

Werk

Titel: On the Growth of Homotopy Groups.

Autor: Henn, Hans Werner

Jahr: 1986

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0056|log19

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON THE GROWTH OF HOMOTOPY GROUPS

Hans-Werner Henn

For a 1-connected space X of finite type and a prime p we define $R_{\pi_{\star}(X;Z/p)}$ and $R_{H_{\star}(\Omega X;Z/p)}$ to be the radius of convergence of the power series

$$\Sigma \dim_{\mathbb{Z}/p} ((\pi_n(X;\mathbb{Z}/p) \otimes \mathbb{Z}/p) \cdot t^n$$
 and

$$\Sigma \dim_{\mathbb{Z}/p} (H_n(\Omega X; \mathbb{Z}/p) \cdot t^n)$$
 respectively.

We prove that $R_{\pi_{\star}(X;Z/p)} \ge \min\{R_{H_{\star}(\Omega X;Z/p)}, C_p\}$ where C_p is a constant depending only on p and $C_p \ge \frac{1}{2}$ for all p. We conjecture that $\min\{1,R_{\pi_{\star}(X;Z/p)}\} = \min\{1,R_{H_{\star}(\Omega X;Z/p)}\}$.

- 0. At present a complete computation of the homotopy groups $\pi_n(X)$ of a finite, 1-connected space X seems to be out of reach. Therefore it appears to be reasonable to ask for qualitative information about $\pi_\star(X)$ instead of quantitative information. The basic results in this direction are due to Serre.
 - a) Let X be 1-connected of finite type (i.e. each $H_n(X)$ is finitely generated) then each $\pi_n(X)$ is finitely generated.

b) Let p be a prime and X a 1-connected finite complex with $\overline{H}_{\star}(X) \otimes Z/p \neq 0$, then $\pi_n(X) \otimes Z/p \neq 0$ for infinitely many n. In fact we even know that $Tor(\pi_n(X), Z/p) \neq 0$ for infinitely many n ([M-N]).

In this paper we concentrate on the mod-p size of $\pi_n(X)$ or rather the numbers $\dim_{\mathbb{Z}/p}(\pi_n(X;\mathbb{Z}/p)\otimes\mathbb{Z}/p)=:a_n$. Here $\pi_n(X;\mathbb{Z}/p):=[P^n(p),X]$, with $P^n(p):=S^{n-1}\cup_p e^n$, are the mod-p-homotopy groups of X $(n\geq 2)$. If p is an odd prime, they are \mathbb{Z}/p -vector spaces; for p=2 they are $\mathbb{Z}/4$ -modules ([N]). The growth of the function a_n is measured by the radius of convergence of the power series $\Sigma a_n t^n$. We will use the following notation. For a nonnegatively graded abelian p-group M of finite type let R_M be the radius of convergence of $\Sigma \dim_{\mathbb{Z}/p}(M_n\otimes \mathbb{Z}/p) \cdot t^n$.

By (b) above we have $R_{\pi_*(X;Z/p)} \le 1$ if X is a 1-connected finite complex and $\overline{H}_*(X) \otimes Z/p \ne 0$. We will relate $R_{\pi_*(X;Z/p)}$ and $R_{H_*(\Omega X;Z/p)}$ as follows.

THEOREM 1. Let \underline{X} be a 1-connected space of finite type and \underline{p} be a prime.

 $\begin{array}{lll} \underline{\text{Then}} & R_{\pi_{\bigstar}(X;\mathbb{Z}/p)} & \stackrel{\geq \min\{R_{H_{\bigstar}(\Omega X;\mathbb{Z}/p)}, C_p\}}{} & \underline{\text{where}} & C_p & \underline{\text{is a constant}} \\ \underline{\text{stant depending only on p and }} & C_p & \geq 1/2 & \underline{\text{for all p.}} \end{array}$

If X is a 1-connected finite complex then the Eilenberg-Moore spectral sequence shows that $R_{H_{\star}(\Omega X;Z/p)} > 0$. This implies the following

<u>COROLLARY.</u> <u>Let X be a 1-connected finite complex and p be a prime. Then there is a constant d such that</u>

$$\dim_{\mathbb{Z}/p}(\pi_n(x) \otimes \mathbb{Z}/p) \leq d^n$$
 for all n.

This corollary is also known to K.Iriye [I 1]. In [H] we conjectured that $R_{H_{\star}(\Omega X;Z/p)} \stackrel{\leq}{=} R_{\pi_{\star}(X;Z/p)}$ for all 1-connected finite complexes X and asked whether $R_{H_{\star}(\Omega X;Z/p)} = R_{\pi_{\star}(X;Z/p)}$ for

such X. In fact Iriye [I 2] has proved the following

THEOREM 2. $\min\{1,R_{\pi_{\star}(X;Z/p)}\} \le R_{H_{\star}(\Omega X;Z/p)}$ for all 1-connected spaces of finite type.

This leads us to the following

 $\underline{\text{CONJECTURE}}$. a) Let X be 1-connected of finite type and p be a prime. Then

$$\min\{1,R_{\pi_{+}}(X;Z/p)\} = \min\{1,R_{H_{+}}(\Omega X;Z/p)\}$$
.

b) If X is a 1-connected finite complex then

$$R_{\pi_+}(X;Z/p) = R_{H_+}(\Omega X;Z/p) .$$

Remarks: 1. Conjecture (a) implies Conjecture (b).

2. Conjecture (a) holds in the case of rational coefficients ([F-T]).

3. If X is a finite complex, dim $\bigoplus_n \pi_n(X) \otimes Q < \infty$ and p is large, then

and hence (b) holds if it holds for spheres, i.e. if $R_{\pi_{\star}(S^n;Z/p)} = 1$ for all n.

4. Theorem 1 implies that $R_{\pi_{\star}(S^n;Z/p)} \ge 1/2$ thus improving on [B-H], if p=2.

The remainder of this paper is devoted to the proof of Theorem 1. The proof is based on an estimate of the $\rm E_2$ -term of a Bousfield-Kan SS (BKSS). In section 1 we recall the BKSS and reduce Theorem 1 to such an estimate (Prop.1). In section 2 we prove Proposition 1 in case p=2 and in section 3 we indicate the necessary changes if p is odd.

The author would like to thank K.Iriye for several conversations. Part (a) of the conjecture above emerged during such a conversation.

1. With any pointed space Y Bousfield and Kan associate a pointed tower of fibrations $\ldots \to (\mathbb{Z}/p)_{\mathbb{S}} Y \to (\mathbb{Z}/p)_{\mathbb{S}-1} Y \to \ldots$, $s \ge 0$, whose inverse limit is the Bousfield-Kan \mathbb{Z}/p -completion, denoted by $(\mathbb{Z}/p)_{\infty} Y$ ([B-K, I.1.-I.4.]). By [M 1, Thm.1.5.] the completion map $Y \to (\mathbb{Z}/p)_{\infty} Y$ induces a homotopy equivalence $\max_{\mathbb{F}} (P^2(p), Y) \to \max_{\mathbb{F}} (P^2(p), (\mathbb{Z}/p)_{\infty} Y)$ provided Y is nilpotent, e.g. $Y = \Omega X$, X 1-connected. Furthermore applying $\max_{\mathbb{F}} (P^2(p), -)$ to the tower of fibrations above gives a new tower of fibrations $\ldots \to \max_{\mathbb{F}} (P^2(p), (\mathbb{Z}/p)_{\mathbb{S}} Y) \to \max_{\mathbb{F}} (P^2(p), (\mathbb{Z}/p)_{\mathbb{S}} Y) \to \ldots$ whose inverse limit is $\max_{\mathbb{F}} (P^2(p), (\mathbb{Z}/p)_{\infty} Y)$. This tower gets pointed by taking the constant maps as basepoints.

If Y is connected and nilpotent then the BKSS for $\pi_{\star}(Y;Z/p)$ is the (extended) spectral sequence associated with this pointed tower [BK,Chapter IX]. Its E₂-term is given by

$$E_2^{s,t}(Y) := Ext_{\underline{CA}}^{s}(\overline{H}_{\star}(P^{t+2}(p)),\overline{H}_{\star}Y) , t \ge s \ge 0.$$

(cp [M1,1.12.]). Here and in the following \overline{H}_{\star} denotes reduced homology with Z/p-coefficients and \underline{CA} is the category of connected commutative unstable coalgebras without counit over the mod p Steenrod algebra.

For i > 0 the spectral sequence converges completely to

$$\pi_{i} \operatorname{map}_{\star}(P^{2}(p), (Z/p)_{\infty}Y) \cong \pi_{i} \operatorname{map}_{\star}(P^{2}(p), Y) \cong \pi_{i+2}(Y; Z/p)$$

provided
$$\lim_{t \to r}^{1} E_{r}^{s,s+i} = \lim_{t \to r}^{1} E_{r}^{s,s+i+1} = 0.$$
 ([B-K,IX.5]).

We will use the spectral sequence in the case that $Y = \Omega X$, X 1-connected and of finite type.

Theorem 1 will follow easily from the following

PROPOSITION 1. Let E(X) be the graded Z/p-vector space with $E_n(X) := \bigoplus_{s \ge 0} E_2^{s,s+n} (\Omega X)$. Then $R_{E(X)} \ge \min\{R_{H_*}(\Omega X), C_p\}$ where

C_n is the same constant as in Theorem 1.

<u>Remark</u>: Our proof of Proposition 1 can actually be used to give a somewhat involved explicit estimate for $\dim_{\mathbb{Z}/p} E_n(X)$

and thus for $\pi_n(X; \mathbb{Z}/p)$. We leave this to the reader.

Proof of Theorem 1 (assuming Proposition 1). We may assume that $R_{H_*(\Omega X)} > 0$ and hence $R_{E(X)} > 0$ by the proposition. In particular we deduce $\dim_{\mathbb{Z}/p} E_n(X) < \infty$, i.e. $E_2^{S,s+n}(\Omega X)$ is finite dimensional for all s,n and $E_2^{S,s+n}(\Omega X) = 0$ if s > s(n). This implies that the BKSS converges completely to $\pi_{n+2}(\Omega X; \mathbb{Z}/p) \cong \pi_{n+3}(X; \mathbb{Z}/p)$ if n > 0 and furthermore that

$$\dim_{\mathbb{Z}/p} \pi_{n+2}(\Omega x; \mathbb{Z}/p) \leq \sum_{s \geq 0} \dim_{\mathbb{Z}/p} \mathbb{E}_{2}^{s,s+n}(\Omega x) \leq \dim_{\mathbb{Z}/p} \mathbb{E}_{n}(x).$$
 It follows that $\mathbb{R}_{\pi_{\star}(\Omega X; \mathbb{Z}/p)} \geq \mathbb{R}_{E}(x)$.

2. In this section we will give a proof of Proposition 1 in case p=2.

It is possible to give a proof by a modification of the work of Bousfield-Curtis [B-C] (for p=2) and Wellington [W] (for p odd), i.e. by constructing an explicit algebraic $\rm E_1$ -term for the spectral sequence and estimating this $\rm E_1$ -term (cp [I1]). However, we choose to proceed in a different manner which we feel is more conceptual.

In a first step we reduce the study of $\operatorname{Ext}_{\underline{C}\underline{\underline{A}}}$ to the study of $\operatorname{Ext}_{\underline{\underline{U}}}$ where $\underline{\underline{U}}$ is the category of right modules over the mod 2 Steenrod algebra with unstability condition $x\operatorname{Sq}^n=0$ if |x|<2n.

H.Miller [M 1,Thm.2.5] has constructed a convergent cohomological spectral sequence

$$\mathbf{E}_{2}^{s,t} = \mathbf{Ext}_{\underline{\mathbf{U}}}^{s}(\mathbf{M},\boldsymbol{\Sigma}^{-1}\mathbf{R}^{t}\mathbf{P}(\mathbf{C})) \Rightarrow \mathbf{Ext}_{\underline{\mathbf{CA}}}^{s+t}(\boldsymbol{\Sigma}\mathbf{M},\mathbf{C}), \text{ natural in}$$

 $M \in \underline{\mathbb{Y}}$, $C \in \underline{CA}$. Here $P : \underline{CA} \to \underline{\mathbb{Y}}$ is the primitive element functor, $R^{\mathsf{t}}P$ are the right derived functors of P and Σ^{-1} denotes desuspension.

Furthermore $H^*(\Omega X)$ is a Hopf algebra with commutative multiplication and therefore it is isomorphic (as an algebra) to a tensor product of a free commutative algebra and

truncated polynomial algebras,

$$H^*(\Omega X) \cong S(V) \otimes \bigotimes_{\alpha} P(y_{\alpha}) / \binom{k}{(y_{\alpha})} \quad \text{with} \quad k_{\alpha} = 2^n \alpha$$
.

From this we get an injective extension sequence of homology coalgebras ([B])

$$\mathbb{Z}/2 \to \mathbb{H}_{\star}\left(\Omega X\right) \to \mathbb{S}\left(V\right)^{\star} \quad \otimes \quad \bigotimes_{\alpha} \, \mathbb{P}\left(y_{\alpha}\right)^{\star} \quad \to \quad \bigotimes_{\alpha} \, \mathbb{P}\left(y_{\alpha}^{\,\, k_{\alpha}}\right)^{\star} \, \to \quad \mathbb{Z}/2 \, .$$

Now [M1, Thm 2.5.] and [B, §3] imply that

$$R^0 P\overline{H}_{+}(\Omega X) \cong P\overline{H}_{+}(\Omega X)$$

 $R^{1}p\overline{H}_{*}(\Omega X) \cong W^{*}$ if W is the graded Z/2 vector space with

basis
$$\{y_{\alpha}^{k}\}$$
 and $R^{t}p\overline{H}_{\star}(\Omega X) = 0$ if $t > 1$.

From the description of R¹P given above we see that

$$R_{H_{\star}(\Omega X)} \leq R_{\Sigma}^{-1} R^{1} P_{H_{\star}(\Omega X)}$$
;

$$R_{H_{\star}(\Omega X)} \leq R_{\Sigma}^{-1} P_{H_{\star}(\Omega X)}$$
 holds trivially.

Proposition 1 will therefore follow from

PROPOSITION 2. Let $U \in \underline{U}$ and $\overline{E}(U)$ be the graded Z/2-vector space given by

$$\overline{E}_n(U) = \bigoplus_{s \ge 0} \operatorname{Ext}_U^s(\overline{H}_{\star}(P^{s+n+2}(2)), U)$$
.

$$\frac{\text{Then}}{\text{E}(U)} \ge \min\{R_{U,1/2}\}.$$

We will deduce Proposition 2 from the following

 $\underline{\text{Proof of Proposition 2}}$ (assuming the Lemma). By using the skeletal filtration of U we see that

$$\begin{aligned} \dim_{\mathbb{Z}/2} \overline{\mathbb{E}}_n (\mathtt{U}) & \leq \sum_k a_2(n,k) \cdot \dim_{\mathbb{Z}/2} U_k \\ & \leq \sum_k 2^{n-k+1} \cdot \dim_{\mathbb{Z}/2} U_k \end{aligned}.$$

The right hand side is the n-th coefficient of the power

series $Q(t) = (\Sigma \ 2^{r+1}t^r) \cdot (\Sigma \ \dim_{\mathbb{Z}/2} \mathbb{U}_s \cdot t^s)$. The result follows now from comparing the radius of convergence of Q(t) with that of $\Sigma \dim_{\mathbb{Z}/2} \overline{\mathbb{E}}_p(U) \cdot t^n$.

It remains to give the

<u>Proof of Lemma 3</u>. We will use the following abbreviations: S^k instead of $\overline{H}_{\star}(S^k)$, P^k instead of $\overline{H}_{\star}(P^k(2))$ and $\text{Ext}_U^{S,t}(U)$ instead of $\text{Ext}_U^{S}(P^{t+2},U)$.

There is a wellknown long exact "EHP-sequence"

$$\cdots \rightarrow \operatorname{Ext}_{\underline{\mathbb{U}}}^{s,\,t-1}(\Omega\mathbb{U}) \rightarrow \operatorname{Ext}_{\underline{\mathbb{U}}}^{s,\,t}(\mathbb{U}) \rightarrow \operatorname{Ext}^{s-1,\,t-1}(\Omega_1\mathbb{U}) \rightarrow \cdots \tag{t>0}$$

where Ω is the loop functor in \underline{U} and Ω_1 is its first right derived functor (cp [M1,§8]).

Furthermore, if k>0, then
$$\Omega s^k = s^{k-1}$$

$$\Omega_1 s^k = s^{2k-1} \ .$$

Hence the EHP-sequence implies

(1) $a_2(n+1,k) \le a_2(n,k-1)+a_2(n+1,2k-1)$, $n\ge 0$, $k\ge 1$.

In addition we have

- (2) $a_2(n,k) = 0$ if n < k-2
- (3) $a_2(n,1) = 0$ if $n \ge 0$
- (4) $a_2(0,2) = 1$.

We postpone the proof of (2)-(4) and continue with the proof of Lemma 4.

Let $i_2 = \{(i_1, i_2, ..., i_e) | e \ge 0 \text{ and } i_j > 0, i_{j+1} \le 2i_j \text{ for all } j\}$ and let

 $\begin{array}{lll} b_2(n,k) &= card\{(i_1,\ldots,i_e) \in I_2 \big| i_1 < k & and & \Sigma i_j = n+2-k\}. \\ \\ \end{array}$ Then it is easy to verify that the $b_2(n,k)$ satisfy

(1')
$$b_2(n+1,k) = b_2(n,k-1)+b_2(n+1,2k-1)$$

$$(2')$$
 $b_2(n,k) = 0$ if $n < k-2$

(3')
$$b_2(n,1) = 0$$
 if $n \ge 0$

$$(4')$$
 $b_2(0,2) = 1$

By induction we see that $a_2(n,k) \le b_2(n,k)$ for all n,k, in particular $a_2(n,k) \le c_2(n-k+2)$ if

$$c_2(m) = card\{(i_1,...,i_e) \in I_2 | \Sigma i_j = m\}$$
.

Furthermore $c_2(m) \le d(m)$ if

 $d(m) = card\{(i_1,...,i_e) | e \ge 0, i_j > 0 \text{ for all } j \text{ and } \Sigma i_j = m\}.$ Finally it is clear that d(0) = 1 and easy to see that

$$d(m) = \sum_{j=1}^{m} d(m-j) \quad \text{if} \quad m>0.$$

Now induction on m shows that $d(m) = 2^{m-1}$ if m>0 and therefore $a_2(n,k) \le 2^{n-k+1}$.

It remains to prove statements (2)-(4).

For (2) consider a minimal projective resolution $\underline{G} = \{G_r, d_r\}$ of P^{s+n+2} by direct sums of G(m)'s (cp [M1, §§6,7]). Then G_r has dimension $\leq s+n+2-r$ and (2) follows.

For (3) consider the long exact EHP-sequence $\dots \rightarrow \operatorname{Ext}_{\underline{U}}^{s,s+n-1}(s^0) \rightarrow \operatorname{Ext}_{\underline{U}}^{s,s+n}(s^1) \rightarrow \operatorname{Ext}_{\underline{U}}^{s-1,s+n-1}(s^1) \rightarrow \dots$

Because $S^0 \in \underline{U}$ is injective we get for s>0 $\operatorname{Ext}_{\underline{U}}^{s,s+n}(S^1) \cong \operatorname{Ext}^{s-1}(S^1) \cong \ldots \cong \operatorname{Hom}_{\underline{U}}(P^{n+2},S^1) = 0$ if $n \ge 0$.

For (4) consider the long exact EHP-sequence $\dots \rightarrow \operatorname{Ext}_{\underline{U}}^{s,s-1}(S^1) \rightarrow \operatorname{Ext}_{\underline{U}}^{s,s}(S^2) \rightarrow \operatorname{Ext}_{\underline{U}}^{s-1,s-1}(S^3) \rightarrow \dots$ Now $\operatorname{Ext}_{\underline{U}}^{s-1,s-1}(S^3) = 0$ by (2). If s>0 we get $\operatorname{Ext}_{\underline{U}}^{s,s}(S^2) \cong \operatorname{Ext}_{\underline{U}}^{s,s-1}(S^1) \cong \dots \cong \operatorname{Ext}_{\underline{U}}^{1}(P^2,S^1) = 0$ because $P^2 = G(2)$ is projective.

If s = 0 then $Hom_{\underline{U}}(P^2, S^2) = \mathbb{Z}/2$ which proves (4). This completes the proof of Lemma 3.

<u>Remark</u>: The proofs of Proposition 2 and Lemma 3 show that the constant C_2 occurring in Theorem 1 and Proposition 1 can be taken to be the radius of convergence of $\Sigma c_2(m)t^m$.

- The following modifications are necessary in case of an odd prime.
- a) Instead of reducing to the category $\underline{\underline{U}}$ we reduce to the category $\underline{\underline{V}}$ of right modules over the mod p Steenrod algebra with unstability condition $xP^t = 0$ for $|x| \le 2pt$ (cp. [M2]). For this we replace the spectral sequence of [M1, Thm.2.5.] by that of [M2,Thm.2.5.].
- b) Proposition 2 and Lemma 3 read as before (with $\underline{\underline{U}}$ replaced by $\underline{\underline{V}}$). Also the proof of Proposition 2 remains unchanged while the proof of Lemma 3 makes use of the following exact EHP-sequence in $\underline{\underline{V}}$

$$\cdots \rightarrow \operatorname{Ext}_{\underline{\underline{V}}}^{s,\,t-1}(\Omega'V) \rightarrow \operatorname{Ext}_{\underline{\underline{V}}}^{s,\,t}(V) \rightarrow \operatorname{Ext}_{\underline{\underline{V}}}^{s-1,\,t-1}(\Omega'V) \rightarrow \cdots$$

where Ω' is the loop functor in \underline{V} and Ω'_1 is its first derived functor ([M1,§8] and [M2]).

Furthermore

$$\Omega'S^k = \begin{cases} 0 & k = 1 \\ S^{k-1} & k = 0 \end{cases}$$

and

$$\Omega_1' s^k = \begin{cases} s^1 & k = 1 \\ p^{(k-1)} p + 1 & k = 1 \mod 2, k > 1 \\ 0 & k = 0 \mod 2. \end{cases}$$

This implies (for $n \ge 0$, $k \ge 1$)

$$(1_p)$$
 $a_p(n+1,2k) = a_p(n,2k-1)$ $a_p(n+1,2k+1) \le a_p(n,2k) + a_p(n+1,2kp) + a_p(n+1,2kp+1)$.

In addition $(2_p)-(4_p)$ read exactly as before and are proved essentially as before.

Now define

$$\begin{split} & I_p = \{\,(i_1,i_2,\ldots,i_e) \mid e \geq 0\,, i_j > 0\,, i_{j+1} \leq pi_j \text{ and } i_j = -1 \text{ or } 0 \text{ mod } 2\,(p-1)\,\} \\ & \text{and} \qquad \qquad b_p\,(n,2k) = \text{card}\,\{\,(i_1,\ldots,i_e) \in I_p \mid i_1 < 2k\,(p-1) - 1 \text{ and } \Sigma i_j = n+2-2k\} \\ & \qquad \qquad b_p\,(n,2k+1) = \text{card}\{\,(i_1,\ldots,i_e) \in I_p \mid i_1 \leq 2k\,(p-1) \text{ and } \Sigma i_j = n+2-2k-1\}\,. \end{split}$$

Then one checks easily that the $b_p(n,k)$ satisfy the obvious equations $(1_p^i)^{-}(4_p^i)$.

As before we conclude that

$$a_p(n,k) \le b_p(n,k) \le c_p(n-k+2)$$
 where $c_p(m) = card\{(i_1,...,i_e) \in I_p | \Sigma i_j = m\}$.

Then $c_p(m) \le d(m) \le 2^{m-1}$ which finishes the proof.

Remark: The constant C_p occurring in Theorem 1 and Proposition 1 can be taken to be the radius of convergence of $\Sigma c_p(m) \cdot t^m$.

References

- [B-H] C.-F.Bödigheimer and H.-W.Henn, A remark on the size of $\pi_{\bf q}(S^n)$, Manuscr.Math. 42,79-83,(1983)
- [B] A.K.Bousfield, Nice homology coalgebras, Trans. Amer.Math.Soc. 148,473-489,(1970)
- [B-C] A.K.Bousfield and E.B.Curtis, A spectral sequence for the homotopy of nice spaces, Trans.Amer.Math. Soc. 151,457-479,(1970)
- [B-K] A.K.Bousfield and D.M.Kan, Homotopy limits, completions and localizations, Berlin-Heidelberg-New York, Springer 1972, Lect.Notes in Math. 304
- [F-T] Y.Felix and J.C.Thomas, The radius of convergence of Poincaré series of loop spaces, Invent.Math.68, 257-274, (1982)
- [H] H.-W.Henn, On the growth of homotopy groups, Abstracts Amer.Math.Soc. 6,217,(1985)

- [I1] K.Iriye, On the rank of the homotopy group, Preprint, (1985)
- [12] K.Iriye, On the rank of the homotopy groups of a space, Preprint, (1985)
- [M-N] C.A.McGibbon and J.A.Neisendorfer, On the homotopy groups of a finite dimensional space, Comm.Math. Helv. 59,253-257,(1984)
- [M-W] C.A.McGibbon and C.Wilkerson, The exponent problem for large primes, Preprint (1984)
- [M1] H.Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120, 39-87, (1984)
- [M2] H.Miller, Corrections to "The Sullivan conjecture on maps from classifying spaces", Ann. of Math. 121, 605-609, (1985)
- [N] J.A.Neisendorfer, Primary homotopy theory, Memoirs Amer.Math.Soc. 232, (1980)
- [W] R.J.Wellington, The unstable Adams spectral sequence for free iterated loop spaces, Memoirs Amer.Math. Soc. 256,(1982)

Hans-Werner Henn Mathematisches Institut der Universität Im Neuenheimer Feld 288 D-6900 Heidelberg Federal Republic of Germany

(Received April 23, 1986)