomorphic vector field on F, which
is tangential to 8F at any point of 3F. If F U F denotes the
Schottky double of F, then v easily can be extended to a vector
field on F U F,which cannot exist if g > 0. If g = 0, these

fields are well known.

Definition 5:

We define K = K*(F) := {f : F » R|f is holomorphic in F, and is
r

in the class H  up to the boundaryl.

For the explicit study of K(F) we use the following construction.
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Lemma 7:

There exists a holomorphic flow on F, but such that ¢ maps
[0,1] x TF into F with the properties that ¢ (0O:;p,v) = p,

5(O;p,v) = v and v € TpF.

Proof:

We fix some vector field Y : F » TF without zeroes on F and
will study its multiples 2 =a - Y, o € ¢. Naturally, there

exists a flow line ¢(t) in R, which solves the differential

equation § = Y o ¢ with the initial values ¢(0) = p,
$(0) = Y(p).
Similarly for any v € TPF' we have v = a « Y(p) = Z(p), and

there is a flow line ¢(t) = ¢(t;p,Z2(p)) solving the differential
equation $ =2 o ¢ with the initial values ¢(0) = P

$(0) = Z(p) = v. This flow is holomorphic on F and on any TpF.

Proposition 5:

The flow ¢ has the following property: for any p,q € F, if
dist(p,q) 1s sufficiently small, there exists a unique

vq € TpF such that ¢(1;,p,vq) = g and a unique vp € TqF such
that ¢»(-1;q.vp) = p.

The flow line ¢(t,p,vq) depends holomorphically on p and g.

Proof:

This proposition is a consequence of the implicit function

theorem. Or we can apply the construction of [9], chap. 18.3,
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where a "champ rabatteur" is studied and constructed for the
same purpose. If we simply introduce coordinates on F, such
that the field Y is represented locally as a constant field, we
can interpret our proposition giving a flow for the equation

% = 0. Clearly we can use the theorem I.6.A in [11]: The family
of graphs of solutions of any second-order homogeneous linear
equation is locally diffeomorphic to the family of graphs of

2
solutions of the simplest equation é—% £ 0.
dx

Corollary 2:

Y
For any v € V(F), denoting an open neighborhood of the zero
vector field there is well defined a unique f € K(F), such that

f=29¢(1;id,v),or £(p) = ¢(1;,p,v(p)) for p € F.

Proof:

If v(p) is sufficiently small, then f is only a perturbation of

the identity on R at p, and f is clearly holomorphic in p.

Corollary 3:
For any £ € K(F), if sup dist(p,f(p)) is sufficiently small,
pEF

there exists a unique v € V(F) such that £ = ¢(1; id,v).

Proof:

In appropriate coordinates we can study the flow ¢ as a flow

¢ = constant or even ¢ = O. But the two-point boundary value

problem ¢(0) = p, ¢(1) = q is trivially solvable and has the
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stated properties. That £, being holomorphic, produces a vector
field v, which is holomorphic again, follows easily from the

properties of the holomorphic vector field Y, having no zeroes.

Proposition 6:

The mapping ¢ := ¢(1;id,.) : V(F) » K(F) is an isomorphism bet-
ween a neighborhood U of the zero section in V(F) and a neigh-

borhood K of the identity map in K(F).
Proof:

From proposition 5, we get a flow line @(t;p,va) such that
@(O;p,vq) = p and 0(1;p,vq) = q, if for given g = f(p) the
vector vq € TpF is choosen appropriately. If g = f(p), the
vector vq € TpF depends holomorphically not only on g, but on p
itself.

Therefore to any £ € K(F) near id: F - F there corresponds a
unique v € V(F) such that ¢(1;id,v) = £.

Conversely it is clear, that any v € V(F) produces

£f =¢(1;id,v) € K(F).

Corollary 4:

k(F) is a manifold with model W(r).
Proof:

The regularity classes are the correct ones and v o ¢(1;id,.)
produces an isomorphism and induces a manifold structure, since
¢ is differentiable. Trivially (= o °)*,v=o : V>V is the iden-
tity and therefore TidK(F) = V(F).

Definition 6:

We denote & = I¥ the space Embr(s1,R)of embeddings S1 into R,

r-1/2

which are of class H and have a disk as exterior and some

F as interior in R.
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We denote D = D° the space of diffeomorphisms of S1, 0< s« r,
For all o € I we define d (o) = {0 o uju € P} and
n = U d (o), such that n is a fiber bundle over I.
gEL
Lemma §:
D is a Hilbert manifold,I is a Hilbert manifold,and n is a

CI-S

-smooth fiber bundle over I.
Proof:
All results are very classical, essentially equivalent to re-

sults in [ 3 ], and we can quote Penot for example.[8 ].

Lemma 9:
For all v € V(9F) there is well defined ¢(v)=: o0 € L, if v is
near the zero section.
For all o € I there exists a unique w € V(3F), such that
1

¢(w) = o, if o is not too far away from wy t S TR which para-

metrizes OF.

Proof:
We apply proposition 6 and its corollaries. The regularity

classes are correct, since the flow is Cw up to the boundary.

Corollary 5:
If ¢ € L bounds an F1 such that F1 is conformally equivalent
to F, then o can be reparametrized to ¢ °u u € Diff(S1), such

inv

that o ou is boundary value of £ € K(F) and ¢ (o o u0)=

vV ou € V1(3F).
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Proof:

If 0 ou is boundary value of f € K(F), then ¢V (o o u,) is a

holomorphic vector field, or its boundary values, by proposition 7
The action of diffeomorphisms u : S1 * S1 on the data does not
influence the construction of the flow ¢ .

There is a natural uniqueness result for the construction above.

Lemma 10:

If o € I is near Wy € I, wg the standard parametrization of 9F,
and if u, and u, are sufficiently close to each other, then it
is iﬁpossible that ¢ o u, and o o u, are both boundary values of
two different holomorphic functions f1 : F >R and f2 : F > R.

Proof:

Otherwise g := f?nv o f2 : F > F would be a holomorphic iso-
morphism of F close to id. Since the group of holomorphic iso-
morphisms of F is finite with bounded order, g cannot be close
to identity.

In the space n = U d (0) C HS(S1,R) we study a subspace which
oE€EL

gives all boundary curves of conformally equivalent domains.

Definition 7:

We define M C n, M= U d (o), where 21 contains all boun-
o€L
1

dary curves of domains ¥ near F, ¥ being confarmally equiva-
lent to F. Formally, £, = {o € z|3 u €90, 00 u_ is the

boundary value of some f € K(F)}.

Proposition 7:

M is a Hilbert submanifold of the bundle n.
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Proof:

Obviously M is zero set of %3 f = 0 in n under Plateau houndary con-
ditions. Using the inverse exponential map ¢inv and the extension
map ext : Hr—1/2(8F,¢) > HY(F,¢) one will be reduced to. the
boundary condition Im © (%; - i %$) : Hr-1/2(8F,¢) + Hr-3/2(3F,n!).

This conformality operator is a Fredholm operator on any d (o)
by classical arguments, like in [ 3 ]. Therefore its corank is at
most finite dimensional. If we admit also variations of o, the
base point, it is easy to obtain a natural surjectivity of

3 ]
Im o (3; + i EX)' Its zero set therefore is a manifold, locally.

Proposition §&:

The projection m : n * £ induces a Fredholm mapping = : M >~ Z .

Proof:

If (c,uo) € d (6) €M is such that o o u, is boundary value of

a holomorphic mapping, then by regularity also 1 := o0 o u, is in

L, and (t,id) € M.

It is enough to study = . : TM - TL. Obviously, we are now
*(Tlld)

in the situation of theorem 1.

From the construction of M C n it is clear, that

: I
"*(r,id) : T(r,id)M > TT has the same range and corank as

r, V(3¥) > T(ﬁ), where % is the image of F under the mapping
ext(t) € K(F), and ﬁ denotes its normal bundle.

Since to any point in K(F) corresponds an orbit in M C n, all
tangential variatios along 1 are present trivially in the range

of w . And r, as well as "*(T,id) produce exactly the

*(1,1id)
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same normal variations in the manifold TTZ. Since the kernel of
r, is always O only, and e (r,1id) is trivial on all tangential

variations, the index of T and r, must coincide.
Theorem 3:

The projection n : n + I induces a nonlinear Fredholm operator
m : M > & of real index 3-6g. The kernel of m, is always zero

if g>1.

Proof:

We only take together proposition 8 and theorem 2. In principle
theorem 3 is a statement on the index of the Cauchy-Riemann-

system a = 0 on F with Plateau boundary conditions, and it

dz
is natural (see [1] ,p. 532) that we get a topological result.

In the case g=0 holds the same too, classically considered with

a three-point-condition.

Corollary 6:

If (o,id) € M such that o : 3F - R is the boundary value of

a holomorphic function £ : F + R, there exists near ¢ in &

a foliation of real parameter dimension (6g-3), such that any
leaf o§ this foliation represents the orbit of conformal iso-

morphisms of some *in R .

Proof:

Since n_ : TM » TI is injective, and has index m, . there
exists a subspace WO in TOE, which complements the range of
T, ® T(c,id)M > TOZ .

Q=9 o ext(Wc) represents a mo—dimensional manifold in I,

such that no t € @ can be reparametrized by t o u, u € 0,

except the trivial one, for
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to get then the boundary value of a mapping from K(F).

On the other hand ¢ 0 ext o ﬂ*(T(o,id)M) parametrizes K (F)
according to prop. 6 and the construction of M

(Lemma 10 and proposition 7). So we get easily a smooth iso-
morphism between the Hilbert manifolds K(F) and M = M(f).
The manifold ? is a transverse section of I;in I such that
2 ® TI, 2 T3, Clearly K,2 and M admit the action of the
group 0% of reparametrizations without any local change.

21 C I gives the conformal equivalence class of F.

Remark 2:

Since all mappings £ : F > R which are near identityv will not
cover conformal automorphisms of F, the space K(F) will not
forget the markings on F used in Teichmiiller theory (see
[4]1).

Therefore Q@ will be a local model for the Teichmiiller space

of surfaces with boundary near F in R.

Definition 9:

Let O(F,R) denote the quotient space of I near wg under the

action of conformal isomorphisms near identity, where a ~ w_ ,

o
if 0 € I, , and F denotes the interior of w, in R. The

symbol F means, that the conformal structure of F will not

always be kept, but the conformal structure of R remains.

Theorem 4:

O0(F,R) is a real manifold of real dimension 6g-3.
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Proof:
By construction in theorem 3 and following remark 2 and corolla-

ry 2, the manifold Q@ is actually a model for O(F,R).

Theorem 5:
The manifold O(F,R) is a local model for the Teichmiiller space of
all compact complex curves of genus 2g, which are symmetric

under an involution.

Proof:
If F is fixed, its Schottky double G = F U F is such a com-

plex curve.

Any ; near F produces a Schottky double g near G. The action
of conformal isomorphisms will never destroy markings on the
surface, if these isomorphisms are produced by E(F) in some
fixed R as above. On the other hand, the Teichmiiller space T
of all conformal equivalence classes of manifolds like G has
complex dimension 6g-3. It is obvious from the work of
Thurston and Douady [ 5] that the part T1 C T, which gives all
surfaces symmetric against an involution, as above, is local-
ly a subﬁanifold of real dimension 6g-3. Therefore T1 must
coincide locally with the space ©(F,R) from theorem 4. This

proves our statements at the beginning.
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