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ON RATIONALIZED H- AND CO-H-SPACES.
WITH AN APPENDIX ON DECOMPOSABLE H- AND CO-H-SPACES

H. Scheerer

Let R be a subring of the rationals with 1/2 , 1/3 € R ;

’
let Sg denote the R-local n-sphere and define Qﬂ = Sﬁ
for n odd, Qf := QIsR for n > 0 even. An H-Space
(resp. a 1-conn. co-H-space) is "decomposable over R ", if
it is homotopy equivalent to a weak product of spaces Qﬁ
(resp. to a wedge of R-local spheres). We prove that, if

E 1is grouplike decomposable of finite type over R , the
functor [-,E] is determined on finite dim. complexes by
the Hopf algebra M*(E;R) ; here M* denotes the unstable
cohomotopy functor of H.J. Baues. If C is cogrouplike
decomposable over R , the functor [C,-] is determined on
1-conn. R-local spaces by 7,(QC) as a cogroup in the cat-
egory of M-Lie algebras. For R = Q@ the functor [-,E]

is also determined by the Lie algebra m,(E) and [C,-]

by the Berstein coalgebra associated to the comultiplication
of C .

0. Introduction

The following investigation has been motivated by the
remarks of [2] (chap. VI, (4.6)) on rationalized loop spaces
and suspensions. We think it worthwhile to derive these re-
sults in a different, easier way for @-local H-spaces and
co-H-spaces as well as to get rid of the finite type assump-
tions. In an appendix we will indicate that the view dis-
played here on the rational situation might also be obtained
on the more general situation of decomposable H- and co-H-
spaces.
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We work in the homotopy category CW of well pointed
spaces which are compactly generated and of the homotopy
type of CW-complexes. For objects X and Y the set of
morphisms from X to Y is denoted by I[X,Y] .

Let R be a subringof @ . If X 1is a nilpotent

space, we denote by X the localization of X with re-

spect to the set of pr?mes which are not invertible in R
A nilpotent space X is called "R-local", if it is connect-
ed and if the localization X - xR is a homotopy equiva-
lence. Let §X denote the loop space of a space X and

IX the suspension of X .

We begin with a résumé of results.

0.1. Rationalized H-spaces

Let E be an H-space in CW and X € CW . The multi-
plication on E induces a multiplication on the set [X,E].

Similarly, let C be a cocommutative coalgebra over R
and let H be a quasi Hopf algebra over R (these notions
being used in the sense of [15]), then the set of coalgebra
morphisms Morco(C,H) carries a multiplication defined as

follows:

DEFINITION: Let A be the comultiplication of C , let m
be the multiplication of H ; for £,9 € Morco(C,H) define

fxg := m(£f8g)A .

PROPOSITION 1: Let E be a @Q-local H-space, let X € CW

be connected.

(1) The canonical map [X,E] - Morco(H*(x;m),H*(E;w)) is

a multiplicative bijection.
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(2) If E 4is grouplike, i.e. it is a group object in CW ,
then Mor  (H,(X;®@),H,(E;Q)) is completely determined as a
group by the coalgebra structure of H,(X;@) and the Lie
algebra structure of m,(E) (the Lie bracket being the
Samelson product).

This proposition will immediately be deduced from the
following assertion.

LEMMA: A @-local H-space is homotopy equivalent to a weak

product of Eilenberg-MacLane spaces.

Note: This fact is well known (see [21], [14], proposition
2 or [7], Satz 10.6.). We will indicate a short proof which
seems to be "folklore" and which, in different terms, has
already been given in [7], Satz 10.6. It also relates to
[2], chap. V, (3.10).

The lemma also implies that for grouplike E the Hopf
algebra H,(E;@) is isomorphic to the universal enveloping
algebra Um,(E) of w,(E) ([15], Appendix). Thus (2) fol-
lows from (1).

REMARK: In [19] the structure of the group Mor  (H, (X;Q),
H,(E;®)) has been studied more closely.

COROLLARY 1: Two {-local grouplike spaces are H-equivalent,

if and only if their Samelson Lie algebras are isomorphic.

Proof: Let E1, E2 be two @-local grouplike spaces such
that m,(E;) = m,(E,) as Lie algebras. Then Hy (E4:@) =

= H*(EZ;Q) as Hopf algebras, hence the functors [-,E1] and
[-,EZ] are isomorphic on the subcategory of connected spaces
of CW . Therefore, E1 and E2 , being connected, are
H-equivalent (see [6]). The other direction is obvious.
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COROLLARY 2: Any @-local grouplike space is H-equivalent
to a loop space.

Proof: Given such a space E there exists a 1-connected
@-local space Y with 7,(QY) = m,(E) as Lie algebras by
[18]. Apply corollary 1.

COROLLARY 3: Let E1, E2 be @-local grouplike spaces.
Then the set of homotopy classes of H-maps between E; and
Hopf alg(Hx(Eq7@),
H,(E,;@)) which corresponds bijectively to MorLie(n*(E1),
Ty (E5)) .

E, corresponds bijectively to Mor

0.2. Rational co-H-spaces

In the dual situation we work only with 1-connected
spaces, because any co-H-space has free fundamental group

[4].

Let 1-CWR denote the homotopy category of 1-connected
R-local spaces.

For X € 1-CW, denote the Lie algebra T, (9X) by
L(X) .

Let now C be a co-H-space in 1-Cwm with comultipli-
cation o: C->C v C .

Note that L(C v C) = L(C) & L(C) where "L" denotes
the free product of Lie algebras (see section 2 for an ex-
planation). Hence o gives rise to a morphism of Lie alge-
bras L(C) -» L(C) 1 L(C) .

For any X € 1-CWm the comultiplication o defines a
multiplication on [C,X] in the usual way. The algebraic
analogue is defined by using co-multiplicative objects in
the category of Lie algebras (see [8] for a general study of
comultipliéative objects in categories) as follows.
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DEFINITION 2: Denote by LieR the category of connected
graded Lie algebras over R . A comultiplicative object

L € Liep is a Lie algebra together with a morphism
0: L»LuL such that, if r,,r,: L + L - L are the two
retractions, then r, oo =idL for i=1,2.

DEFINITION 3: Let L be a comultiplicative object in
LieR  then for any N € LieR the set MorLie(L,N) carries
a multiplication. Namely, for f£f,g € MorLie(L'N) define

fxg := (£,9)0 ,

where (f,g9) is the unique morphism of the coproduct ex-
tending f on the first and g on the second factor.

PROPOSITION 2: Let C be a @-local co-H-space and X a
space in 1-CWQ . Then the canonical map

[Cc,X] - Mor, . (L(C) ,L(X))

)

is a multiplicative bijection.

This proposition will immediately be implied by the
following result.

LEMMA: Let C be a co-H-space in 1-CWm . Then C is
homotopy equivalent to a wedge of @-local spheres.

Note: This result has already been obtained in [10]. But
the proof we will give here is simpler, though some of the
arguments of [10] reappear in it.

For co-H-spaces satisfying some finiteness conditions
the result has already been given in [3] and [22].

Let now L be a cogroup in LieR , let U(L) be its
universal enveloping algebra. Note that
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U(L v L) = U(L) ¢+ U(L) . Therefore the map U(c): U(L) -»
U(L) & U(L) gives U(L) the structure of a cogroup in the
category of connected graded algebras. Let B(L) be the
coalgebra over R associated with this cogroup according
to [4]. We call it the Berstein coalgebra of (L,o) .

PROPOSITION 3: Let L be a cogroup in Liep , let

N € Liep . Assume that the canonical map L - U(L) is in-
jective and that N - U(N) maps N bijectively onto the
subspace PU(N) of primitive elements in U(N) .

Then the group structure of MorLieR(L,N) depends only

on the Lie algebra structure of N and the coalgebra struc-

ture of B(L) . 1In fact, there are isomorphisms of groups
MorLieR(L,N) = MorHopf alg(U(L),U(N)) = Morco(B(L),U(N)) .

_— e, e, e = ==

defined through U(o): U(L) -» U(L) v U(L) .

Geometrically we thus obtain:

PROPOSITION 4: Let C be a cogroup in 1-CWm and

X € 1-CWQ , then [C,X] = MorHopf alg(H*(QC;Q)'H*(QX;Q)) =
Morco(B(L(C)),U(L(X))) . I.e. the group structure of
[c,X] depends only on the Berstein coalgebra B(L(C)) and
on the Lie algebra L(X) .

n

COROLLARY 1: Two cogrouplike spaces in 1—Cwm are co-H-

equivalent, if and only if their Berstein coalgebras are
isomorphic.

COROLLARY 2: Any cogrouplike space in 2-CWm is co-H-equiv-
alent to a suspension.
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Proof: Let C be a cogroup in 2-~CWm with Berstein coal-
gebra B . Choose a space Y € 1-cwm such that H,(Y;®@)
is isomorphic to B as a coalgebra (possible by [18]).
Recall that B(L(ZY)) = H,(Y) ([4], section 3) and apply

corollary 1.

COROLLARY 3: Let C,, C, be cogroups in 1--CWm . Then
there is a bijection between the set of homotopy classes of
co-H-maps and Mor  (B(L(C;)),B(L(C,y))) .

1. Rationalized H-spaces, proofs

Let E be a (-local H-space in CW . Write
T,(E) = ® L, with L, c 7

ieg * =y

dim(Li) = 1 (where J 1is some indexing set).

(E) for some n; and

LEMMA: The space E is homotopy equivalent to the weak
product b K(L;,n;) .

ieg

Proof: Without loss of generality we may assume that E

has a strict unit element e which is the base point.

Let oy be a generator of Li with representative

fy1 Sgi -+ E . Note that we may identify K(@,n) with SS
for n odd and with 9258 for n even, n > 0 . For

i € J we construct a map g;¢ K(Li,ni) -+ E as follows:

If n is odd, take g;:= fi %

Let n, be even and consider the diagram

- QI
ﬂzsml — QIE

II lp
gt s g

£
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where 1 1is the inclusion and o is a retraction. Then
define gyi= pOQZfi .

We order J totally. For finite F = {i1 € sai <ir}cJ

let Kg:= T[] K(L,,n,) . Define a_.: K
F i€F i’i

(X peeerX; ) = (coo((g; (x; )og: (x, )).g., (x
i iy 1,774,777, T, s

E.: F-»E,

Ylawa) o

e |
For F' ¢ F we consider Koo < Kp in the obvious way.
Since e 1is neutral, we have aFIKF. = ap, - Hence the op

induce a map a: lim K, - E .
—
FcJd

By construction o induces isomorphisms of homotopy

F
groups, hence is a homotopy equivalence.

REMARK 1: The same argument shows that there is also a

homotopy equivalence E ~ I K(nn(E),n) .
n>0

COROLLARY (W. Meier): Let E be a @-local H-space. Let
X = lim Xa be a connected complex where the xa are the
finite connected subcomplexes. Then [X,E] = lim [xa,E] .

Proof: Since “|T K(m (E),n) is a CW-approximation of

TT K(m (E),n) , we deduce that [X,E] ~ TT [X,K(m_(E),n)] .
n>0
The result now follows from [11]. (See also [14], proposi-

tion 2).

Proof of proposition 1: By the lemma we may assume

E = lim Kp where each Kp is a finite product of spaces
K(Q,ni) .

Let X be a finite complex.

Since the continuous image of any finite complex (e.g.
X or X X I ) in E 1is contained in some KF , it follows

that [X,E] ~ lim [E,Kp] . But [X,Kg] ~
~ Mor , (H, (X;@) ,H, (K;:@)) (see [19]). Hence [X,E] ~
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~ lim Mor (H, (X;®@) ,H, (Kpi@)) ~ Mor  (H, (X;@) ,H, (lim K, ;@) ~
~ Mor . (H, (X;Q) ,H, (E;@)) .

If X is connected infinite, let X = lim xa where

the X, are the finite connected subcomplexes of X . By
the corollary we have [X,E] ~ }im [Xa'E] and lim [XG,E] ~

~ lim Mor_, (H, (X,;®@) ,H, (E;@)) ~ Mor . (H,(X;@) ,H,(E;Q)) .

It is immediate from the definitions that the map

[X,E] - Morco(H*(X;m),H*(E;Q)) preserves the multiplica-
tions.

Thus part (1) is proved; part (2) is then clear.

REMARK: Let C be a coalgebra and H a Hopf algebra over
@ ; assume that C, H are connected and cocommutative.

Then Mor_ (C,H) is a group (comp. [15], section 8), in
fact, it is a special kind of N-group in the sense of [12].
Its Lie algebra was determined in [19] as the vector space
of module homomorphisms MormO(C,PH) with Lie bracket given
as follows:

If f,g € Mormo(C,PH) then define

[£,9]:= mH(f@g)AC - mH(g@f)Ac .

In particular (see [19]) exp: MormO(C,PH) - Morco(C,H)
and its inverse log are defined, relating the group struc-
ture of Morco(C,H) with the Lie algebra structure of
Mormo(C,PH) via the Baker-Campbell-Hausdorff formula.

Instead of transfering the group structure of
Morco(C,H) to the Lie algebra Mormo(C,PH) by exp , one
can also transfer it by a "coordinate system of the second
kind", e.g. the map

eXp: Mor_ (C,PH) - Mor__(C,H), {x_} - T exp(x.) ,
mo "' a0 >0 n20 n

"
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where each x_ = of the family {xn}n20 is a homomorphism
C » PH concentrated in degree n . The group Morco(C,H)
can now be described as an inverse limit using the elements
exp(xn) as generators and the Zassenhaus formulas as rela-
tions. The formulas given in [2] describe the group using
only some of the elements exp(xn) as generators together

with the corresponding relations.

It would be interesting to have an explicit Baker-
Campbell-Hausdorff formula-like formula with respect to
exXp .

2. Rational co-H-spaces, proofs

LEMMA: Let C be a co-H-space in 1-CWQ . Then C is
homotopy equivalent to a wedge of @-local spheres.

Proof: The comultiplication o0: C » C v C defines a core-
traction r: C =» IQC , i.e. Veor ~ idc where v: IQC -» C
is the evaluation map (see [9]). Now, §C ~ lim K as in
— 'F
the proof of 1. lemma, hence IQC ~ lim IK., .
_ F
Let F = {j; <... <3} and K= TT K(@,n;) , then

i€F
IKp ~ VI(K(@,ny ) A ... A K(@,n, )) , the wedge extending
1 s

over all s-tupels a; < ... < a, with {a1,...,as} c F and
s =1,...,r (see [17]). Now, ZK(Q,ni) is itself homotopy
equivalent to a wedge of rationalized spheres; this is triv-

ial for ng odd; for n; even ZK(Q,ni) ~ znzsginfk¥1zs;“i
(see e.g. [23], chap. VII, section 2). Hence IKp 1is homo-

topy equivalent to a wedge of rationalized spheres.

Now, note that a 1-connected (-local space X 1is homo-
topy equivalent to a wedge of (0-local spheres, if and only
if the Hurewicz homomorphism h: 7, (X) - ﬁ*(x;z) is sur-
jective (see [10], or the lemma below in A1).
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The surjectivity of h for X = ZKF implies the sur-
jectivity of h for lEELZKF and hence for any retract up
to homotopy of IQC ~ lig’ZKF . Therefore C 1is homotopy
equivalent to a wedge of @-local spheres.

Note that IQC is itself homotopy equivalent to a
wedge of @-local spheres.

COROLLARY: The Lie algebra L(C) is free (by [5]).
REMARK 1: It also follows that L(C v C) = L(C) u L(C) .

n
Proof of proposition 2: Let C ~ V smk . Then any element

of [C,X] is determined by the restrictions to the Sgk .

n
But the adjoints of the inclusions SQk - C are the gener-

ators of the free Lie algebra L(C) . Hence for any Lie
algebra map L(C) - L(X) there is a unique geometric real-
ization.

It is immediate from the definitions that the map
[c,Xx] -» MorLie(L(C),L(X)) is multiplicative.

Proof of proposition 3: Any Hopf algebra morphism

U(L) -» U(N) is determined by its effect on image(L->U(L)) .
Since L - U(L) is injective, it follows that the canonical
R(L,N) - Mor (U(L) ,U(N)) is injective.

map MorLie

Hopf alg
But it is also surjective, because any Hopf algebra map
U(L) » U(N) restricts to a Lie algebra map

L < PU(L) -» PU(N) = N .

We have to recall a definition from [16].

DEFINITION: Let C be a connected coalgebra over R . Let

A(C) be a Hopf algebra together with a coalgebra morphism

C - A(C) . Then A(C) is called the "universal Hopf alge-
braon C ", if for any Hopf algebra H and coalgebra map
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C » H there exists a unique Hopf algebra morphism A(C) - H
such that the following diagram commutes:

C_——— A{(C)

'/

H

Note that, if A(C) exists and C is cocommutative, then
A(C) 1is cocommutative.

Given a cogroup A in the category of connected graded
algebras over R with comultiplication o0: A - A L A it
can be made into a Hopf algebra by introducing the diagonal
A->ALA->A®A . By [4] there is a subcoalgebra B of
this Hopf algebra depending functorially on the cogroup A
such that as a Hopf algebra A = A(B) . I.e. if B is the
kernel of the counit of B , the algebra A is the free al-
gebra TB on B . The comultiplication o: A - A L A is
related to B as follows: Let 11,12: A > AL A be the
inclusions of A as first resp. as second factor; for
b €B - it suffices to know o(b) for b €B - let
AB(b) = I bﬁ ] bg € B® B, then o(b) = Zu(i1(b3) ® iz(bg)),

where u: (A L A) ® (A L A) » ALA is the multiplication.

In particular, in the case of the cogroup U(L) the
Hopf algebra structure derived from the cogroup structure
is the original Hopf algebra structure on U(L) . Hence
U(L) 1is the universal Hopf algebra on B(L) . This is the
bijection

Mo (U(L) ,U(N) =~ Morco(B(L),U(N)) .

rHopf alg

The discussion above implies that the bijection is multipli-
cative. Corollary 3 also follows.
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Proof of proposition 4: From section 1 we know that

H, (2C;@) = U(L(C)) , H (2X;@) = U(L(X)) and

PU(L(C)) L(C) , PU(L(X)) = L(X) . Thus proposition 3 can
be applied.

REMARK 2: The bijection

MorLie(L,N) ~ Mor (U(L) ,U(N)) has a general geo-

Hopf alg
metric analogue:

Let C be a co-H-space, X € CW . Then there is a
bijection between [C,X] and the set [QC,QX]H of homotopy
classes of H-maps QC -» QX .

Proof: Define oa: [C,X] - [QC,QX]H by [£f] » [Qf] .

Let r: C - IQC be the coretraction corresponding to
the comultiplication o¢: C » C v C . Define
B: [ac,ax]y » [C,X] , [g] » [veIger] .

One has Boa([f]) = [voIQfor] = [fover] = [f] (because
Vor ~ idC ). On the other hand oaoB([g]) = [QvoeQIgoelr] =
= [goQvoeQr] = [g] (because QvoRIg ~ goQv ).

REMARK 3: The dual of the statement of remark 2 is true as
well.

REMARK 4: Let L € Liem be a cogroup in Liem , then L
is a free Lie algebra. 1In fact, a set of free generators

can be obtained as follows:

Let i: B(L) - U(L) be the inclusion. Then log(i)
(in the sense of [19]) maps B(L) into PU(L) = L and
image (log(i)) still generates U(L) freely. Hence L is
a free Lie algebra.
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APPENDIX: DECOMPOSABLE H- AND CO-H-SPACES.

Al. Geometric part.

DEFINITION 1: For any natural number n > 0 define
n od4d4,

stg n even.

DEFINITION 2: (1) An H-space E is said to be "decom-
posable over R ", if it is homotopy equivalent to a weak
product of spaces Qg &

(2) A co-H-space C is said to be decomposable over R ,
if it is homotopy equivalent to a wedge of R-local spheres

n
SR with n > 1 .

We now look for decomposability criteria.

Let E be a connected R-local H-space with H, (E;R)
free as R-module. Assume that E has a strict unit.

Let h: m,(E) » H,(E) be the Hurewicz homomorphism.
Choose a basis {ai}iEI of homogeneous elements of
h(m,(E)) . For each i € I choose f£fj: Sgl - E with
h([£;]) = a4

If n; is odd, define gy:= fj ; if n; is even, define

ng RIS, )
g; as the composition QZSRl — QIE —— E where o

and define a map gj: Qgi - E as follows:

is a retraction.

The 94 combine to define a map

a: "TT ﬂ;i - E
i€l

just as in the proof of 1. lemma.
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PROPOSITION 1 (Compare [2], chap. V, (3.10)): Let E be a
connected R-local grouplike space with H,(E;R) free as
R-module. Assume 1/2 , 1/3 € R . Then the following are
equivalent:

(a) The H-space E is decomposable over R .

(b) Any map o constructed as above is a homotopy
equivalence.

(c) The map U(m,(E)) -» H,(E;R) from the universal
enveloping algebra of m,(E) into the homology of E in-
duced by the Hurewicz homomorphism h: 7, (E) - H,(E;R) is
surjective.

Proof: This is essentially a reformulation of [2], chap. V,
(3.10) . Compare also [20].

PROPOSITION 2: Assume 1/2 € R .

(a) An H-space E 1is decomposable over R , if and
only if the co-H-space IE is decomposable over R .

(b) A co-H-space C is decomposable over R , if and
only if QC is decomposable over R .

Proof: (a) Let E be decomposable. Each Xﬂg is homotopy
equivalent to a wedge of R-local spheres; this is trivial
n
for n odd. If n is even, ZQE = ZQZSQ ~ V IS * (see
i>1 R
[23]1, chap. VII, section 2). The assertion now follows by

the methods of the proof of 2. lemma using the lemma below.

Let IE be decomposable. It follows from the Hilton-
Milnor theorem (see [23], chap. XI, section 6) that QIE is
homotopy equivalent to a weak product of spaces QZSE with

n21. Since 1/2 € R the space QZSE for n odd is
homotopy equivalent to sg X QZSﬁn . Hence fIE is decom-
posable over R . One now observes that a retract (up to
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homotopy) of a decomposable H-space is again decomposable
(see [20]).

(b) Let C be decomposable, then by the Hilton-Milnor
theorem and the assumption 1/2 € R the H-space QC is de-
composable.

If QC is decomposable, we know by (a) that IQC is
decomposable. Since C 1is a retract up to homotopy of IQC
by [9], the assertion is implied by the following lemma.

LEMMA: Let X be 1-connected with E*(X;Z) a free R-mod-
ule. Then X is homotopy equivalent to a wedge of R-local
spheres, if and only if the Hurewicz homomorhpism

h: 7,(X) - ﬁ*(x;Z) is surjective.

Proof: Let h be surjective; choose a basis of homogeneous

elements f{ajljer of ﬁ*(x;Z) = ﬁ*(x;R) . For each i
. ghi £ -
choose oyt SR - E with h(ai) = a; . Then the maps oy

define a map _glsgi -+ X inducing an isomorphism of homo-
1

logy. Both spaces being 1-connected this map is a homotopy

equivalence.

The other direction does not require a proof.

In fact, the lemma is a special case of the dual of a
theorem of J.C. Moore (see [23], chap. IX, (1.9) theorem).

A2. The functor M* and decomposable H-spaces

From now on let 1/2 , 1/3 € R . We recall the defini-
tion of M*(X;R) from [2], chap. V.

DEFINITION 1: Let X be a connected space. Then define
M° (X;R):= R . For finite dimensional X let M (X;R):=
¢= [x,nriz] for i > 0 . For infinite dimensional X let
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MY (X;R):= lim Mt

(xN;R) (where XN denotes the N-skeleton
of X ).

N

Then M*(X;R) 1is an object in the category div algR
of connected commutative graded algebras over R with di-
vided powers. Moreover, the module of homotopy coefficients
M*s* (over R ) operates on M*(X;R) , so M*(X;R) is also
an object in the category div algM of M-algebras (loc.
cit.).

DEFINITION 2: We say that X 1is phantom free with respect
to M+ , if M (X;R) = [x,0l] for a1l i>o0 .

Examples: Each Qf is phantom free w.r.t. M* , because
Lxamples R
ZQi is decomposable.

But the infinite complex projective space is not
phantom free w.r.t. M* for some rings R (see [13]).

DEFINITION 3: Let A be an algebra in div algM .

(a) We say that A is of geometric type if there exist
. . r _
algebras Ai € div algM with Ai = 0 for large r such
that A = lim A .
—_— ot 1

(b) The full subcategory of div algM of algebras of geo-
metric type is denoted by g-div algM .

Examples: For any connected space X the algebra M*(X)
is of geometric type by definition.

Let A € div algR , then the M -extension M ® A in
the sense of [2], chap. VII, is of geometric type.

REMARK 1: The forgetful functor g-div algM - div algR
has a left adjoint, the M -extension of [2], chap. VII.

It is claimed in [2] that the M -extension is left
adjoint to the forgetful functor div algM - div algR .
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But we cannot see this in general. The M -extension M ®a
of A € div algR should bs an algebra in div algM togeth-
er with a morphism A - M ® A in div algp such that for
any algebra B in div algM and morphism f: A - B in

div algR there exists a unique morphism F: M ® A - B in
div algM such that the diagram

£

A ——B
A

|~

~

M®A

commutes. Using the definitions of [2] this universal prop-
erty can be verified, if B has the property that B = 0
for large r ; hence it also holds for B of geometric type.

REMARK 2: 1In div algp finite coproducts exist (i.e. the
tensor product). Hence certain coproducts exist in
g-div algM by remark 1.

It can be shown that finite coproducts exist in

g-div algM ; but we want to avoid this verification here.

LEMMA 1: Let E be a decomposable H-space over R of
finite type over R , then the coproduct in g-div alg, of
M*(E;R) with itself, henceforth denoted by

M* (E;R) @M M*(E;R) , exists and M*(E x E;R) =

= M*(E;R) 8, M*(E;R) .

M

Proof: This follows from the facts that the forgetful
functor g-div algM -» div algR has a left adjoint and that
(see [2], chap. VII) for any decomposable H-space F over
R the M-algebra M*(F;R) is the M-extension of H*(F;R) .
One has H*(E x E;R) = H*(E;R) 2N H* (E;R) , hence M*(E x E;R)
is the M-extension of the coproduct H*(E;R) ®r H*(E;R) ,
i.e. the coproduct M*(E;R) GM M*(E;R) .
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The universal property of the coproduct implies that
the algebra multiplication M* (E;R) 8r M* (E;R) - M* (E;R)
factors over M*(E;R) @M M* (E;R) , hence M*(E;R) is
equipped with the structure of a comultiplicative object in
g-div algM with diagonal A: M*(E;R) - M*(E;R) GM M* (E;R)
induced by the multiplication of E .

It follows that for any A € g-div algM there is a
multiplication on Mordiv alg (M*(E;R) ,A) defined via the
comultiplication A . e

If E 1is grouplike, then M*(E;R) is a Hopf algebra
in g-div algM .

REMARK 3: Let H be a connected commutative Hopf algebra
and A a connected commutative algebra over @ . Then the
alg(H,A) is determined by the Lie

coalgebra Q(H) (as a vector space Q(H) is the space of

group structure on Mor

"indecomposables" of H ) and the algebra A , because H
is the universal coenveloping algebra of Q(H) (see [1],

section 6). Moreover, Mor (H,A) 1is again a special kind

alg
of N-group. Its Lie algebra is MormO(Q(H),A) , the Lie
bracket being defined by [f,g] := mA(ng)X ; here

A: Q(H) -» Q(H) ® Q(H) 4is the Lie "cobracket" and m, the

A
algebra multiplication of A .

PROPOSITION: Let X be connected and phantom free w.r.t.

M* , let E be a decomposable H-space of finite type over

R . Then there is a multiplicative bijection

(M* (E;R) ,M*(X;E)) .

0} nt n.
Proof: Let E ~ "JT Q;l and let m,: T o,1 » 2.1 be the
projections.

For each n > 1 the identity map of QE defines an
element 1 € MP(@®;R) ; it is then a tautology, that
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[x,QE] -+ M (x;R),[£] » £*(1,) , is an isomorphism.

Given a map £: X - T Q;i with components
£0 X - le we have f*(m¥(1,,)) = £f¥(1n,) i hence £ is
completely determined by the elements f*(ﬂ;(lnin € M* (X;R) ,

i.e. [X,E] » Mory, ., algM(M* (E;R) ,M*(X;R)) 1is injective.

Recall that M*(QE;R) is a free algebra in g-div algM
generated by 1, # this follows from [2], chap. VII, by com-
puting deg(1,) as a generator of the free algebra
H*(QD;R) in div algp . Hence M*(E;R) is the free M-

algebra of geometric type in the generators ﬂ;(l and

)
nj
any M-algebra morphism M*(E;R) - M*(X;R) can be realized

geometrically.

REMARK 4: As a set Morg;, algM(M*(E;R),M*(X;R)) ~
N Morgiy algR(H*(E;R),M*(X;R)) because M*(E;R) is the
M-extension of H*(E;R) .

DEFINITION 4: The H-space E is said to have "property
(s)", if E 4is decomposable of finite type over R and

if deg: M*(E;R) - H*(E;R) has a right inverse

s: H*(E;R) - M*(E;R) in div algp which is also a morphism
of quasi Hopf algebras, i.e. the diagram

H* (E;R) —A—+H*(E;R) ®R H* (E;R)

ls ® s

s M* (E;R) @R M* (E;R)
M* (E;R) —2s M*(E;R) @, M*(E;R)

M

commutes.
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LEMMA 2:

Let the H-space E have property (s) and let X

be connected and phantom free w.r.t.

multiplicative bijection

[X,E] = Mor

div algR

Proof: A

M-extension of the diagonal H*(E;R) -» H*(E;R) ® H*(E;R)

COROLLARY :

M* .

The diagonal M#*(E;R) —— M* (E;

Then there is a

(H* (E;R) ,M* (X;R)) .

R) Oy M* (E;R) is the

Two grouplike spaces having property (s) are

H-equivalent, if and only if their Hopf algebras

H*(-;R)

(resp. H,(-;R)
isomorphic.

Proof:
type over R , the three objects
PH, (E;R) determine each other (by A1l
H* (E;R)
now the grouplike spaces
H*(E1;R) & H*(EZ;R) as Hopf algebras.
the functors [-,E,] [-,E,]
category of connected spaces having no
M*

and is the dual Hopf algebra

E1, E2 have

and are

Since

H-equivalent.

A3. The functor M¥*

resp. their Lie algebras

For a decomposable grouplike space
H* (E;

PH, (-;R) ) are

E of finite

R) , H,L(E;R) and
H,(E;R) = U(PH,(E;R))
to H,(E;R) ). Let

property (s) with
Then by the lemma
isomorphic on the

phantom maps w.r.t.

E1, E2 belong to that category, they are

and decomposable co-H-spaces

Let C be a decomposable co-H-space over R ;

ni .
C~ V S with n,
iex R +

L(C):= m,.(QC) .

> 1 .

€ Tny-1(9C)
Then by [5] the Lie algebra
{h(a;) |i€I} (h

Let o,
nj =
SR - C .
freely generated by

i.e.

Recall our definition

be the adjoint of the inclusion

PH, (2C;R) is
being the Hurewicz
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homomorphism) .

Note that L(C) is an object of LieR and of Lie
(see [2], chap. V, for a definition of Liey ).

M

As a consequence the H-space (QC 1is splittable in the
sense of [2], chap. VI, and L(C) is the M-extension of
PH, (QC) (see [2], chap. VII); in particular L(C) 1is a
free object in LieM . Thus we obtain:
LEMMA 1: The coproduct L(C) Ly L(C) of L(C) with itself
exists in Liey and L(C v C) = L(C) 1y L(C) is the M-
extension of PH,(Q(Cv C);R) .

In particular L(C) together with

L) 29 10 Ly L(C) (0: C=~CvC being the comulti-

pPlication of C ) is a comultiplicative object in Liey .

REMARK 1: Finite coproducts exist in LieM s

PROPOSITION: Let C be a decomposable co-H-space over R ,

let X € 1—CWR . Then there is a multiplicative bijection
[c,X] = Mor (L(C),L(X)) and a bijection
LieM and a biljectic

Mor (L(C),L(X)) ~ Mor

LieR(PH*mc;R);L(x)) ‘

LieM
Proof: The isomorphism is established similarly to the
proof of proposition 2 in section 2. The bijection follows

from the fact that L(C) is the M-extension of PH,(QC;R) .

DEFINITION: Let C be a co-H-space in 1-CWp . We say

that it has property (s), if it is decomposable over R
and if h: L(C) - PH,(QC;R) has a right inverse
s: PH,(QC;R) » L(C) in Liep compatible with the struc-

tures of comultiplicative objects; i.e. the diagram
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L(C) —_— L(C) Ly L(C)

s] ‘—~\~\‘h‘-“"“‘ L(C) u

S L s

R L(C)

PH, (QC;R) — PH, (QC;R) u_ PH, (QC;R)

R
commutes.
LEMMA 2: Let C be a co-H-space in 1-CWp which has prop-

erty (s), let X € 1-CWR . Then there is
bijection

a multiplicative

[Cc,X] = MorLieR(PH*(QC;R),L(x)) .

Proof: The structure of L(C) as comultiplicative object
is just the M-extension of the structure of PH,(QC;R) as
comultiplicative object.

COROLLARY: TwO cOgroups 91, C2 having property (s) are
co-H-equivalent, if and only if the Berstein coalgebras

associated to H,(9C;;R) are isomorphic (i = 1,2) .

Proof: If C 1is decomposable over R the Berstein coal-
gebra B(H,(QC;R)) and the cogroup PH,(QC;R) in LieR
determine each other. Now follow the line of proof of A2,
corollary.

REMARK 2: In [20] it is shown that the Samelson Lie algebra
of an R-local grouplike space E admits the structure of an
M-Lie algebra and that, if E is decomposable of finite
type over R , the functor [-,E] is determined by this
M-Lie algebra on finite dimensional complexes. Dually, a
Berstein algebra (with respect to M* ) is defined for an
R-local cogrouplike space C , such that, if C is decom-
posable with H,(C;R) of finite rank, the functor [c,-1]
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R is completely determined by this Berstein M-alge-

Thus the problem arises to relate the propositions in

A2 and A3 to these results.

We also conjecture that "having property (s)" is equiv-

alent to "splittable" in the sense of [2], chap. VI.
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