Werk **Titel:** The conformal structure of Riemann surfaces with boundary parametrizing minimal s... Autor: Böhme, Reinhold **PURL:** https://resolver.sub.uni-goettingen.de/purl?365956996_0057|log15 # **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen manuscripta mathematica © Springer-Verlag 1987 # THE CONFORMAL STRUCTURE OF RIEMANN SURFACES WITH BOUNDARY PARAMETRIZING MINIMAL SURFACES #### Reinhold Böhme Let F denote a surface with boundary ∂F , being contained in a Riemann surface R, such that R \ F is somedisk. If we vary the boundary curve ω_0 parametrizing ∂F , we will get a manifold Ω of real dimension $\partial G - 3$, such that any $\omega \in \Omega$ bounds some F_{ω} and any local deformation F of F is conformally equivalent to just one F_{ω} for $\omega \in \Omega$. This result also implies that none of the conformal invariants of R will be an invariant of this F , since its neighbors $\{F_{\omega} | \omega \in \Omega\}$ cover all possible deformations of F at all. It is the purpose of the present paper to present a local model for classes of Riemann surfaces with boundary if conformal isomorphisms are factored out. We want to imitate an approach of R. Courant [4], who studies parallel slit domains as a class of normal domains under the relation of the conformal equivalence among multiply connected subdomains of the complex sphere \mathbb{P}^1 . Therefore we fix a compact Riemann surface R of genus g and study subdomains $F \subseteq R$, which have smooth boundary and $R \setminus F$ is a disk. Then conformal equivalence is a nontrivial relation. Our result is a local one, we construct a manifold Ω of real dimension 6g-3 such that any \widetilde{F} near F is conformally equivalent to one point there. This may be surprising, it states that any $F \subset R$ has "forgotten" all conformal invariants which belong to the manifold R. Namely, if $G = F \cup \overline{F}$ and $G = F \cup \overline{F}$ denote the Schottky doubles of F and F, then our model Ω can be implemented very formally into the Teichmüller space T(2g) of all compact surfaces of genus 2g, which has complex dimension 6g-3 (see e.g. [7]). From the results of Douady and others (see [5]) it is clear, that the symmetric Riemann surfaces as for example $G = F \cup \overline{F}$, is a submanifold $S \subset T(2g)$ of real dimension 6g-3. But then any point of that manifold $S \subset T(2g)$ will correspond to a point in Ω from our construction. Naturally, our present construction is purely local, and if their would exist an elaborated version of the index theorem of Atiyah and Singer (as loosely announced in [2]) for manifolds with boundary, e.g. for $F \subset R$, then the dimension 6g-3 would be an easy consequence of this theorem. But here we try to give a very elementary and selfcontained version of how to compute the index of the Cauchy-Riemann operator under Plateau boundary conditions. This will easily allow an application to the index formula of Böhme and Tromba [3], not only for surfaces of the type of the disk but for arbitrary genus. Our method of proof imitates the paper [3], obtaining a natural manifold structure in the orbit of the reparametrizing group of diffeomorphisms of ∂F , such that the solution set of the classical Plateau problem is a zero set M in a trivial bundle m with the base space Σ of admissible boundary curves. We thank F. Tomi for his encouragement. A different approach to the present questions was given by Fischer and Tromba [10]. #### вонме # Definition 1: If R is a compact Riemann surface of genus g, we denote $F \subseteq R$ any submanifold with boundary which has the following properties: ∂F is a real analytic curve and regularly diffeomorphic to S^1 . The manifold $D = R \setminus F$ is conformally equivalent to the unit disc in C. For the study of smooth functions on F we define several Sobolev spaces fixing the regularity class. We fix two integers r and s,r \gg s \gg o. We take any metric on R which is compatible with its conformal structure for the definition of the space L²(F,¢). Then we get ## Definition 2: We define holomorphic functions, holomorphic differential forms and holomorphic vector fields on F: $A(F) := A^{r}(F, c) := \{f : F \rightarrow c \mid f \in H^{r}(F, c) \text{ up to the boundary}\}$ $E(F) := E^{\mathbf{r}}(F) := \{\omega : F \rightarrow T^*F | \omega \in H^{\mathbf{r}} \text{ up to the boundary}\}$ $V(F) := V^{r}(F) := \{v : F \to TF | v \in H^{r} \text{ up to the boundary}\}.$ In principle, we will need a finite atlas of F in order to make all $H^{\mathbf{r}}$ -norms explicitely well defined, but the following argument does the same too. # Lemma 1: There exist $v_* \in V(F)$ and $\omega_* \in E(F)$ such that $V(F) = A(F) \cdot v_*$ and $E(F) = A(F) \cdot \omega_*$, since v_* and ω_* do vanish nowhere. ## Proof: The manifold with boundary F is contained in an open surface $F \subset R$ and the bundles $F \cap R$ and $F \cap R$ are necessarily trivial,[6]. #### вонме ## Definition 3: We define the following spaces of boundary values for functions or vector fields on F: $$H(\partial F) = H(\partial F, \varphi) = H^{r-1/2}(\partial F, \varphi)$$ and $$V(\partial F) = V(\partial F, TR) = \{u : \partial F \rightarrow TR_{|\partial F} | u \in H^{r-1/2}(\partial F)\}$$. If $n \in V(\partial F)$ vanishes nowhere and is orthogonal to ∂F in all its points, then the normal bundle N on ∂F can be identified pointwise with $\mathbb{R} \cdot n(p)$, $p \in \partial F$. If $\Gamma(N)$ denotes the space of $H^{r-1/2}$ -sections in the bundle N, then we get $\Gamma(N) \subseteq V(\partial F, TF)$ and $\Gamma(N) \stackrel{\sim}{=} H^{r-1/2}(\partial F, \mathbb{R})$. ## Lemma 2: There exists a continuous well defined linear mapping ext: $H(\partial F, \varphi) \rightarrow H^{r}(F, \varphi)$ such that ext(f) = g if $g_{|\partial F} = f$ and $\Delta g \equiv 0$, g harmonic on F. ## Proof: This follows trivially from Dirichlet's principle and regularity theory. ## Lemma 3: There exists a continuous well defined linear mapping ext: $V(\partial F) \to H^r(F,TF)$ with ext(u) = $v_o \cdot \text{ext}(\frac{u}{v_o})$. ext(u) is holomorphic if and only if $\text{ext}(\frac{u}{v_o})$ is holomorphic. #### вонме #### Proof: A multiplier on a holomorphic function gives a holomorphic result nontrivially only if the multiplier is itself holomorphic. #### Definition 4: We define the subspace $V_1 = V_1(\Im F) \subset V(\Im F)$ by the property $\operatorname{ext}(V_1) = V(F)$. We have a natural projection $\mathbf{r}_0 : V(\Im F) \to \Gamma(N)$, being an orthogonal projection in any fibre. #### Lemma 4: The projection $r_0: V(F) \rightarrow \Gamma(N)$ is a Fredholm operator. #### Proof: This follows easily from the estimates of Agmon, Douglis and Nirenberg (II) [1]. Namely, near the boundary, the operator r_0 is equivalent to an equation for u in a half space $\{z \mid \text{Im } z \geq 0\}$, and we get $\frac{d}{d\bar{z}} u \equiv 0$, Rea $(u) \equiv g$. This is an elliptic system. We can compute the index of r_0 step by step. If for any complex function f the function Rea(f) denotes its real part, we have: #### Lemma 5: The mapping Rea: $A(F) \rightarrow H(\partial F, \mathbb{R})$ is Fredholm of index \mathbb{R} (Rea) = 1-2g. #### Proof: The dimension of the kernel of this mapping is 1. The dimension of its cokernel is 2g. Namely the dimension over the reals #### вёнме of the vector space of holomorphic differentials on F which have purely imaginary periods, equals 2g. ## Lemma 6: Let $q: F \to \mathbb{P}^1$ denote a meromorphic function without poles or zeroes on ∂F , and q denotes its multiplication operator. Then Rea o q: $A(F) \to H(\partial F)$ is well defined and a Fredholm operator with index of 1-2g+2#(P-Z)(q), where #(P-Z)(q) denotes the number of poles of q minus the number of zeroes of q. ## Proof: We simply have to check that any pole of q increases the source space with 2 dimensions and any zero of q decreases this dimension again with 2. # Theorem 1: The index of the projection $r_{o}:V(F)\to \Gamma(N)$ equals 3-6g. The proof depends on several propositions. ## Proposition 1: If $F \subset R$ is sufficiently large and $\partial F \subset R$ sufficiently close to a circle around a point ζ_{∞} in $R \setminus F$, then there exists a meromorphic vector field \mathbf{v}_1 on R, which has no poles along ∂F and satisfies $\langle \mathbf{v}_1, \mathbf{n} \rangle \geq \varepsilon_* > 0$ in any point of ∂F , \mathbf{n} being the normal field of definition 3. #### вёнме #### Proof: It is easy to construct a differential $d\chi$ on R, which is meromorphic, and has exactly at ζ_{∞} a pole of order 1 and no zeroes or other poles nearby. Then the vector field $v_1:=d\chi^{-1}$ satisfies our proposition, if ∂F is a circle around ζ_{∞} and the leading term of the Taylor series of v_1 at ζ_{∞} satisfies the inequality well. #### Corollary 1: The vector field $v_1: F \to TF$ satisfies that its number P of poles minus its number Z of zeroes in F is $\#(P-Z)(v_1)(F) = 2g-1$. ## Proof: The differential d_X satisfies trivially $\sharp (Z-P)(d_X)(F)=2g-1$, since one pole of d_X is outside F. ## Proposition 2: If $\rho_O: V \to H(\partial F, \mathbb{R})$ is defined by $\rho_O(v) := (v, v_1) |_{\partial F}$, then the index of $\rho_O: V \to H(\partial F, \mathbb{R})$ and the index of $r_O: V \to \Gamma(N)$ coincide. #### Proof: Using proposition 1 and the properties of \mathbf{v}_1 there, it is easy to construct a homotopy between both operators. The product $\langle v, v_1 \rangle$ is a real scalar product and can be evaluated equivalently as Rea($v \cdot \bar{v}_1$) in the complex notation for functions along $\Im F$. #### Proposition 3: If $\rho_1:V(F)\to H(\partial F,\mathbb{R})$ is defined by $\rho_1(v):=\operatorname{Rea}\, d\chi(v)$, with $d\chi$ as in proposition 1, then the index of ρ_1 and the index of ρ_2 coincide. #### Proof: Since $d_{\chi} = (v_1)^{-1}$, this proposition just rewrites the former one. ## Proposition 4: The index of ρ_1 : $V(F) \rightarrow H(\partial F, \mathbb{R})$ equals 3-6g. ### Proof: The index is additive under the composition of Fredholm operators. In general, Rea $d_{\chi}(v)=\text{Rea }d_{\chi}(fv_{_{\scriptsize O}})$, where $v\in V(F)$ and $f\in A(F)$ are not restricted. If we define $q:=d_{\chi}(v_{_{\scriptsize O}})$, then we know the number of poles and zeroes of q on F. T(P-Z)(q)(F) = 2g-1. Therefore the index of the operator Rea \circ q is 1-2g + 2(1-2g) = 3-6g, from lemma 6. #### Proof of Theorem 1: Under the assumptions of proposition 1 we have constructed a homotopy between the mapping $r_0:V(F)\to \Gamma(N)$ and the π #### ВОНМЕ mapping $\rho_1:V(F)\to H(\partial F,\mathbb{R})$, if $\Gamma(N)$ and $H(\partial F)$ are identified. Therefore proposition 4 implies theorem 1 under the assumptions of proposition 1. We only have to generalize its assumptions in the theorem itself. It is easy to construct a homotopy of domains, i.e. a one-parameter family F(t) of domains in R, continuous in t, such that F(0) satisfies proposition 1 and F(1) is arbitrary. Only the definition of the spaces $V_1(\partial F(t))$ is necessary, since these are not always conformally equivalent. But using a family of quasiconformal isomorphisms near identity between these domains F(t), one can construct isomorphisms between these spaces $V_1(\partial F(t))$, depending continuously on t. ## Theorem 2: The kernel of the linear mapping $r_0: V_1(\partial F) \to \Gamma(N)$ has dimension 0, if $g \ge 1$, and dimension 3, if g = 0. #### Proof: Any $v \in \ker r_0$, $v \neq 0$, is a holomorphic vector field on F, which is tangential to ∂F at any point of ∂F . If $F \cup \overline{F}$ denotes the Schottky double of F, then v easily can be extended to a vector field on $F \cup \overline{F}$, which cannot exist if g > 0. If g = 0, these fields are well known. # Definition 5: We define $K = K^{r}(F) := \{f : F \to R | f \text{ is holomorphic in } F, \text{ and is in the class } H^{r} \text{ up to the boundary} \}.$ For the explicit study of K(F) we use the following construction. #### вёнме ## Lemma 7: There exists a holomorphic flow on F, but such that Φ maps $[0,1] \times TF$ into F with the properties that $\Phi(0;p,v) = p$, $\Phi(0;p,v) = v$ and $v \in T_pF$. #### Proof: We fix some vector field $Y: F \to TF$ without zeroes on F and will study its multiples $Z = \alpha \cdot Y$, $\alpha \in \mathcal{C}$. Naturally, there exists a flow line $\phi(t)$ in R, which solves the differential equation $\dot{\phi} = Y \circ \phi$ with the initial values $\phi(0) = p$, $\dot{\phi}(0) = Y(p)$. Similarly for any $v \in T_p F$, we have $v = \alpha \cdot Y(p) = Z(p)$, and there is a flow line $\Phi(t) = \Phi(t; p, Z(p))$ solving the differential equation $\mathring{\Phi} = Z \circ \Phi$ with the initial values $\Phi(0) = p$, $\mathring{\Phi}(0) = Z(p) = v$. This flow is holomorphic on F and on any $T_p F$. ## Proposition 5: The flow ϕ has the following property: for any p,q \in F, if $\label{eq:dist} \mbox{dist}(p,q) \mbox{ is sufficiently small, there exists a unique} \\ \mbox{$v_q \in T_p F$ such that } \phi(1;,p,v_q) = q \mbox{ and a unique } v_p \in T_q F \mbox{ such that } \phi(-1;q,v_p) = p. \\$ The flow line $\phi(t,p,v_q)$ depends holomorphically on p and q. #### Proof: This proposition is a consequence of the implicit function theorem. Or we can apply the construction of [9], chap. 18.3, where a "champ rabatteur" is studied and constructed for the same purpose. If we simply introduce coordinates on F, such that the field Y is represented locally as a constant field, we can interpret our proposition giving a flow for the equation $\tilde{\phi} \equiv 0$. Clearly we can use the theorem I.6.A in [11]: The family of graphs of solutions of any second-order homogeneous linear equation is locally diffeomorphic to the family of graphs of solutions of the simplest equation $\frac{d^2y}{dx^2} \equiv 0$. ## Corollary 2: For any $v \in V(F)$, denoting an open neighborhood of the zero vector field there is well defined a unique $f \in K(F)$, such that $f = \phi(1; id, v)$, or $f(p) = \phi(1; p, v(p))$ for $p \in F$. # Proof: If v(p) is sufficiently small, then f is only a perturbation of the identity on R at p, and f is clearly holomorphic in p. # Corollary 3: For any $f \in K(F)$, if $\sup_{p \in F} \operatorname{dist}(p, f(p))$ is sufficiently small, $p \in F$ there exists a unique $v \in V(F)$ such that $f = \Phi(1; id, v)$. #### Proof: In appropriate coordinates we can study the flow ϕ as a flow $\dot{\phi}$ = constant or even $\ddot{\phi}$ = 0. But the two-point boundary value problem Φ (0) = p, Φ (1) = q is trivially solvable and has the stated properties. That f, being holomorphic, produces a vector field v, which is holomorphic again, follows easily from the properties of the holomorphic vector field Y, having no zeroes. #### Proposition 6: The mapping $\Phi := \Phi(1; \text{id}, .) : V(F) \to K(F)$ is an isomorphism between a neighborhood \tilde{V} of the zero section in V(F) and a neighborhood \tilde{K} of the identity map in K(F). ## Proof: From proposition 5, we get a flow line $\Phi(t;p,v_q)$ such that $\Phi(0;p,v_q) = p$ and $\Phi(1;p,v_q) = q$, if for given q = f(p) the vector $v_q \in T_p F$ is choosen appropriately. If q = f(p), the vector $v_q \in T_p F$ depends holomorphically not only on q, but on p itself. Therefore to any $f \in K(F)$ near id: $F \rightarrow F$ there corresponds a unique $v \in V(F)$ such that $\Phi(1;id,v) = f$. Conversely it is clear, that any $v \in V(F)$ produces $f = \phi(1; id, v) \in K(F)$. ## Corollary 4: $\hat{K}(F)$ is a manifold with model $\hat{V}(F)$. # Proof: The regularity classes are the correct ones and $\pi \circ \Phi(1; id,.)$ produces an isomorphism and induces a manifold structure, since Φ is differentiable. Trivially $(\pi \circ \Phi)_{*,V=0} : V \to V$ is the identity and therefore $T_{id}K(F) = V(F)$. # Definition 6: We denote $\Sigma = \Sigma^r$ the space $\mathrm{Emb}^r(S^1,R)$ of embeddings S^1 into R, which are of class $H^{r-1/2}$ and have a disk as exterior and some F as interior in R. We denote $\mathcal{D} = \mathcal{D}^{S}$ the space of diffeomorphisms of S^{1} , $0 \ll s \ll r$. For all $\sigma \in \Sigma$ we define $d\mathbf{I}(\sigma) = \{\sigma \circ u \mid u \in \mathcal{D}\}$ and $\eta := \bigcup_{\sigma \in \Sigma} d\mathbf{I}(\sigma)$, such that η is a fiber bundle over Σ . #### Lemma 8: ${\mathfrak D}$ is a Hilbert manifold, Σ is a Hilbert manifold, and η is a $C^{{\tt r-s}}\text{-smooth fiber bundle over }\Sigma$. #### Proof: All results are very classical, essentially equivalent to results in [3], and we can quote Penot for example.[8]. ## Lemma 9: For all $v \in V(\partial F)$ there is well defined $\phi(v) =: \sigma \in \Sigma$, if v is near the zero section. For all $\sigma \in \Sigma$ there exists a unique $w \in V(\partial F)$, such that $\phi(w) = \sigma$, if σ is not too far away from $\omega_O : S^1 \to R$, which parametrizes ∂F . # Proof: We apply proposition 6 and its corollaries. The regularity classes are correct, since the flow is C^{∞} up to the boundary. # Corollary 5: If $\sigma \in \Sigma$ bounds an F_1 such that F_1 is conformally equivalent to F, then σ can be reparametrized to $\sigma \circ u_{\sigma}, u_{\sigma} \in Diff(S^1)$, such that $\sigma \circ u_{\sigma}$ is boundary value of $f \in K(F)$ and $\phi^{inv}(\sigma \circ u_{\sigma}) = v \circ u_{\sigma} \in V_1(\partial F)$. # Proof: If $\sigma \circ u_{\sigma}$ is boundary value of $f \in K(F)$, then $\phi^{\mathrm{inv}}(\sigma \circ u_{\sigma})$ is a holomorphic vector field, or its boundary values, by proposition 7 The action of diffeomorphisms $u: s^1 \to s^1$ on the data does not influence the construction of the flow ϕ . There is a natural uniqueness result for the construction above. #### Lemma 10: If $\sigma \in \Sigma$ is near $\omega_0 \in \Sigma$, ω_0 the standard parametrization of ∂F , and if u_1 and u_2 are sufficiently close to each other, then it is impossible that $\sigma \circ u_1$ and $\sigma \circ u_2$ are both boundary values of two different holomorphic functions $f_1 : F \to R$ and $f_2 : F \to R$. ## Proof: Otherwise $g := f_1^{inv} \circ f_2 : F \to F$ would be a holomorphic isomorphism of F close to id. Since the group of holomorphic isomorphisms of F is finite with bounded order, g cannot be close to identity. In the space $\eta = \bigcup_{\sigma \in \Sigma} dI(\sigma) \subseteq H^{S}(S^{1},R)$ we study a subspace which gives all boundary curves of conformally equivalent domains. # Definition 7: We define $M \subseteq n$, $M = \bigcup_{\sigma \in \Sigma_1} \operatorname{d} T(\sigma)$, where Σ_1 contains all boundary curves of domains f near F, f being conformally equivalent to f. Formally, $\Sigma_1 := \{\sigma \in \Sigma \mid \exists \ u_{\sigma} \in \mathcal{D}, \ \sigma \circ u_{\sigma} \text{ is the boundary value of some } f \in K(F)\}.$ ### Proposition 7: M is a Hilbert submanifold of the bundle η . #### ВÖНМЕ #### Proof: Obviously M is zero set of $\frac{d}{d\overline{z}}$ f = 0 in n under Plateau Foundary conditions. Using the inverse exponential map ϕ^{inv} and the extension map ext: $H^{r-1/2}(\partial F, \varphi) \to H^r(F, \varphi)$ one will be reduced to the boundary condition Im \circ $(\frac{\partial}{\partial r} - i \frac{\partial}{\partial \phi}) : H^{r-1/2}(\partial F, \varphi) \to H^{r-3/2}(\partial F, \mathbb{R})$. This conformality operator is a Fredholm operator on any $d\mathbb{T}(\sigma)$ by classical arguments, like in [3]. Therefore its corank is at most finite dimensional. If we admit also variations of σ , the base point, it is easy to obtain a natural surjectivity of Im \circ $(\frac{\partial}{\partial r} + i \frac{\partial}{\partial \phi})$. Its zero set therefore is a manifold, locally. #### Proposition 8: The projection π : $\eta \to \Sigma$ induces a Fredholm mapping π : $M \to \Sigma$. ### Proof: If $(\sigma, u_{\sigma}) \in d\Gamma(\sigma) \subseteq M$ is such that $\sigma \circ u_{\sigma}$ is boundary value of a holomorphic mapping, then by regularity also $\tau := \sigma \circ u_{\sigma}$ is in Σ , and $(\tau, id) \in M$. It is enough to study $\pi_{*(\tau,id)}:TM\to T\Sigma$. Obviously, we are now in the situation of theorem 1. From the construction of M $\subseteq \eta$ it is clear, that $T_{\star}(\tau,id): T_{(\tau,id)} \stackrel{M}{\to} T_{\tau}^{\Sigma}$ has the same range and corank as $T_{o}: V(\partial \widetilde{F}) \to T(\widetilde{N})$, where \widetilde{F} is the image of F under the mapping $ext(\tau) \in K(F)$, and \widetilde{N} denotes its normal bundle. Since to any point in K(F) corresponds an orbit in $M \subseteq \eta$, all tangential variatios along τ are present trivially in the range of $\pi_{*(\tau,id)}$. And r_{o} as well as $\pi_{*(\tau,id)}$ produce exactly the #### ВÖНМЕ same normal variations in the manifold $T_{\tau}\Sigma$. Since the kernel of r_{o} is always 0 only, and $\pi_{*(\tau,id)}$ is trivial on all tangential variations, the index of π_{*} and r_{o} must coincide. ## Theorem 3: The projection π : $\eta \to \Sigma$ induces a nonlinear Fredholm operator π : $M \to \Sigma$ of real index 3-6g. The kernel of π_* is always zero if $g \ge 1$. #### Proof: We only take together proposition 8 and theorem 2. In principle theorem 3 is a statement on the index of the Cauchy-Riemann-system $\frac{d}{d\bar{z}} \equiv 0$ on F with Plateau boundary conditions, and it is natural (see [1],p. 532) that we get a topological result. In the case g=0 holds the same too, classically considered with a three-point-condition. #### Corollary 6: If $(\sigma, \mathrm{id}) \in M$ such that $\sigma: \partial F \to R$ is the boundary value of a holomorphic function $f: F \to R$, there exists near σ in Σ a foliation of real parameter dimension (6g-3), such that any leaf of this foliation represents the orbit of conformal isomorphisms of some \widetilde{F} in R. #### Proof: Since $\pi_*: TM \to T\Sigma$ is injective, and has index m_O , there exists a subspace W_σ in $T_\sigma \Sigma$, which complements the range of $\pi_*: T_{(\sigma,id)}{}^M \to T_\sigma \Sigma$. $\Omega := \Phi \text{ o ext}(W_\sigma) \text{ represents a } m_O\text{-dimensional manifold in } \Sigma,$ such that no $\tau \in \Omega$ can be reparametrized by τ o u, $u \in \mathcal{D}$, except the trivial one, for #### ВÖНМЕ to get then the boundary value of a mapping from K(F). On the other hand Φ o ext o $\pi_*(T_{(\sigma,id)}^M)$ parametrizes K(F) according to prop. 6 and the construction of M (Lemma 10 and proposition 7). So we get easily a smooth isomorphism between the Hilbert manifolds K(F) and M = M(F). The manifold Ω is a transverse section of Σ_1 in Σ such that $T\Omega \oplus T\Sigma_1 \stackrel{\sim}{=} T\Sigma$. Clearly K,Ω and M admit the action of the group \mathcal{D}^S of reparametrizations without any local change. $\Sigma_1 \subseteq \Sigma$ gives the conformal equivalence class of F. #### Remark 2: Since all mappings $f : F \to R$ which are near identity will not cover conformal automorphisms of F, the space K(F) will not forget the markings on F used in Teichmüller theory (see [4]). Therefore Ω will be a local model for the Teichmüller space of surfaces with boundary near F in R. #### Definition 9: Let $\Theta(F,R)$ denote the quotient space of Σ near ω_O under the action of conformal isomorphisms near identity, where $\alpha \stackrel{\sim}{\sim} \omega_O$, if $\alpha \in \Sigma_1$, and F denotes the interior of ω_O in R. The symbol F means, that the conformal structure of F will not always be kept, but the conformal structure of R remains. # Theorem 4: $\Theta(F,R)$ is a real manifold of real dimension 6g-3. #### ВОНМЕ ## Proof: By construction in theorem 3 and following remark 2 and corollary 2, the manifold Ω is actually a model for $\Theta(F,R)$. #### Theorem 5: The manifold $\Theta(F,R)$ is a local model for the Teichmüller space of all compact complex curves of genus 2g, which are symmetric under an involution. #### Proof: If F is fixed, its Schottky double $G = F \cup \overline{F}$ is such a complex curve. Any \widetilde{F} near F produces a Schottky double \widetilde{G} near G. The action of conformal isomorphisms will never destroy markings on the surface, if these isomorphisms are produced by $\widetilde{K}(F)$ in some fixed R as above. On the other hand, the Teichmüller space T of all conformal equivalence classes of manifolds like G has complex dimension GG-3. It is obvious from the work of Thurston and Douady GG that the part GG which gives all surfaces symmetric against an involution, as above, is locally a submanifold of real dimension GG-3. Therefore GG must coincide locally with the space GG from theorem 4. This proves our statements at the beginning. #### ВОНМЕ #### References - [1] S. Agmon, A. Douglis and L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations (II). Comm. Pure Appl. Math., 17 (1964), 35-92 - [2] M. Atiyah, I.M. Singer: The index of elliptic operators, I. Ann. Math. 87 (1968), 484-530 - [3] R. Böhme, A.J. Tromba: The index theorem for classical minimal surfaces. Ann. Math., 113 (1981), 477-499 - [4] R. Courant: Dirichlet's principle, conformal mapping, and minimal surfaces. Interscience, New York, London, 1950 - [5] A. Douady: L'espace de Teichmüller, Exposé 7. Asterisque vol. 66/67, (1979), 127-137, Sem. Orsay - [6] O. Forster: Riemannsche Flächen. Springer Verlag, Berlin-Heidelberg, New York, 1977 - [7] J. Rauch: A transcendental view of the space of algebraic Riemann surfaces. Bull. Amer. Math. Soc. 71 (1965), 1-30 - [8] J.P. Penot: Une méthode pour construire des variétés d'applications au moyen d'un plongement. C.R. Acad. Sci. 266 (1968), 625-627 - [9] J. Dieudonné: Élements d'analyse, Vol. 4. Gauthier Villars, Paris, 1971 - [10] A.E. Fischer and A.J. Tromba: Almost complex fiber bundles and the complex structure on Teichmüller Space. Bonn, SFB-preprint 515, 1982 - [11] V.J. Arnold: Geometrical methods in the theory of ordinary differential equations. Springer Verlag, Berlin, Heidelberg, New York, 1983 Prof. Dr. R. Böhme Mathematisches Institut der RUB Universitätsstr. 150 D-4630 Bochum 1 > (Received October 31, 1985; in revised form October 31, 1986)