

Werk

Titel: Wighted-Additive Deviations with the Sum Property.

Autor: Sander, Wolfgang

Jahr: 1986

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0055|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

WEIGHTED-ADDITIVE DEVIATIONS WITH THE SUM PROPERTY

Wolfgang Sander

Herrn Hans-Joachim Kowalsky zum 65. Geburtstag gewidmet

We determine all weighted-additive deviations having the sum property by means of all weighted-additive entropies having the sum property.

Introduction

Let
$$\Gamma_n = \{P = (p_1, ..., p_n) : p_i \ge 0, \sum_{i=1}^n p_i = 1\}.$$

Entropies are functions $I_n:\Gamma_n\to\mathbb{R}$ and deviations are functions $I_n:\Gamma_n\times\Gamma_n\to\mathbb{R}$ (n > 2).

The characterization of weighted-additive entropies or deviations having the sum property leads to the functional equations (cf. [4], [6], [7], [8])

(1)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} I'(p_i q_j) =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} G(p_i) I'(q_j) + \sum_{i=1}^{n} \sum_{j=1}^{m} L(q_j) I'(p_i)$$

for all P ϵ Γ_n , Q ϵ Γ_m and

(2)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} I(p_i q_j, v_i w_j) =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} G(p_i) I(q_j, w_j) + \sum_{i=1}^{n} \sum_{j=1}^{m} L(q_j) I(p_i, v_i)$$

for all P,V ϵ $\Gamma_{\rm n}$, Q,W ϵ $\Gamma_{\rm m}$, respectively.

Here I',G,L : $[0,1] \rightarrow \mathbb{R}$ and I : J $\rightarrow \mathbb{R}$ where

(3)
$$J = [0,1] \times (0,1] \cup \{0,0\}.$$

In the following we suppose that the functions I',G,L or I,G,L satisfy the equations (1) and (2), respectively,for a fixed pair (n,m), $n \ge 3$, $m \ge 3$.

If in particular

$$G(p) = p^{\alpha}$$
 and $L(p) = p^{\beta}$ $\alpha, \beta \in \mathbb{R}$

and if I' or J is measurable then the functional equations (1) and (2), respectively, were solved in [3], [4], [5] and [6]. Here (and throughout the paper) the convention

$$0^{\alpha} = 0$$
 , $\alpha \in \mathbb{R}$

is used. Generalizing the result in [4] all measurable triples (I',G,L) satisfying (1) were determined in [9] where moreover G and L were supposed to satisfy

(4)
$$G(O) = L(O) = O.$$

Note that in the special case $G(p)=p^{\alpha}$ and $L(p)=p^{\beta}$ the functions G and L also fulfill the condition (4) because of our convention.

In [8] all measurable triples (I,G,L) satisfying (2) and (4) were derived under the additional assumption

$$I(0,0) = 0.$$

In this case all solutions of equation (2) are independent on n and m, but it is known that there are solutions of (2) which are dependent upon the pair (n,m) (cf. [6])

So the question arises to derive all measurable solutions

I,G,L satisfying (2) and (4). In this paper we give an answer to this question by showing that all weighted-additive deviations with the sum property can be determined with the aid of all weighted-additive entropies with the sum property. The method of proof is a refinement of considerations in [8]. Our result contains the above mentioned results as special cases.

2. Main results

We make use of the following result ([8]).

<u>LEMMA 1.</u> <u>Let A</u>: $J \times J \rightarrow \mathbb{R}$ <u>be measurable in all four</u> variables and let A satisfy the functional equation

(5)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} A(p_i, v_i, q_j, w_j) = 0, P, V \in \Gamma_n, Q, W \in \Gamma_m$$

for some fixed pair (n,m), $n \ge 3$, $m \ge 3$. Then A is given by

(6)
$$A(p,v,q,w) = A(0,0,q,w) (1-np) + A(p,v,0,0) (1-mq) - A(0,0,0,0) (1-np) (1-mq) +$$

+
$$(v-p)[A(0,1,q,w)-A(0,0,q,w)-(1-mq)(A(0,1,0,0)-A(0,0,0,0))]$$
 +

+
$$(w-q)[A(p,v,0,1)-A(p,v,0,0)-(1-np)(A(0,0,0,1)-A(0,0,0,0))]$$
 +

+
$$(v-p)(w-q)[A(0,1,0,0)-A(0,0,0,0)+A(0,0,0,1)-A(0,1,0,1)]$$
.

THEOREM 2. Let G,L: $[0,1] \rightarrow \mathbb{R}$ be measurable and let I: J $\rightarrow \mathbb{R}$ be measurable in each of its two variables. Then I, G, L satisfy (2) and (4) for a fixed pair (n,m) (n \geqslant 3, m \geqslant 3) if, and only if they are of one of the following forms:

- (7) $I(p,v) = a(p-v)+I(0,0)+p(nm-n-m)I(0,0)+plogp^{A}v^{B}+vlogv^{C},$ G(p) = L(p) = p,
- (8) $I(p,v) = a(p-v) + p^{A}logp^{B}v^{C},$ $G(p) = L(p) = p^{A}, A \neq 1$
- (9) I(p,v) = a(p-v) + I'(p)

 where for fixed n,m (I',G,L) is a measurable
 solution of (1) and (4), but where G(p) and L(p) are
 not of one of the forms given in (7) or (8).

Here a,A,B,C are constants; moreover we follow the convention OlogO = O.

Proof. It is easy to check that the functions I,G,L given by (7), (8) or (9) have all properties stated in the theorem. To prove the converse statement we define

$$A(p,v,q,w) = I(pq,vw) - G(p)I(q,w) - L(q)I(p,v)$$

for (p,v,q,w) ϵ J \times J. Then (2) goes over into (5) and with

(10)
$$\alpha = I(0,0), \beta = I(0,1) - I(0,0)$$

Lemma 1 yields

(11)
$$I(pq,vw) - G(p)I(q,w) - L(q)I(p,v) =$$

$$= (v-p)(I(0,w)-\alpha-\beta L(q)) + (w-q)(I(0,v)-\alpha-\beta G(p)) +$$

$$+ \alpha(1 - np)(1 - L(q)) + \alpha(1 - mq)(1 - G(p)) -$$

$$- \alpha(1 - np)(1 - mq) - \beta(v - p)(w - q).$$

Defining

(12)
$$\begin{cases} F(p,v) = I(p,v) - \alpha(1 - nmp) + \beta(p - v) \\ H(p,v) = I(p,v) - \alpha(1 - mp) + \beta(p - v) \\ K(p,v) = I(p,v) - \alpha(1 - np) + \beta(p - v) \end{cases}$$

for all (p,v) ϵ J equation (11) can be rewritten into

(13)
$$F(pq,vw) = G(p)H(q,w)+L(q)K(p,v)+(v-p)F(0,w)+(w-q)F(0,v)$$

for all (p,v,q,w) ε J \times J (We remark that

$$F(p,v) = H(p,v) = K(p,v) = I(p,v) + \beta(p-v)$$
, $(p,v) \in J$

if α = 0. This case was treated in [8]). Using the fact that

(14)
$$F(O,v) = H(O,v) = K(O,v) = I(O,v) - \alpha - \beta v , v \in (0,1]$$

and setting p = 0, w = 1 or q = 0, v = 1 or p = 0, q = 0 into (13) we get

(15)
$$(L(q)-q)F(0,v) = 0$$
, $q,v \in (0,1]$

and

(16)
$$(G(p)-p)F(O,w) = O$$
, $p,w \in (0,1]$

and

(17)
$$F(O,vw) = vF(O,w) + wF(O,v)$$
, $v,w \in (0,1]$,

respectively. Like in [8] we distinguish two cases which are more complicated now.

Case (I): F(O,v) is not identically zero.

Case (II): F(O,v) is identically zero.

In the first case (15) and (16) imply

(18)
$$G(p) = L(p) = p$$
, $p \in (0,1]$

which holds also for p = 0 (see (4)). Since (17) is a Cauchy type equation where F is measurable in the second variable and $F(0,v) \neq 0$ we obtain (cf. [1])

(19)
$$F(0,v) = \gamma v \log v , \qquad \gamma \in \mathbb{R}, \ v \in (0,1].$$

Note that (19) is also valid for v = 0 (see (14) and our conventions). Substituting (18) and (19) into (13) we get

(20)
$$f(pq,vw) = ph(q,w) + qk(p,v)$$
, $(p,v,q,w) \in J \times J$

where

(21)
$$\begin{cases} f(p,v) = F(p,v) - \gamma v \log v \\ h(p,v) = H(p,v) - \gamma v \log v \end{cases}, \quad (p,v) \in J.$$
$$k(p,v) = K(p,v) - \gamma v \log v$$

Since equation (20) is - for fixed $v, w \in (0,1]$ - a Pexider equation we have the solutions (cf. [1])

$$f(p,v) = p(a(v) \log p + b(v) + c(v))$$

$$h(p,v) = p(a(v) \log p + b(v)) , p,v \in (0,1].$$

$$k(p,v) = p(a(v) \log p + c(v))$$

Setting q = 1 into (20) we get using (22)

(23)
$$a(vw) \log p + b(vw) + c(vw) = b(w) + a(v) \log p + c(v)$$

for all p,v,w ϵ (0,1]. Thus (23) implies

(24)
$$a(vw) = a(v) = \delta (say)$$

and

$$b(vw) + c(vw) = b(w) + c(v)$$

which is again a Pexider equation with the solutions

(25)
$$\begin{cases} b(v) = Blogv + C \\ c(v) = Blogv + D & , v \in (0,1] \\ b(v) + c(v) = Blogv + C + D \end{cases}$$

where B,C,D are constants. Putting p=q=1 into (12) and using (21), (22), (24) and (25) we get

$$\begin{cases}
I(1,1) = \alpha(1 - nm) + C + D \\
= \alpha(1 - m) + C \\
= \alpha(1 - n) + D
\end{cases}$$

which implies

(26)
$$C = n(m - 1)\alpha$$
 and $D = m(n - 1)\alpha$.

Finally we obtain from (12), (21), (22), (24), (25) and (26)

(27)
$$I(p,v) = \alpha(1 + (nm-n-m)p) - \beta(p - v) +$$

$$+ \gamma v \log v + \delta p \log p + B p \log v , p, v \in (0,1].$$

But (27) is also valid for p = 0, $v \in (0,1]$ and for p = v = 0 (see (14), (19) and (10)). Thus we have solution (7).

In the case that $F(0,v) \equiv 0$ equation (13) reduces to

(28)
$$F(pq,vw) = G(p)H(q,w) + L(q)K(p,v)$$
, $(p,v,q,w) \in J \times J$.

Moreover we can assume (see (15) and (16))

(29)
$$G(p) \neq p$$
 or $L(p) \neq p$, $p \in [0,1]$.

Putting v = w = 1 into (28) we get the functional equation

(30)
$$F'(pq) = G(p)H'(q) + L(q)K'(p)$$
, p,q ε [0,1]

where

(31)
$$F'(p) = F(p,1)$$
, $H'(p) = H(p,1)$, $K'(p) = K(p,1)$, $p \in [0,1]$.

Moreover we define

(32)
$$M(p,v) = I(p,v) - I(p,1) + \beta(1-v)$$
, $(p,v) \in J$

so that (12) can be rewritten into

(33)
$$\begin{cases} F(p,v) = F'(p) + M(p,v) \\ H(p,v) = H'(p) + M(p,v) , & (p,v) \in J. \end{cases}$$

Note that by definition

(34)
$$M(p,1) = 0$$
, $p \in [0,1]$.

Substituting (33) into (28) we get by means of (30) the following functional equation

(35)
$$M(pq,vw) = G(p)M(q,w) + L(q)M(p,v)$$
, $(p,v,q,w) \in J \times J$.

Setting p = q = 1 into (35) we get the Pexider equation

(36)
$$M(1,vw) = G(1)M(1,w) + L(1)M(1,v)$$
, $v,w \in (0,1]$

with the solution

(37)
$$M(1,v) = e + dlogv$$
, $d,e \in \mathbb{R}$, $v \in (0,1]$

(We note that e=0 in (37) if G(1)=L(1)=1 in (36)). Substituting q=v=1 or p=w=1 into (36) and using (34) we obtain

(38)
$$M(p,w) = G(p) (e + dlogw)$$
, $p,w \in (0,1]$

and

(39)
$$M(q,v) = L(q) (e + dlog v)$$
 , $q,v \in (0,1]$,

respectively. We now show that (38) and (39) imply that there are only two possibilities for the function $M\left(p,v\right)$: Either

(40)
$$M(p,v) = dp^{\rho} log v , \rho \neq 1 , p, v \in (0,1]$$

or

(41)
$$M(p,v) = 0$$
 , $p,v \in (0,1]$.

From (38) and (39) we get

(42)
$$(G(p) - L(p))(e + dlogv) = 0$$
, $p, v \in (0,1]$.

If e + dlogv = 0 for all v ϵ (0,1] then (41) is valid. If there exists a v₀ ϵ (0,1] with e + dlogv₀ \neq 0 then we conclude from (42) that

(43)
$$G(p) = L(p)$$
, $p \in (0,1]$.

Substituting (43) and (38) into (35) (with w=1 and $v=v_0$) we obtain (use (34))

$$G(pq) (e + dlog y_0) = G(p)G(q) (e + dlog y_0)$$
, p,q ε (0,1]

that is

(44)
$$G(p) = L(p) = p^{\rho}$$
 or $G(p) = L(p) = 0$, $p \in (0,1]$

which yields (40) and (41), respectively (see the remark after (37)); because of (29) we can assume that $\rho \neq 1$. Let us first consider the case that M(p,v) is given by (40) where G(p) = L(p) = p^{ρ} , $\rho \neq 1$. Then (30) goes over into a Pexider equation with the solutions

(45)
$$\begin{cases} F'(p) = Rp^{\rho} logp + (S + T)p^{\rho} \\ H'(p) = Rp^{\rho} logp + Sp^{\rho} , \quad p \in (0,1] \end{cases}$$

$$K'(p) = Rp^{\rho} logp + Tp^{\rho}$$

where R, S, T are constants; because of (10), (12) and (31) equation (45) is also valid for p = 0. Substituting (33), (40) and (45) into (12) we get (note that $\rho \neq 1$) $S = T = \alpha = 0$ and thus solution (8). Finally, if M(p,v) = 0 (see (41)) then (12) together with (33) yields (we denote the term I(p,v) + β (p-v), which is not dependent upon v, by I'(p))

(46)
$$\begin{cases} I'(p) = I(p,v) + \beta(p-v) = F'(p) + \alpha(1-nmp) \\ = H'(p) + \alpha(1-mp) , p \in [0,1] \\ = K'(p) + \alpha(1-np) \end{cases}$$

where F', H', K', G, L is a measurable solution of (30) and

$$G(p) \equiv p^{\rho}$$
 or $L(p) \equiv p^{\rho}$, $\rho \in \mathbb{R}$, $p \in [0,1]$.

To finish the proof we show that for fixed n,m the measurable triples (I',G,L) satisfying (1) and (4) are exactly given by

all measurable solutions F', H', K', G, L fulfilling (46) and (30) (cf. [9]).

Let first (I',G,L) satisfy (1) and (4). Setting

(47)
$$B(p,q) = I'(pq) - G(p)I'(q) - L(q)I'(p)$$
, p,q ε [0,1]

we get from (1)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} B(p_{i}, q_{j}) = 0.$$

Now, Lemma 1 (see also Lemma 1 in [3]) leads to

(48)
$$B(p,q) = B(0,q) (1-np) + B(p,0) (1-mq) - B(0,0) (1-np) (1-mq)$$

for all p,q ϵ [0,1]. Thus substitution of (47) into (48) yields

(49)
$$I'(pq) - (1-mnpq)I'(0) = G(p)(I'(q) - (1-mq)I'(0)) + L(q)(I'(p) - (1-np)I'(0))$$

for all p,q ϵ [0,1]. Defining

(50)
$$\begin{cases} F'(p) = I'(p) - (1-mnp)I'(0) \\ H'(p) = I'(p) - (1-mp)I'(0) \\ K'(p) = I'(p) - (1-np)I'(0) \end{cases}$$

equation (49) goes over into (30); moreover (50) is exactly (46) with α = I'(0).

Conversely, if F', H', K', G, L satisfy (46) and (30) then we get immediately equation (1) since

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (1-nmp_{i}q_{j}) = \sum_{j=1}^{m} (1-mq_{j}) = \sum_{i=1}^{n} (1-np_{i}) = 0$$

for P ϵ Γ_n and Q ϵ $\Gamma_m.$ Thus Theorem 2 is proven.

REMARK 3. The general complex-valued solutions F', G, H', K',L: $(0,1] \rightarrow \mathbb{C}$ of (30) were given in [10] so that also all real-valued measurable solutions of (30) can be derived from this result; this was done in [9]. Thus all measurable triples (I,G,L) satisfying (2) and (4) are explicitly known and it turns out that the function I is independent upon I and I and only if I(0,0) = 0.

Literatur

- [1] ACZÉL,J.: Lectures on functional equations and their applications, New York-London: Academic Press 1966
- [2] ACZÉL, J., DARÓCZY, Z.: On measures of information and their characterizations, New York-San Francisco-London: Academic Press 1975
- [3] KANNAPPAN,P1.: On some functional equations from additive and non-additive measures-I.Proc.Edin.Math.Soc. 23,145-150 (1980)
- [4] KANNAPPAN,Pl.: On a generalization of sum form functional equation-III.Demonstratio Math.<u>13</u>, 749-754(1980)
- [5] KANNAPPAN,Pl.: On some functional equation from additive and non-additive measures-V.Utilitas Math. 22, 141-147 (1982)
- [6] KANNAPPAN, Pl.: On a generalization of sum form functional equation-V. Aequationes Math. 28, 255-261 (1985).
- [7] SANDER, W.: On a sum form functional equation. Aequationes Math. 28, 321-326 (1985)
- [8] SANDER, W.: On a functional equation arising in information theory. Appears in Manuscripta Math
- [9] SANDER, W.: Weighted additive entropies with the sum property. Submitted
- [10] VINCZE,E.: Eine allgemeinere Methode in der Theorie der Funktionalgleichungen II.Publ.Math.Debrecen 9, 414-323 (1962)

Wolfgang Sander Institut für Analysis Technische Universität Braunschweig Pockelsstr. 14 D 3300 Braunschweig

(Received September 19, 1985; in revised form December 11, 1985)