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WEIGHTED-ADDITIVE DEVIATIONS WITH THE SUM PROPERTY

Wolfgang Sander

Hern Hans-Joachim Kowalsky zum 65. Geburtstag gewidmet

We determine all weighted-additive deviations having the
sum property by means of all weighted-additive entropies
having the sum property.

1. Introduction

n

Let T = {p = (PyreserPy) 2 Py 20, > p; = 1}e
i=1

Entropies are functions Ir'1 : I‘n + R and deviations

are functions I_ : T_ xT_ > R (n > 2).
n n n

The characterization of weighted-additive entropies or
deviations having the sum property leads to the functional
equations (cf. [4], [e], -[7], [8])

n m

(n >_ > _ I'(Piqj')
=1 3=1
n m n m .
Y3 _epy)Tay) + Y3 _ Lgy)T(py)
i=1 =1 J =7 3=3

for all P ¢ I'n, Q¢ Fm and
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n m
(2) §=1 §=1 I(piqj.viwj) =
n m n m
22 _G()I(qiwy) + 3 5  L(q.)I{p,v,)
=1 3=1 S R =1~

for all P,V € Fn’ Q,W € Pm, respectively.

Here I',G,L : [0,1] * R and I : J + R where
(3) J = [0,1] x (0,1] v {0,0}.

In the following we suppose that the functions I',G,L or
I,G,L satisfy the equations (1) and (2), respectively,for
a fixed pair (n,m), n 2 3, m > 3.

If in particular

G(p) = pa and L(p) = pB o,B £ R

and if I' or J is measurable then the functional equations
(1) and (2), respectively,were solved in [3], [4], [5] and
[6]. Here (and throughout the paper) the convention

a

O"=0,a¢R

is used. Generalizing the result in [4] all measurable
triples (I',G,L) satisfying (1) were determined in [9]

where moreover G and L were supposed to satisfy

(4) G(0) = L(0) = O.

Note that in the special case G(p) = pOl and L(p) = p
the functions G and L also fulfill the condition (4)
because of our convention.

In [8] all measurable triples (I,G,L) satisfying (2) and (4)
were derived under the additional assumption

B

I(0,0) =0.
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In this case all solutions of equation (2) are independent
on n and m, but it is known that there are solutions of (2)
which are dependent upon the pair (n,m) (cf. [6])

So the question arises to derive all measurable solutions
I,G,L satisfying (2) and (4). In this paper we give an answer
to this question by showing that all weighted-additive
deviations with the sum property can be determined with the
aid of all weighted-additive entropies with the sum property.
The method of proof is a refinement of considerations in [8].
Our result contains the above mentioned results as special

cases.

2. Main results

We make use of the following result ([8]).

LEMMA 1. Let A : J x J - R be measurable in all four

variables and let A satisfy the functional equation

m
(5) z z A(Pi:Vi:qj,Wj) =0, P,V & Fn r Q,W € rm

for some fixed pair (n,m), n > 3, m > 3. Then A is given by

(6) A(p,v,q,w) = A(0,0,q,w) (1-np) + A(p,v,0,0) (1-mq) -

- A(0,0,0,0) (1-np) (1-mg) +
+ (v-p) [A(0,1,q,w)-A(0,0,q,w)-(1-mq) (A(O,1,0,0)-A(0,0,0,0))] +
+ (w-q) [A(p,v,0,1)-A(p,v,0,0)-(1-np) (A(0,0,0,1)-A(0,0,0,0))] +

+ (v-p) (w-q) [A(0,1,0,0)-A(0,0,0,0)+A(0,0,0,1)-A(0,1,0,1)].
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THEOREM 2. Let G,L : [0,1] + R be measurable and let
I : J > R be measurable in each of its two variables.

Then I, G, L satisfy (2) and (4) for a fixed pair (n,m)

following forms :

(7) I(p,v) = a(p—v)+I(O,O)+p(nm—n-m)I(O,0)+plogpAvB+vlong,

G(p) = L(p) = p,

(8) I(p,v) = a(p-v) + pAlongvC,

G(p) = L(p) = p* , A # 1

(9) I(p,v) = a(p-v) + I'(p)

where - for fixed n,m - (I',G,L) is a measurable
solution of (1) and (4), but where G(p) and L(p) are

Here a,A,B,C are constants; moreover we follow the convention

OlogO = O.

Proof. It is easy to check that the functions I,G,L given by
(7), (8) or (9) have all properties stated in the theorem.
To prove the converse statement we define

A(p,v,q,w) = I(pqg,vw) - G(p)I(gq,w) - L(g)I(p,v)

for (p,v,q,w) € J x J. Then (2) goes over into (5) and with

(10) o =1I(,0 ,B=1I(0,1) - 1I(0,0)

Lemma 1 yields
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(11) I(pg,vw) - G(p)I(g,w) - L(q)I(p,v) =

(v-p) (I(O,w)=-a-BL(g)) + (w=q) (I(0,v)-a-BG(p)) +

+

a(l = np) (1 - L(g)) + a(l - mq) (1 - G(p)) -

[}

a(1 - np)(1 = mq) - B(v - p)(w - q).

Defining
F(p,v) = I(p,v) - o(1 - nmp) + B(p - V)
(12) H(p,v) = I(p,v) - a(1l - mp) + B(p - Vv)
K(p,v) = I(p,v) = a(1l = np) + B(p - V)

for all (p,v) € J equation (11) can be rewritten into
(13) F(pg,vw) = G(p)H(q,w)+L(q)K(p,v)+(v-p)F(0,w)+(w-q)F (O,V)
for all (p,v,q,w) € J x J (We remark that

F(p,v) = H(p,v) = K(p,v) = I(p,v) + B(p-v) , (p,v) € J

if a = 0. This case was treated in [8]).
Using the fact that

(14) F(O,v) = H(O,v) = K(O,v) = I(O,v) — a - Bv , v € (0,1]
and setting p=0, w=1o0orq=0, v=1o0rp=0,qg=0
into (13) we get

(15) (L(g)-q)F(0,v) =0 , q,v e (0,1]
and

(16) (G(p)-p)F(O,w) =0 , p,w € (0,1]
and
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(17) F(O,vw) = vF(O,w) + wF(O,v) , v,w e (0,1],

respectively. Like in [8] we distinguish two cases which are
more complicated now.

Case (I): F(O,v) is not identically zero.

Case (II): F(O,v) is identically zero.

In the first case (15) and (16) imply

(18) G(p) = L(p) =p , p e (0,1]
which holds also for p = O (see (4)). Since (17) is a Cauchy
type equation where F is measurable in the second variable
and F(O,v) $ O we obtain (cf. [1])

(19) F(O,v) = yvlogv , Yy e R, v e (0,1].

Note that (19) is also valid for v = O (see (14) and our
conventions). Substituting (18) and (19) into (13) we get

(20) f(pq,vw) = ph(q,w) + gk(p,v) , (p,veq,w) € J x J

where
f(p,v) = F(p,v) - yvlogv

(21) h(p,v) = H(p,v) - yvlogv ’ (p,v) € J.
k(p,v) = K(p,v) - yvlogv

Since equation (20) is - for fixed v,w € (0,1] - a Pexider
equation we have the solutions (cf. [1])

f(p,v) = pla(v)logp + b(v) + c(v))
(22) h(p,v) = p(a(v)logp + b(v)) , p,v e (0,1].
k(p,v) = p(a(v)logp + c(v))
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Setting g = 1 into (20) we get using (22)
(23) a(vw)logp + b(vw) + c(vw) = b(w) + a(v)logp + c(v)
for all p,v,w e (0,1]. Thus (23) implies

(24) a(vw) = a(v) = § (say)

and
b(vw) + c(vw) = b(w) + c(v)

which is again a Pexider equation with the solutions

b(v) = Blogv + C
(25) c(v) = Blogv + D » v e (0,1]
b(v) + c(v) = Blogv + C + D

where B,C,D are constants. Putting p = g = 1 into (12) and
using (21), (22), (24) and (25) we get

I(1,1) a(l - mm) + C + D

a(l - m) + C

a(l = n) +D
which implies
(26) C=n(m-=-1)o and D =mn(n - 1)a.
Finally we obtain from (12), (21), (22), (24), (25) and (26)
(27) I(p,v) = oa(1 + (nmm-n-m)p) - B(p =~ v) +
+ yvlogv + &plogp + Bplogv , p,v e (0,1].

But (27) is also valid for p=0, v € (0,1] and for p=v =0
(see (14), (19) and (10)). Thus we have solution (7).
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In the case that F(O,v) = O equation (13) reduces to

(28) F(pgq,vw) = G(p)H(g,w) + L(q)K(p,v) , (p,v,g,w) € J x J.
Moreover we can assume (see (15) and (16))

(29) G(p) ¢ p or L( tp , pe [0,1].

Putting v = w = 1 into (28) we get the functional equation

(30) F'(pq) = G(p)H'(q) + L(qQ)K'(p) , p,q € [0,1]
where

(31) F'(p) = F(p,1), H'(p) = H(p,1), K'(p) = K(p,1), p ¢ [0,1].
Moreover we define
(32) M(p,v) = I(p,v) - I(p,1) + B(1 -vVv) , (p,v) € J

so that (12) can be rewritten into

F(p,v) = F'(p) + M(p,v)
(33) H(p,v) = H'(p) + M(p,v) , (p,v) € J.
K(p,v) = K'(p) + M(p,Vv)

Note that by definition
(34) M(p,1) =0 , pe [0,1].

Substituting (33) into (28) we get by means of (30) the
following functional equation

(35) M(pq,vw) = G(p)M(q,w) + L(g)M(p,v) , (p,v,g,w) € J x J.

Setting p = g = 1 into (35) we get the Pexider equation
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(36) M(1,vw) = G(1)M(1,w) + L(1)M(1,v) , v,w e (0,1]
with the solution

(37) M(1,v) = e + dlogv , d,ee R, ve (0,1]
(We note that e = 0 in (37) if G(1) = L(1) = 1 in (36)).

Substituting q = v = 1 or p = w = 1 into (36) and using (34)
we obtain

(38) M(p,w) = G(p) (e + dlogw) y DWW € (0,1]
and
(39) M(q,v) = L(q) (e + dlogv) ¢ q,v £ (0,1],

respectively. We now show that (38) and (39) imply that
there are only two possibilities for the function M(p,v) :
Either

(40) M(p,v) = dpPlogv , p#1, p,ve (0,1]
or

(41) M(p,v) =0 ; pv & (0,1}
From (38) and (39) we get

(42) (G(p) - L(p)) (e + dlogv) =0 , p,v € (0,1].

If e + dlogv = O for all v ¢ (0,1] then (41) is valid.
If there exists a vo € (0,1] with e + dlogvo # O then we
conclude from (42) that

(43) G(p) = L(p) , p e (0,1].

1 and v = v )

Substituting (43) and (38) into (35) (with w o

we obtain (use (34))

G(pq) (e + dlogv_) = G(p)G(q) (e + dlogy) , p,q € (0,1]
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that is

(44)  G(p) = L(p) =p° or G(p) =L(p) =0, pe (0,1]

which yields (40) and (41), respectively (see the remark
after (37)); because of (29) we can assume that p # 1.

Let us first consider the case that M(p,v) is given by (40)
where G(p) = L(p) = pp, p # 1. Then (30) goes over into a
Pexider equation with the solutions

F'(p) = Rpplogp + (S + T)pp
(45) H'(p) = RpPlogp + sp” . pe (0,1]
K'(p) = Rpplogp + Tpp

where R, S, T are constants; because of (10), (12) and (31)
equation (45) is also valid for p = O. Substituting (33),
(40) and (45) into (12) we get (note that p # 1)

S =T = o = 0 and thus solution (8).

Finally, if M(p,v) = O (see (41)) then (12) together with
(33) yields (we denote the term I(p,v) + B(p-v), which is
not dependent upon v, by I'(p))

I'(p) = I(p,v) + B(p-v) F'(p) + a(1-mmp)

(46) H'(p) + a(1-mp) , p ¢ [0,1]

K'(p) + o(1-np)

where F', H', K', G, L is a measurable solution of (30) and
G(p) =p° or L =p°, peR, pe [0,1].

To finish the proof we show that for fixed n,m the measurable
triples (I',G,L) satisfying (1) and (4) are exactly given by
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all measurable solutions F', H', K', G, L fulfilling (46)
and (30) (cf. [9]).
Let first (I',G,L) satisfy (1) and (4). Setting

(47) B(p,q) = I'(pg) - G(p)Iq) - L()I(p) , p,q e [0,1]

we get from (1)

M

I
—

2%:

B(p-,q-) =i Ol
i=1 3 i
Now, Lemma 1 (see also Lemma 1 in [3]) leads to

(48) B(p,q) = B(0O,q) (1-np) + B(p,0) (1-mg) - B(0,0) (1-np) (1-mq)

for all p,q € [0,1]. Thus substitution of (47) into (48)
yields

(49) I'(pq) - (1-mnpg)I'(0) = G(p) (I'(q) - (1-mq)I'(0)) +
+ L(gq) (I'(p) - (1-np)I'(0))
for all p,q € [0,1]. Defining

F'(p) = I'(p) - (1-mnp)I'(0)

(50) H'(p) = I'(p) - (1-mp)I'(0) , pe [0,1]

I'(p) - (1-np)I'(O)

K' (p)

equation (49) goes over into (30); moreover (50) is exactly
(46) with o = I'(0).

Conversely, if ', H', K', G, L satisfy (46) and (30) then
we get immediately equation (1) since

n m

m n
> > (1—nmpiqj) =3 (1—mqj) =9 - (1-np;) =0

=1 3=1

for P ¢ Fn and Q € Fm. Thus Theorem 2 is proven.
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REMARK 3. The general complex-valued solutions

F', G, H', K',L: (0,1] » € of (30) were given in [10] so that
also all real-valued measurable solutions of (30) can be
derived from this result; this was done in [9]. Thus all
measurable triples (I,G,L) satisfying (2) and (4) are
explicitely known and it turns out that the function I is in-
dependent upon n and m if, and only if I(0,0) = O.
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