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APPROXIMATION OF QUASICONVEX FUNCTIONS, AND
LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS

Paolo Marcellini

We study semicontinuity of multiple integrals .ff«)(,u,Du)dxl,1
where the vector-valued function u is defined for x€ QC R
with values in R . The function f(x,s,E) is assumed to be
Carathéodory and gquasiconvex in Morrey's sense. We give con-
ditions on the growth of f that guarantee the sequential low-
er semicontinuity of the given integral in the weak topology
of the Sobolev spaceH 'p(Q;R ) . The proofs are based on some
approximation results for f. In particular we can approximate
f by a nondecreasing sequence of guasiconvex functions, each
of them being convex and independent of (x,s) for large val-
ues of §g. In the special polyconvex case, for example if n=
N and f(Du) is equal to a convex function of the Jacobian
detDu, then we obtain semicontinuity in the weak topology of
H ' (qg;R ) for small p, in particular for some p smaller
than n.

1. Introduction

Let us consider a function f(x,s,t) defined for x in a bound-
ed open set 9 of R n, se R o and te RnN. We assume that f is a
Carathéodory function, i.e., it is measurable with respect to x and

continuous with respect to (s,f), and satisfies the growth conditions
r t P

(1.1) -C,lel” - C,Isl - C,(x) < f(x,s,6) < glx,s)(1 + [g|").

Here C,,C, >0; C,e L'(Q); g > 0 is a Carathéodory function (no

growth conditions are required for g). For the exponents we assume:

p>1; 1<r<p (r=1if p =1) and 1<t <np/(n-p) (t>1 if p> n).
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Moreover, if C,# 0, we assume also that the boundary 32 is Lipschitz
continuous.
Finally we assume that f is quasiconvex with respect to & in

Morrey's sense ([25];[26], section 4.4):
1, N
(1.2) Tof(x,s,8 + Doly))dy > [a[f(x,s, &) W¥e€H,” (@;R ),

and also for every ¢eH1’p(n;]RN), by mean of (1.1).

In section 4 we prove the following result:

THEOREM 1.1 - Let f(x,s,¢) be e Carathéodory function, quasi-
convex with respect to t, and satisfying the growth condition (1.1).

Then the integral
(1.3) J’Qf(x,u(x),Du(x)) dx

is sequentially Ilower semicontinuous in the weak topology of

Hl’p(n;lRN).

Theorem 1.1 improves the analogous result by Morrey [25],
[26] and by Meyers [24], who assume a type of uniform continuity
of f with respect to its arguments, and a recent result by Acerbi
and Fusco [2], obtained assuming slightly more restrictive growth
conditions.

We recall that either if N = 1 or n = 1, then f is quasicon-
vex if and only if f is convex; while, if both n and N are greater
than one, then quasiconvexity is a more general condition than con-
vexity (for properties of quasiconvex functions we refer to [26] ,
(5], [8], [20]; see also our section 5). Therefore it seems not pos-
sible to reduce theorem 1.1 to the semicontinuity results known in
convex case (see, i.e., Serrin [31], De Giorgi [10], and more re-

cently Ekeland and Temam [15], chap. 8, theorem 2.1, and Eisen
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[13]).

The proof of theorem 1.1, different from that of [25], [24],
[2], but similarly to other classical semicontinuity results, is bas-
ed on the possibility to approximate f by a nondecreasing sequence
of functions fk' each of them being easier to handle. To quote the

main approximation theorem,proved in section 3, we assume also that

p >1 and that f satisfies the coercivity condition (C_ > 0):

(1.4) C,lelP< flx,s, ) <glx,s)(1 4 |¢lP)

THEOREM 1.2 - Let f(x,s,t) be a Carathéodory function, quasiconvex
with respect to &, and satisfying the growth condition (1.4) with
p >1. Then there exists a sequence fk(x,s,g) of Carathéodory func-

tions, quasiconvex with respect to &, and such that:
(1.5)  ¢c,lelPg £ (x5, 8)8 k(1 + lel®y ;

(1.6) fk(x,s,i) = C°|C|p, either for |s| >k or lgl> k ;

(1.7) fki fk+l , sup fk =f .
k
It is clear that this approximation result is useful to prove
theorem 1.1; in fact, in the domain |Du| > k, that is critical of the

integral (1.3), f reduces to a convex function which is independent

k
of x and s. One of the difficulties in the proof of theorem 1.2 is
that the definition of quasiconvexity involves an integral inequality
instead that a pointwise inequality such as convexity does. In our
proof we follow a procedure introduced in a similar context by Mar-
cellini and Sbordone [22], and we use a representation formula by

Dacorogna [7], a variational principle by Ekeland [ 14]), and a regu

larity result by Giaquinta and Giusti [17].
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In section 2 we prove a semicontinuity result for f =f( &), in-
dependent of x and s. The proof is particularly simple and selfcon-
tained. Although this is a special case, it is a crucial step to ob-
tian theorem 1.1.

In sections 3 and 4 we prove theorems 1.2 and 1.1 respective-
ly.

In section 5 we specialize (1.2). By assuming that f is poly-
convex In Ball's sense [5] (an example is given by (6.8)), we can
prove a semicontinuity result that, with respect to theorem 1.1,
roughly speaking allows us to consider semicontinuity in the weak
topology of Hl'p, for p strictly smaller than in theorem 1.1. Let us
mention that, in the same context of polyconvex integrals, Acerbi,
Buttazzo and Fusco [1] proved a semicontinuity theorem in the
strong topology of L m, while they have shown a counterexample to
semicontinuity in the strong topology of Lp, if p is finite.

In section 6 we give some counterexamples to the semiconti-
nuity theorems 1.1 and 5.5, when some of the assumptions are not

satisfied.

We thank J.M. Ball and F. Murat for interesting discussions.

2. The case f = f(E)

THOEREM 2.1 - Let f = f(&g) be a quasiconvex function such that
(2.1) 0 < f(g)<C, (1 + [Py,
for  C, >0and p> 1. Then the integral

(2.2) Inf(Du(x)) dx
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is sequentially lower semicontinuous iIn the weak topology of

H PR N).

We divide the proof of this theorem into 3 steps:

Step 1 - We assume first that u is affine, i.e

2 for some g€ R nN.

., Du = ¢ in

N
Let uy be a sequence in Hl’p(ﬂ;]R ) that converges to u in

the weak topology. If u had the same boundary values as u, then

the semicontinuity result would trivially follow from quasiconvexity

of f. To change the boundary data of u we use a method intro-

h’
duced by De Giorgi [11], and well known in the context of r -con-
vergence theory (see, i.e. Sbordone [30] and Dal Maso - Modica

[9], theorem 6.1).

Let g, be a fixed open set compactly contained in g, let
R = 1/2 dist (50, ), let v’ be a positive integer, and for i =

=1,2,...,v let us define
(2.3) ﬂi = {xeq: dist (x,n°)<_1_R } .
v

Let us choose smooth functions ¢ € Co'(ni) such that

(2.4)
|D¢i| < (v +1)/R.

Let us define Vg = W # ¢i(uh—u). The support of Vy 1s con-

tained in Q; thus by quasiconvexity of f we have

I, f(Du)dx = f£( g)lel< f f(Dv )dx

Vhi
(2.5)
= f f(Du)dx + f f(Dv, .)dx + r f(Du, )d
a\Q u X .
e ayay N %5 H
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We sum up with respect to i = 1,2,...,v, and we divide by

v. We obtain

1
(2.6) I“f(Du)dx < fm . f(Du)dx # = fn f(DVhi)dx + In f(Duh)dx .

J v

Since Dv, . = (l—oi)Du + QiDu

hi + (uh—u)D oi, we have

h

P
In f(DVhi)dx < C,lal + Cs{fn|Du| dx +
(2.7) Y
P, v+l p (P
+ !nlDuhI dx + (-——R—) J'nvluh u|“dx}.

Let us go to the limit as h+ +« in (2.6), (2.7). The sequence
Duh is bounded in LP(a;R nN), and u, converges strongly to u in
Lp(nv,RN). Thus we have

(2.8) s f(Du)dx < s f(Du)dx +&+ lim inf s f(Du, )dx.
Q - a\Q, v h Q h

\

As v + + o and Q,» Q@ we obtain our result.

Step 2 - f is continuous in the following way:

p-1 p-1

(2.9) [f(g) - f(n)] < C,(1 + |g] + Inl" ") g-n]
(this step is similar to theorem 4.4.1 of Morrey [26]). The func-
tion ¢: R + R +, defined by f(&) when only one component (say
Ei) of ¢ varies, is convex. Thus the derivative ¢'(Ei) is definite
almost everywhere, and we have

. ' _ ) R
(2.10) ) (ci) 3 (¢(ci+h) o(zi))/h if h % 0.

For h = * (| g|+1) we obtain
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¢(Eit|5|il) + ¢(Ei)
[f_| = |0'|§
Ei leil + 1

(2.11)
<c,+ 8P,

Of course this inequality implies (2.9).

Step 3 - We prove the semicontinuity result for general
u GHl’p(n iR N). Let us consider a partition of g into open cubes
ni (ﬂin n), = @ if i4j, o =Uﬁi) and let us define vectors Ei ERnN
by
(2.12) & = : J  Du dx

i Tl ey

Let us define ¢ € Lp(g;]_RnN) by g(x) = £y for x Ggi. As the

diameter of the partition goes to zero, £ converges to Du in

N
LP(a;R ™). Therefore for every € > 0 we can choose the partition

of £1in such a way that

(2.13) b fﬂ |Du - gilp dx < ¢ .
i i

Let up be a sequence that converges to u in the weak topology of
Hl'p(Q;RN), For every i, let us define in 2. the sequence vh(x) =
= u (x) - ulx) + <g ,x> As h++ =, v
h i 1 N h
in the weak topology of H 'p(ni;R ). Thus, by step 1, we have

converges to v(x) =<g,X >

(2.14) lim inf £/ f(Dv )dx > £ J_ f(g )dx
h i ni h ~ ni i

By step 2, and by Holder's 1inequality with exponents p/(p-1) and

P, we have

| £ f(Du, )dx - g s f(Dv )dx| <
Q h i 91 n
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(2.15) <, f Ini(l + |Duh|p'l + IDvhlp-l)lDuh - ¢ ldx
<c (fn(1+|Duhz+|nvhl)pdx)"‘”p(iz !ni[Du—gilp)l/p<C“ e B,
For the same reason
(2.16) bs fDwdx - 17 flg)dx] < C,e by

1 1

Our semicontinuity result is a consequence of (2.14), (2.15), (2.16).

3. Approximation of quasiconvex functions

In this section we assume, as in (1.4), that f(x,s,g) is a Ca-
rathéodory function, quasiconvex with respect to &, and satisfying

the growth conditions
(3.1)  C lel? < fix,s,8) < glx,9)(1 + |g]P),

where p>1, C,> 0, and g is a Carathéodory function.

For every integer i, let ¢i: R+ -+ R+ be a continuous function
such that Qi(t) =1 for 0 <t<i-1, and ¢i(t) = 0 for t >i. Let us

define

(3.2) g (x,5,8) = ¢, (sDilx,s,0) + (1 -0 (Us]) C,lel®.

L2t A be a subset of @, with zero measure, such that g(x,s) is con-
tinuous with respect to s for every x € a\A. For i,j integers (j> C,),

we- define

(3.3) Aij = {xe 2\A: max {g(x,s) : [|s|< i} < j}
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A.. is a measurable set. We define ¢ . (x) = 1 if x €A, ., and ¢ (x)=
1) 1] 1] 1]

=0 otherwise. We define also

(3.4) gij(x,s. £) = vi].(x)gi(x,s,g) + (1 - vi].(x))Cnlclp.

LEMMA 3.1 - For every i,j,gij is a Carathéodory function, quasi-

convex with respect to &, satisfying:
(3.5) C,Izlpggij(x,s,c)ij(l + lel®
(3.6) gij(x,s, 8 = C.lel® for Is] > i

(3.7) sup gi].(x,s,g) = f(x,s, &8 , V¥ xeanA, ¥s, ¥ ¢
ij

Proof. gi]_ is a Carathéodory function, since oi(lsl) is con-
tinuous and oij(x) is measurable. With respect to ¢, g; and gi]_ are
quasiconvex functions: in fact they are convex combination of quasi-
convex functions. If |s| > i then gij = C°|€|P; g = c°|,;|p also if

xéAij ; while, if |s| <i and xe Aij we have
(3.8) f<glx,s)(1+]glP) < j(1 + [g|P)
. gijigii <glx,s)(1+|¢ < (1 + [¢ .

Thus (3.5), (3.6) are proved. To obtain (3.7) we observe that gij
is nondecreasing with respect to i and j separately, since figi >
C,| glp; moreover lim lim gij = f.

i]

N N
For every integer m >1 let us define in 2\A xR «x rR™:
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gij(x,s,c) for gl< m ,
(3.9) G.. (x,s,8) =
ijm
clel® for |el> m ;

gijm(x,s,g) = sup { G(x,s,£): G is quasiconvex with
(3.10)

respect to £ and G <G,, }.
— ijm

LEMMA 3.2 - gijm Is quasiconvex with respect to & and satisfies:

P ; P
(3.11)  C,l g*¥ < gijm(x,s,g) < i1+ |g]F) ;
(3.12) gijm(x,s,&;) = C,lelP either for [g]> m or |[s|> i.

Proof. Since the supremum of a family of quasiconvex functions
is quasiconvex, in (3.10) we have a maximum and 8iim is quasicon-
vex. Since the convex function G = COI};|p is less than or equal to
Gijm’ we have C,| {[pi gijm’ and thus (3.12).

Fixed x e 2\A and s €R N, we consider the infimum

(3.13) inf (-l—;]-fn Gijm(x’s £+ Doly))dy: o€ H},,P(Q:RN)}.

LEMMA 3.3 - The infimum in (3.13) is a continuous function of (s, E).

M. For some fixed x € 2 \A, the function Gijm is uniformly
continuous for s € R . and | &| <m. Thus, for every e>0, there ex-
ists some & > 0 such that, if |s-t|+|g-nl < 6, we have (we decompose
the integral over @ into two integrals, and we use inequality (2.9)

for the function |l;|p):

10
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1
G.. (x,s,e+Dg(y))dy - G.. (x,t, Do(y))d
|mfnl]mx £+D ¢(y))dy TaT #oSijm®otrn + o(y))dy |

Cc P
(3.14) < e+ s (eDaly) ™= lntDoly) | )y

A

P!

A

dy} s

11

p-1 p-1 1
C D
e + del + |nl +|'5Tfa| o(y)

Since Gijm 5. 1C, | ;;Ip, in the infimum (3.13) we can limit ourself to
consider test functions ¢ that are uniformly bounded in H},'p(n;RN)
as ¢ varies in a bounded set of R nN- For all such functions ¢. if

|s—tl+] g=nl< min {e, 6§y we have

1 1

(3.15) —s G.. (x,s,g+Dg¢(y))dy - +— G.. (x,t,n+D¢(y))dy|<C
||n|f“ 110 eDglylidy = s 6t Xstans o(y))dyl<C ,e
Of course, this implies that the infimum in (3.13) is a continuous

function of (s,¢).

REMARK 3.4 - The previous result does not hold if the integrand
Gijm does not satisfy some properties of structure, such as, for ex-
ample, coercivity with respect to ¢ or continuity on s uniformly with
respect to g (as suggested by corollary 3.12 of [21]). In fact, if
s

we consider, as in [21], G, = (1+|lg|) 7', then the infimum in

ijm
(3.13) is equal to G.\,ij if |s| > 1, while is equal to 1 if |s| < 1.
Thus, in this case, the infimum is not continuous (and not even

lower semicontinuous) with respect to s.

LEMMA 3.5 (Dacorogna) - g.. (x,s,¢) is a Carathéodory function,
SN 99 g gl]m g

and is equal to the infimum in (3.13).

Proof . By lemma 3.3 the infimum in (3.13) is a continuous func-
tion of g€ R nN. It is necessary to use this fact as the first step
in the argument of Dacorogna ([7], theorem 5; or 18], pag. 87).

Then, like in steps 2,3,4 of [7], [8] we obtain that gijm is the in-

"



MARCELLINI

fimum in (3.13). Again by lemma 3.3 gijm is continuous in (s, g).
gijm is measurable in x, since it is infimum of a family of meas-
urable functions.

LEMMA 3.6 (Ekeland) - There exists a sequence u that, for every

m, minimizes the functionals
(3.16) L ¢ G (x,apDely)idy —r |Daly)Dy_(y}|d
. O*m!n 1]m » S9& Oy y mfﬂ oy me Y ’
on Hlo'p(g;R N). and satisfies
1 1
(3.17) T&r ,rnGijm(x,s,g+Dum(y))dy < gijm(x,s,g) e

Proof. This lemma is a particular case of a variational prin-
ciple given by Ekeland ([14] in the general setting of a complete

metric space \' and a lower semicontinuous functional

l’l(n;RN), and F is the inte

1,1 N
gral of Gijm’ that is strongly lower semicontinuous in H ' “(g;R ),

F:V bRU (+ o}(F¢+ ). Here V = H

by Fatou's lemma. In (3.17) we use the characterization of gijm giv-

en in lemma 3.5.

The fact stated in (3.16), that u is a minimum function, al-
lows us to get a Mayer's type result [231, introduced in the context
of minimum problems for vector valued functions by Giaquinta and
Giusti [17] (see also [4] for the convex case and [18] for quasi-
minima). Like in lemma 3.2 of Marcellini and Sbordone [22], from

(3.16) we deduce:

LEMMA 3.7 - If p>1, there exists an ¢ > 0 such that the sequence

u Is bounded iIn Hl'p+€(n-RN) ‘
m . loc L

LEMMA 3.8 - If p>1 , the nondecreasing sequence gijm converges

12
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to gij as m + + .,
Proof. Let @, be a fixed open set compactly contained in g.
— i :
The sequence u of the previous lemma is bounded in H 'p+e(n°;RN).

Thus, if we denote by Q. the set 8. = {xenO:IDumlz_m), we have

(3.18) s |Du lpdx <la (s/p+e(f | Du |p+edx)p/p+€.
Qm m - '"'m Q, m

Therefore the left side in (3.18) converges to zero, as m + + » . From

(3.17) and (3.5) we obtain

1 1

gijm $es 8 Tol J'Q nGijm(x,s,g+Dum(y))dy
(3.19) > . ! (x,s,6+ Du (y))d
’ = lal " a °\nmg’ij +5st m Y4y

1 : j P
im fnogi]_(x,s,g+Dum(y))dy - |9|f9m(1+|Dum(y)' )dy .
. . ) 1,p N .
Since u s bounded in H,”"(q; R '), it has a subsequence that weak
ly converges. We still denote this subsequence by u and we denote
by u€ Hll,’p(sz;lR N) their weak limit. Let m » +« ; we use (3.18),

(3.19), the semicontinuity result of section 2, and quasiconvexity

of gij:
“mm gijm > 1imminf Tslﬂ—fﬂo gi].(x,s,;+Dum(y))dy
(3.20) 3-[711Tfﬂogij(x,s,g+Du(y))dy
> gij(x,s,g) - ﬁTIQ\ nagiJ.()<,s,¢;+Du(y))dy .

As g, 7 9, we obtain our result, since gijmf- gij .

REMARK 3.9 - Several lemmas, from 3.4 to 3.8, are devoted to the

13
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study of the convergence of gi]_m as m + + », Let us show that this
study is much easier if we know that f is convex with respect to ¢:
for every m we can construct a function G(x,s,E), convex with re-
spect to g, that coincides with gij for |g| < m and grows linearly
at « (the supremum of all hyperplanes supporting gij where | |<m).
Since G grows linearly, there exists an m' > m such that Gicolglp
for |&] >m'. By the same definition (3.10), G igijmigij’ and thus
gijm' = gij for |g| < m. Note that also in this simple argument for
the convex case we need p >1.

Finally we obtain the approximation result stated in the in-

troduction:

Proof of theorem 1.2 - For every integer k (> 2 + C;) we de-

fine
(3.21) fk(x,s,!;) = max (gijm(x,s,;) ti+j+m<k}.

(1.5) 1is consequence of (3.11), while (1.6) follows from (3.12).
Finally the supremum of fk is f, by lemma 3.8 and formula (3.7).

4. Semicontinuity in the quasiconvex case

In this section we will prove theorem 1.1. It will be conse-
quence of the approximation theorem 1.2., by proving a semiconti-

nuity result for the functions f as in theorem 1.2. In the following

k

lemmas we assume k is fixed and fk satisfies (1.5), (1.6).

14
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LEMMA 4.1 (Scorza-Dragoni) - For every positive e there exists a
compact set C c @, with |Q\Cl<e, such that fk(x,s,E) is continuous
in CxR R,

Proof. See i.e. lemma 1 of pag. 37 of [10], or [15], chap.
VI1I, section 1.3.

LEMMA 4.2 - There exists a continuous bounded function w:R+-> R+.

with w(0)=0, such that, for x,yeC, s,t eRN, EeRnN we have
(4.1) Ifk(x,s,c)—fk(y,t,€)|§W(|X-y| + |s-t])
Proof. For |g|< k, by (1.5), we have

(4.2) £, (x5, O-f, (y,t, 8] < 2k(1 + kP)
Inequality (4.2) holds also if |&g| > k since the left side is zero.
The function fk is continuous in the compact set C x {|s| < k+l} «x
x {lg| < k+#1}. Thus (4.1) holds on this set with w equal to the
oscillation of fk. By (4.2) the function w is bounded, and we can
assume that w(r) = 2k(1+kp) for r >1. By (1.6), formula (4.1) holds
also if either |g| > k or |s| and [t| > k. It remains to consider the
case |s| <k, |t] > k+41 and |g| < k. In this case w = 2k (1+kP), and
thus (4.1) follows from (4.2).

LEMMA 4.3 - The integral

(4.3) - fk(x,u(x),Du(x))dx

. . . . . 1p N
is sequentially lower semicontinuous in the weak topology of H™ (2;R"),

Proof. Let u € Hl’p(n;R N). Let us consider a partition of

Q2 into open cubes Qi’ with ﬂi n Qj = @g. v H_ = E. Like in Morrey
i i

15
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[25]we define the vector valued functions (constant in each ni):

1 1
. = d ; . o= e— s
(4.4) Xi mfn .X X u IQ I IQ .U(X) dx

1 .
i i
By the dominated convergence theorem, for every e¢> 0, we can

choose the partition so that
(4.5) IR w(lx—xil + Iu(x)-ui(x)l)dx < e

1, N .
Let up be a sequence of H P(g;R ) that converges to u in the

weak topology. We have

fnfk(x,uh,Duh)dx = fn\c{fk(x,uh,Duh) - fk(xi'ui’Duh)} dx
(4.6) + J’C {fk(x,uh,Duh) - fk(x,u,Duh)} dx
+ jC {fk(x,u,Duh) - fk(xi’ui'Duh))dX + J'ka(xi,ui,Duh)dx

We use (4.2), (4.1) and (4.5):

P
fﬂfk(x,uh,Duh)dx > - 2k(1+k%) | a\ C|
(4.7)
- !Cw(luh—ul)dx - € + i}: fnifk(xi,ui,Duh)dx

As h » + », by the semicontinuity theorem 2.1, we have

,Duh)dxz_— Ce+ fnfk(xi,ui,Du)dx

(4.8) llmhmf fn fk(x,uh

We obtain the proof as the sides of the cubes a, and e go to

Zero.

Proof of theorem 1.1 - Let us assume first that p >1. Similarly
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to Serrin [31], for € >0, let us define
(4.9) ge(x,s, £) = f(x,s,E) + C2|s|t + C,(x) + cl&;lp + CE.

Since p >r, we can choose the constant C to obtain g (x,s,g) >
€ € -

> ¢/2 |g|P. Let f K be the sequence of quasiconvex functions that

- €

converges, as k + + =, to g according to theorem 1.2. If u, weak-

h
ly converges to u in Hl'p(n;RN),by lemma 4.3 we have

hmhmf fgge(x,uh,Duh)dxzhm lim inf fnfek(x,u

Du, )dx
K h

h!
(4.10)

111(m J‘nfek(x,u,Du) dx = J‘ngc(x,u,Du) dx .
1,p

norm of uh. Since uh

converges to u in the strong topology of Lt(Q;RN) (here we use the

Let C,, be an upper bound for the H

assumption that 3@ is smooth if C, # 0), we obtain

11mh1nf )’nf(x,uh,Duh) dx > hmhmf fﬂge(x,uh,Duh)dx
(4.11) “lim S C,lu Y+ C (x) +C} odx -=cP
h Q h 3 € 2 W

€ P £ P
> fnf(x,u,Du)dx t5 J‘ngul dx - > Ci.
We complete the proof of the case p >1 as ¢+ 0. If p = 1, the proof
is much simpler since, if u, converges to u in the weak topology of
1,1
H’' (a;R N), then the integrals of IDuhI are equiabsolutely contin-
uous. We do not give the details; we can use the approximation lem-

ma 3.1 and then the argument by Fusco [16], or the argument of

section 2 of [22].
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5. The polyconvex case

In this section we consider a particular case of quasiconvex
functions. Following Ball [5], we say that a function f(x,f) is po-
lyconvex with respect to g if there exists a function g(x, &), convex

with respect to nGRm, such that
(5.1) f(x, ® = g(x,g,det £, det,g,...) ,

where deti £ are subdeterminants (or adjoints) of the n xN matrix
g. If ¢ = Du, then each determinant is a divergence. For example,

for n = N = 2, if u = (u!,u?) eC?2(9: R?), we have

(5.2) det Du = u! u? - u' v = (u'u ) - (u'u? )

28 2 PR Xy Xy 1 X,
Using (5.2) (and in general (5.4)), we can verify by Jensen's ine-
quality that every polyconvex function is quasiconvex. By multi-
plying (5.2) by a test function ¢€C°:(Q) and by integrating by

parts we have

- 1 ol 2
(5.3) fﬂdet Du ¢dx = fn(u uzxz oxl u uxloxz}dx .

By continuity (5.3) holds for ueHl’z(n;]R’ ). If u eHl’p(n;IR 2) for
2p/
loc 2
mable if 1/p + (2-p)/2p <1, i.e., p >4/3. Thus, if ueHl’[‘/S(Q;IR’)

2-p (e;R ?) and thus the product u' u?, is sum-

P <2, then u €L X

we can define by (5.3) the determinant of Du as a distribution.
Moreover for the same reasons the map u + det Du is continuous in
the following sense: if u, converges to u in l-lllo’f(n;]R’) for p> 4/3
and if (5.3) holds for u

h

in the sense of distributions. In fact in this case ut‘1 strongly con-

verges to u in L* (2) and we can go to the limit as h++ = in (5.3).

and u, then det Duh converges to det Du
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For general n = N >2 we can still write det Du as a diver-

gence (Morrey [26], pp. 122-123)

alut,... un) n ) 3 (u2 uh)
(5.4) det Du= il = - I (-1)%— (u? P )
ale,...,x ) ax (X ,eey X ;X ,ea,X )
n a=1 a 1 a -1 a n
This formula holds if u€ Hl'n(n;lR ™). Since if ue Hl’p(n—li p< n)
then u! € Lnlﬂé(n_p) and the Jacobian of order n-1 belongs to
Lp/(n-l)' the right side of (5.4) is well defined in the sense of

distributions if (n-1)/p+(n-p)/np <1, i.e., p > n?/(n+l). Thus we
have proved, as in Ball [5] and Ball, Currie and Olver [6], the

following result:

LEMMA 5.1 ([S],(6]) - Let n = N>2and ueH P(a;R™.  If
p>n?/(n+l) then det Du is defined by (5.4) as a distribution;
while if p >n, det Du 1is defined as a Lioc -function and formula
(5.4) holds. Moreover, if u'h converges to u in the weak topology
of th’)E for p >n?/(n+l) . then det Duh converges to det Du in

the sense of distributions.

To get a semicontinuity result for polyconvex functions, we con-
. . . n m .
sider a function g(x, n) defined for xe®2C R and ne R with val-
ues in [0,+=] (see in next section the reason to assume g continuous

in x and independent of s) satisfying:

(5.5) The set {(x,n) : g(x,n) <+ w} is open (and not empty)

. m . . ;
in @ « R, and g Is continuous on this set.

(5.6) g(x,n) Iis convex and lower semicontinuous with respect

m
to neR .

REMARK 5.2 - Of course, the semicontinuity assumption in (5.6) is

a nontrivial condition only at the boundary of the domain where g
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is finite. We assume (5.5) to simplify the next lemma, but we could
consider also other cases. On assuming (5.5), (5.6) we have in mind
the situation described by Ball [5], of interest in nonlinear elas-
ticity (see also the paper by Antman [(3]), where are considered
functions f(x,Du) = g(x,det Du) that are finite if and only if

det Du >0, and go to + =« if det Du =+ 0.
Let us begin with two approximation lemmas.

LEMMA 5.3 (De Giorgi) - There exists a nondecreasing sequence of
real nonnegative functions 8y that converge, as k++ « , to g. For
every k,gk(x, n)  Is uniformly continuous In @ x R™,it grows lin-
early with respect to n, it Is convex with respect to n and it is

equal to zero If dist (x,93%) < 1/k.

Proof. Let @ = (x€ @ : dist (x,38) > 1/i}, and let ¢.€ cj(ni)

be equal to one on ﬂi and ¢i >0. For every x €2, the function

g is lower semicontinuois on R m; thus it is the supremum of a se-
quence of affine functions (aj(x), n) + bj(x). Like in pag. 31 of De
Giorgi ([10] (the argument of [10)] can be applied, since g is finite
in a neighbour of each supporting point), we can choose aj(x) and

= 0, and

bj(X) to be continuous in Q. Let us define a,, b,
{5.7) gk(x, n) = max {wi(x)[ (aj(x), n) + bj(x)]: i+j< k}

The sequence 8y has all the required properties.

LEMMA 5.4 - There exists a sequence hk(x,n) of C -functions sat-
isfying all the properties stated in the previous lemma (except the

fact that hkg -1).

Proof. Let be a mollifier, i.e. ueC:(Rn x ]Rm), S adxdy = 1,

20



MARCELLINI

a >0. Let us define h = h xa, where a (x,n):e_(n”n)a(x/e.n/e).
k € k € €

If € is sufficiently small, hke is a nonnegative C“—function, and

is zero if dist (x,38) < 1/k+l. By the uniform continuity of g, as
e *0 hkE converges to 8 uniformly in @ x R™. Thus we can choose

€ = e€(k) such that

1

(5.8) | h <m

K,e(k) Sk

For k > 2 let us define hk(x,n) (x,n) - (k-1)"'. The

- hk—l,E(k—l)

sequence h  satisfies all the stated properties. For example, let us

k
verify that hk is increasing with respect to k:
1 1 1 1
< o < — o
P S 8 T TR S8 T I TR
1 1 1
<
il B e() I VIR T R4
1 1 1

Now we prove a semicontinuity result, that generalizes an a-

nalogous result of Reshetnyak [28].

THEOREM 5.5 - Let g: 9 x R"~+[0,+=] be a function satisfying (5.5),

(5.6) . Let Vh and v be functions of Lioc(n;Rm)’ and assume that

vy converges to Vv in the sense of distributions, i.e.:

(5.10)  lim S (v, 9)dx = J (v, e)ex , VoeC.(;R™)
h
Then we have

(5.11) 1imhinf fn g(x,vh(x))dx > fng(x,v(x)) dx .

Proof. By using our approximation lemma 5.4 in the usual way
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like in (4.10), it is enough to prove the theorem assuming that g
is C7(a xR m), and that there exists an open set & compactly con-
tained in @ such that g is equal to zero for x ¢ . . Let a, be a
mollifier and let Ve =V % oa. By the convexity of g, similarly to
Serrin {31], we have

(5.12) g(x,vh) 3g(x,ve) +(Dng(x,vc), v

h~vc )

Since D g(x,v (x))e CA aR™), by (5.10) we have
n €
(5.13) 1lim inf 5 g(x,v )dx > s g(x,v )dx+ s (D g(x,v ),v-v )dx
h Q h - Q € 2 n € €

We obtain the result for e - 0. In fact, in the first term of the
right side we can use Fatou's lemma, while in the second term we
. . m .
can use the fact that D g is bounded in g x R independently of
n

€ .

By lemma 5.1 and theorem 5.5 we obtain two semicontinuity re-

sults for integrals of the type:
(5.14) F(u) = i f(x,Du)dx = IQ g(x,Du,detl Du, det, Du,...)dx

Here f(x, g) is a polyconvex function like in (5.1), and g(x,n) sat-

isfies (5.5), (5.6).

COROLLARY 5.6 - Let u_ and u be functions of Hllc’cp(n;mN), for p >

> min {n?/(n+l);Nn/M+1)}. Assume that the subdeterminants of the

Jacobians Du and Du are defined as L -functions and that for-

1
h loc
mula (5.4) holds for uy and u. If u, converges to u in the weak

Lp ,.pN o
topology of HIOC(Q,R )., then hmhmf F(uh) >F(u).

COROLLARY 5.7 - Let u, and y be function of Hllo'cr(Q;R N) . forr >
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> min {n,N}. If u, converges to u In the weak topology of H;’OE(Q;RN)

for p >min {n?/(n+1); Nn/(ml1)} then limhinf F(uh) > F(u).

6. Some examples and remarks

Here we discuss the necessity of some assumptions of the semi-
continuity theorems 1.1 and 5.5. Let us begin with theorem 5.5 and
let us show that the result does not hold if g(x, n) is only measur-
able with respect to x, or if g = g(x,s,n) (with the usual meaning
of s). Of course, to exhibit counterexamples, we must consider non
coercive cases: in fact, if g(x,n) > cost In|P for some p >1, the se-
micontinuity theorem 5.5 reduces to the usual semicontinuity theorem

in the weak topology of LP.

EXAMPLE 6.1 - Let n = m = 1 and let g(x,n) = a(x)n?, with a(x)

nonnegative, bounded and measurable in (0,1). It has been proved

1,2
in theorem 5 of [19] that for every pe [1,+=] and for every ueH

1,2

there exists in H a sequence u, that converges to u in LP and

h
satisfies

1 1
(6.1) lim s, a(x) (u')*dx =/ b(x) (u')*dx ,
h

where

1

(6.2)  b(x) = lim 2e[s " "a” (y)dyl ' .

e+ ot
If we consider a function a(x) # 0 a.e. that is not locally sum-
mable a.e. in (0,1), then b(x) is zero a.e. Let us define v, = u'

h h
and v = u'. Then, for every ¢e€ C,, we have

1 1
(6.3) 1}1]m g vy edx = - lim sl ouetdx = -, ue'dx = J vedx.
h
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Moreover vy and v are in L!, but they do not satisfy (5.11), since,

if v is not identically zero,

1

(6.4)  m 5, alx) Vi) dx = 0< s, alx) v?(x)dx

EXAMPLE 6.2 - We can adapt the counterexample of Eisen [12] to
our situation. In fact, Eisen showed that there exists a sequence

of Lipschitz continuous functions uy = (u‘h,u’h) defined in (0,1),

such that the product u;}(u}’])' = 0 a.e., and u, converges in L' to

the function u(x) = (1,x). Let us define Vp T (u;')', v = (u?)'= 1,
w, = u;\, w = u' = 1. Like in (6.3), v, converges to v in the sense

of distributions; Vi and v are in L', but

1

1
(6.5) !o(whvh)‘dx =0 , s, (wv)?dx =1 .
This means that in general we cannot extend theorem 5.5 to inte-
grals of the type / g(w(x),v(x))dx, where g(s, n) is continuous in
(s, n), and convex with respect to n, and the topology considered

is the product of the L' norm topology for w, and the topology of

distributions for v.

EXAMPLE 6.3 - In theorem 1.1 the assumption t <np/(n-p) if p< n
is necessary. We have a counterexample for f(x,s, £) = le|? -

np/(n-p)

- cost|s]| , by choosing a sequence u, that weakly converges

5 np/{(n-p)

in Hl’p, but does not converge in the norm topology of L

EXAMPLE 6.4 - If n and N are greater than or equal to 2, the as-
sumption r < p in theorem 1.1 is necessary. In fact there is a coun-
terexample by Murat and Tartar (see the counterexample in section
4.1 of [27])), for n = N = p = r = 2, where it is shown that the in-

tegral
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(6.6) fn a(x) det Du dx ,

is not continuous in the weak topology of Hl’z(ﬂ;R *), even if a
is a nonzero constant. It is a consequence of theorem 1.1, but it
is also well known (see [29 ], [5], [6]; and for more general func-
tionals [16], [22]), that, if a€ L(2), the integral in (6.6) is

1,2+e

weakly sequentially continuous in the weak topology of H (a;R?),

for every positive e.

EXAMPLE 6.5 - To discuss the necessity of the upper bound in (1.1)
let us summarize our results in the special case n = N > 2 for the

integral
(6.7) s g(x,ulx))det Du(x)|* dx

We distinguish two cases: @ 21 or @ < 0; in the second case we de-
fine |nl® = +w if g <0. If g is a nonnegative Carathéodory func-
tion and & > 1, then the integral (6.7) is sequentially lower semi-
continuous in the weak topology of Hl'n(ﬂ:]R ™). This follows from
theorem 1.1 in the general case (if a« > 1 we can approximate isl®
with a nondecreasing sequence of convex functions on R, each of
them growing linearly at =), and from corollary 5.7, if g is inde-
pendent of s and continuous. If g = g(x) is a nonnegative continu-

ous function, and either o >1 or o<O0, then from corollary 5.7 it

follows also that, if p>n?/(n+l):

(6.8) If uy and u are smooth (say u, Ju€ Hl'n(n;]Rn)) and u

h
1,
weakly converges to u in H p(n;Rn) . then

lim inf ’ng(x)l det Du |% dx > I g(x) |det Du|® dx.

h
h

Let us mention explicitely that we have not proved that (6.8)
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is true if 1< p <n?/(n+l). Let us also mention that Acerbi, Buttaz-
zo and Fusco [1] proved that (6.8) is not true if we replace the
weak convergence in Hl’p(ﬂ;]R ") with the strong convergence in

Lp(n;]Rn), whatever pe [1,+ =) may be.

REMARK 6.6 - In (6.8) we distinguish between the space where the
functional is well defined, and the space where the sequence uy
weakly converges. This is a natural point of view and it is not
new. In this context of polyconvex functions we refer to theorem
9.2.1. by Morrey [26], and to [1]. We refer also to the well known
semicontinuity theorems by Serrin ([31] (see also [26], section 4.1),
where the considered functions u, are required to be in the space

h

1,1 .
H’", but the convergence is in the space L'. We refer also to the

theory of De Giorgi [11], related to this subject.
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