

Werk

Titel: Hyperbolicity of the Complement of Plane Curves.

Autor: Grauert, Hans; Peternell, Ulrike

Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0050|log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

HYPERBOLICITY OF THE COMPLEMENT OF PLANE CURVES

Hans Grauert and Ulrike Peternell

Dedicated to Karl Stein

In this paper it is proved that the complement in \mathbb{P}_2 of a holomorphic curve D of genus $g \geqq 2$ is a hermitian hyperbolic complex manifold provided that certain conditions on the singularities of the dual D* of D are satisfied and that every tangent at D* intersects D* in at least two distinct points.

Introduction

1. We want to give a proof of the following theorem in a somewhat more general form:

- In [CG] a differential geometric proof is given. This proof has a gap. The error is produced by multiplying metrics which leads to zeros. Instead, we have to sum metrics.
- 2. We always denote by \mathbb{P}_2 the 2-dimensional complex projective plane and by \mathbb{P}_2^\star its dual. D is any irreducible curve in \mathbb{P}_2 which may contain singularities.

For every $z_0 \in D$ the analytic set D decomposes in z_0 into irreducible components A_i , i = 1, ..., 1 which are analytic sets in a neighborhood of z_0 . We denote by m_i the minimal intersection number of $A_{\underline{i}}$ with a complex line through z_0 . We say that A_i has a singularity of order $m_i - 1$ in z_0 and that D has 1 irreducible singularities of order $m_1 - 1, \dots, m_1 - 1$ in z_0 . A singularity of order 0 is a smooth point. The dual D* of D has the tangents at D for points. The normalizations of D and D* are isomorphic. Their joint genus is denoted by g . Furthermore we denote by d the degree of D and by d* the degree of D*, by n,n* the number of knots (with multiplicity) of D, D* respectively and by c,c* the number of cusps (with multiplicity) of D, D* respectively. In the classic case where the curves D, D* have only ordinary singularities we have the Plücker formulas:

$$d* = d(d-1) - 2n - 3c$$
, $d = d*(d*-1) - 2n*-3c*$
 $c* = 3d(d-2) - 6n - 8c$, $c = 3d*(d*-2) - 6n*-8c*$.

The second part of these formulas is superfluous since $D^{**} = D$. For the genus we have the equality:

$$g = \frac{(d-1)(d-2)}{2} - n - c = \frac{(d^*-1)(d^*-2)}{2} - n^*-c^*$$
.

By $\chi(D)$ we denote the Euler number 2-2g of the normalization of D . If D is singularityfree we have $c^* + \chi(D) = d(2d-3)$ which is never negative. However, the conjecture is that ${\rm I\! P}_2 \smallsetminus D$ is hyperbolic in many of that cases. So the condition of the theorem is very strong.

In the general case of curves we have not only to take the cusps of D^* (with higher multiplicities) into account but all irreducible singularities of D^* . Let b^* be the number of all irreducible singularities of D^* counted with their orders m-1.

3. We assume that $G \subset \mathbb{C}$ is a domain and that h is a real nowhere negative function in G. We consider the hermitian metric $ds^2 = h \ dz d\overline{z}$ in G. In the points $z \in G$ where h is C^{∞} and $h(z) \neq 0$ the expression $K(h,z) = -\frac{1}{2h} \ \Delta \log h$ is the Gaussian curvature. We say that the Gaussian curvature of a general hermitian metric ds^2 is smaller or equal -K and smaller 0, if $2 \ hK \leq \Delta \log h$ in the sense of distribution.

Now let X be a complex manifold and $ds^2 = \sum_{i,j} h_{ij} dz_i d\overline{z}_j$ a semipositive definite continuous hermitian metric on X. We say that ds^2 is hyperbolic, if there is a constant K>0 such that for every holomorphic map $\psi: G \to X$ the Gaussian curvature of $ds^2 \cdot \psi = h \ dz d\overline{z}$ is smaller or equal -K on G.

We shall prove in our paper

Theorem: Assume that for $D \subset \mathbb{P}_2$ of genus $g \ge 2$ the inequality $b^* + \chi(D) < 0$ is valid. Moreover assume that every tangent at D^* intersects D^* in at least two distinct points. Then $X = \mathbb{P}_2 \setminus D$ is a hermitian hyperbolic complex manifold.

The additional condition that every tangent at D* intersects in two distinct points, at least is true for all classical curves of genus $g \ge 2$, since the greatest intersection number of a line and D* in one point is 3 and $d* \ge 4$.

Our proof will be differential geometry. (For notations in the introduction see [GH].)

§ 1. Preparations

1. We prove the Ahlfors Lemma for continuous hermitian metrics.

Lemma 1: Assume that $ds^2 = h dzd\overline{z}$ is a continuous hermitian metric in the unit disk $E = \{z : |z| < 1\} \subset \mathbb{C}$ with curvature $K(h,z) \le -K < 0$. Then we have the inequality

$$h(z) \le \frac{4}{K} \frac{1}{(1-z\overline{z})^2}$$
.

Proof: We take an arbitrary number R with 0 < R < 1

and put $E_R = \{z: |z| < R\} \subset E$ and $E(z) = \frac{4}{K} \frac{R^2}{(R^2 - z\overline{z})^2}$. We only have to prove that $h(z) \le H(z)$ in E_R for all R.

Assume that this is not the case. We define $\mathbf{M} = \{\mathbf{z} \in \mathbf{E}_R : \mathbf{h}(\mathbf{z}) > \mathbf{H}(\mathbf{z}) \}$. Then we have $\mathbf{M} \neq \emptyset$. Since $\lim_{\|\mathbf{z}\| \to \mathbf{R}} \mathbf{H}(\mathbf{z}) = \infty$ the set \mathbf{M} is relatively compact contained in \mathbf{E}_R . The functions \mathbf{h}, \mathbf{H} are positive in $\overline{\mathbf{M}}$. So $\log \mathbf{h}, \log \mathbf{H}$ are continuous in $\overline{\mathbf{M}}$. We have $\mathbf{F} := \log \mathbf{h} - \log \mathbf{H} = \mathbf{0}$ on $\partial \mathbf{M}$ and $\mathbf{F} > \mathbf{0}$ in the interior of \mathbf{M} . There is a point $\mathbf{Z}_0 \in \mathbf{M}$ where \mathbf{F} takes its maximum. Moreover we have $2\mathbf{K}\mathbf{h} \le \Delta \log \mathbf{h}$ and $2\mathbf{K}\mathbf{H} = \Delta \log \mathbf{H}$ and therefore $\Delta \mathbf{F} \ge 2\mathbf{K}(\mathbf{h} - \mathbf{H}) \ge \mathbf{0}$ in \mathbf{M} (in the sense of distribution). So \mathbf{F} is subharmonic in \mathbf{M} , hence constant in the connected component $\mathbf{M}(\mathbf{Z}_0)$ of \mathbf{M} containing the point \mathbf{Z}_0 . This is a contradiction since $\mathbf{F} \mid \partial \mathbf{M} = \mathbf{0}$.

2. We denote by S a connected compact Riemann surface of genus g and by $\omega = a(z)$ $dzd\overline{z}$ a continuous differential form on S of type (1,1). We say that ω has a zero of order $\alpha > 0$ in a point $x_0 \in S$, if there is a holomorphic coordinate system z in a neighborhood U of x_0 with $z(x_0) = 0$ and a continuous function $b(z) \neq 0$ in

U such that $a(z) = |z|^{2\alpha} b(z)$ in U. We say that ω is positive semidefinite, if a(z) is always real and $a(z) \ge 0$. Of course such a (1,1)-form ω represents a (positive semi-definite) hermitian metric. We prove

Lemma 2: Assume that $x_1, \ldots, x_1 \in S$ are distinct points with rational multiplicities $\alpha_1, \ldots, \alpha_1 > 0$, such that $\frac{1}{\Sigma}$ $\alpha_1 < 2g - 2$. Then there is a positive semidefinite i=1 differential form ω on S which is different from 0 on $S \setminus \{x_1, \ldots, x_1\}$ and which has in x_1 a zero of order α_1 , such that the Gaussian curvature $K(\omega)$ is smaller or equal -1 everywhere.

Proof: We take a positive integer n such that nais integral for all i = 1,...,l and denote by L the line bundle of the divisor $-na_1x_1-...-na_1x_1$. If K is the canonical bundle of S the Chern class of $K^n \otimes L^n$ is positive. Hence this bundle is positive. There is a positive integer m such that $(K^n \otimes L^n) = K^{nm} \otimes L^{nm}$ is very ample. For each point $x \in S$ there are global cross-sections s_1 , s_2 with $s_1(x) \neq 0$ and s_2 vanishing in x of order one. Since L^{nm} belongs to a holomorphic divisor, s_1 , s_2 may be considered as holomorphic cross sections in K^{nm} where s_1 vanishes in x of order nma_i and s_2 of order

We take a basis $s_1,\ldots,s_k\in\Gamma(S,K^{nm}\otimes L^{nm})$ and put $\omega=(\sum\limits_{i=1}^ks_i\overline{s}_i)^{\frac{1}{nm}}.$ We obtain a positive definite (1,1)-form on S which vanishes in x_i of order α_i and nowhere else. We still have to prove $K(\omega)\leq -1$, that means

 $nm\alpha_i + 1$ precisely, if $x = x_i$. If x is different from

all x_i , the order of vanishing is the old one.

2a \leq Δ log a for each local coefficient a of ω . We put $s_i = f_i(z) \ dz^{nm}$, locally. Then we have

$$a = (\sum_{i=1}^{k} |f_i(z)|^2)^{\frac{1}{nm}}$$
 and $\Delta \log a = \frac{1}{nm} \Delta \log \sum_{i=1}^{k} |f_i(z)|^2$.

We wish to prove that $\Delta \log a > 0$. First we note that we

may divide $\sum_{i=1}^{k} |f_i(z)|^2$ by a holomorphic function, since

Aloga is not changed by this. Thus we may assume that $(f_1(z),\ldots,f_k(z)) \neq 0$. Moreover $(f_1(z),\ldots,f_k(z))$ and $(f_1'(z),\ldots,f_k'(z))$ are linearly independent. So by [GR] (p. 113,III) we obtain $\Delta\log a>0$. This is true in every point of S. After having multiplied ω by a small positive factor we also have the inequality $2a < \Delta\log a$. That completes the proof.

§ 2. Proof of the theorem

1. We denote by S the normalization of D* and by $\{\hat{\mathbf{x}}_1,\dots,\hat{\mathbf{x}}_1\}\subset S$ the inverse image of the irreducible singularities \mathbf{x}_i , $i=1,\dots,l$ of D* under the normalization. If \mathbf{m}_i - 1 are the orders of the irreducible singularities \mathbf{x}_i respectively, the condition of the theorem is that $\mathbf{b}^*=\sum\limits_{i=1}^{S} (\mathbf{m}_i-1)<2g-2$. According to Lemma 2 in there is a (1,1)-form ω on S which has a zero in $\hat{\mathbf{x}}_i$ of order $\alpha_i:=\mathbf{m}_i-1$. We prove that ω leads to a positive definite, hyperbolic hermitian metric on $\mathbf{x}=\mathbf{P}_2 \setminus \mathbf{D}$ with Gaussian curvature smaller or equal -1.

Every point $x \in X$ is a line $1(x) \subset \mathbb{P}_2^*$. If $y_i \in 1(x) \cap D^*$, the intersection number of 1(x) and the

local irreducible component A_i of D^* containing y_i is m_i . If $y \in l(x) \cap D^*$ is a smooth point of D^* , the intersection in y is transversal. Now if we count the intersections of a line l(x) and D^* with multiplicity, we have always $l(x) \cap D^* = \{y_1, \dots, y_{d^*}\}$. The set $\{y_1, \dots, y_{d^*}\}$ is the image of a unique set $\{\hat{y}_1, \dots, \hat{y}_{d^*}\}$ of the normalization S. Hence we have a continuous map $F: X \to S^{d^*}$, where S^{d^*} denotes the d^* -th symmetric power of S which is a d^* -dimensional complex manifold. Outside the thin set R consisting of the points $x \in X$ for which l(x) contains an irreducible singularity of D^* is F C^{∞} -regular. There are d^* projections

is F C^{∞} -regular. There are d* projections $\pi_i:S\times\ldots\times S\to S$ of the d*-fold Cartesian product on S. We lift ω to $\omega_1,\ldots,\omega_{d^*}$ by this maps and define

ant against permutation, hence it comes from a hermitian form $\hat{\omega}$ on S^{d^*} . The pullback $\Omega = \hat{\omega} \circ F$ on X is outside the set R a C^∞ -regular hermitian metric. Since ω vanishes in the points $\mathbf{x_i} \in S$ of order $\mathbf{m_i} - 1$, our metric Ω is completable to a continuous hermitian metric on X .

2. We shall prove now that Ω is a continuous, positive definite, hyperbolic hermitian metric on X with Gaussian curvature smaller or equal -1, which is bigger than a positive multiple of the Fubini-Study metric on \mathbb{P}_2 . We take a point $\mathbf{x}_0 \in X$ and a point $\mathbf{y}_0 \in \mathbf{1}(\mathbf{x}_0) \cap \mathbf{D}^*$ and decompose \mathbf{D}^* in \mathbf{y}_0 into irreducible components:

$$D* \cap U(y_0) = A_1 \cup ... \cup A_1$$
.

We assume that A_1 has a singularity of order m-1 in y_0 . The intersection number of $l(x_0)$ and A_1 is m. There is a line $P(y_0)$ through x_0 , such that all lines

larity-free local curve through \mathbf{y}_0 . We denote by T a singularity-free local curve through \mathbf{x}_0 which intersects P transversally. Then the points $\mathbf{t} \in T$, $\mathbf{z} \in l(\mathbf{t})$ are holomorphic coordinates in a neighborhood $V(\mathbf{y}_0) \subset U(\mathbf{y}_0)$. The intersection of the curve $A_1 \cap V$ with $l(\mathbf{t})$ can be given by an equation

$$z = f(^{m}\sqrt{t})$$
,

where $f(w) = a_1 w + a_2 w^2 + ...$ is holomorphic. The metric ω is of the form

$$\omega = (w\overline{w})^{m-1} (b_{00} + b_{10}w + \overline{b}_{10}\overline{w} + b_{20}w^2 + \overline{b}_{20}\overline{w}^2 +$$

+
$$b_{11}w\overline{w}$$
 + ...) $dwd\overline{w}$

with
$$b_{00} > 0$$
, $\frac{b_{11}}{b_{00}} - \frac{1}{2} \cdot \frac{b_{10} \overline{b}_{10}}{b_{00}} > 0$ and therefore $b_{11} > 0$.

According to paragraph 1 we have to consider the pullback on $\ensuremath{\mathtt{T}}$. We have

$$dw = \frac{1}{m} t^{\frac{1}{m} - 1} dt \quad and \quad dwd\overline{w} = \frac{1}{m^2} |t| \frac{2 - 2m}{m} dt d\overline{t}.$$

For one branch of $t^{\frac{1}{m}}$ it is

$$\omega' = \frac{1}{m^2} (b_{00} + b_{10}t^{\frac{1}{m}} + \overline{b}_{10}t^{\frac{1}{m}} + b_{20}t^{\frac{2}{m}} + \overline{b}_{20}t^{\frac{2}{m}} + b_{12}|t|^{\frac{2}{m}} + \dots) dtd\overline{t}.$$

We have to take the medium over the different values of $\frac{1}{t^{\overline{m}}}$ and obtain a (1,1)-form

$$\overline{\omega}' = \frac{1}{m^2} (b_{00} + b_{11}) [t]^{\frac{2}{m}} + b_{22} [t]^{\frac{4}{m}} + b_{33} [t]^{\frac{6}{m}} + \dots$$

+
$$b_{m0}t + b_{m+1,1}t|t|^{\frac{2}{m}} + b_{m+2,2}t|t|^{\frac{4}{m}} + \dots$$

$$+ \overline{b}_{m0}\overline{t} + \overline{b}_{m+1,1}\overline{t}|t|^{\frac{2}{m}} + \overline{b}_{m+2,2}\overline{t}|t|^{\frac{4}{m}} + \dots$$

$$+ b_{2m,0}t^{2} + b_{2m+1,1}t^{2}|t|^{\frac{2}{m}} + \dots$$

$$+ \overline{b}_{2m,0}\overline{t^{2}} + \overline{b}_{2m+1,1}\overline{t^{2}}|t|^{\frac{2}{m}} + \dots$$

 $:= d \ dt d\overline{t} \ , \ which is continuous. \ It is \ b_{11} > 0 \ . \ We get \\ \log \ d = d_0 + d_1 |t|^{\frac{2}{m}} + d_2 |t|^{\frac{4}{m}} + \ldots + \ d_{m-1} |t|^{\frac{2}{m}(m-1)} + \ldots$

$$+d_{10}t+d_{11}t|t|^{\frac{2}{m}}+d_{12}t|t|^{\frac{4}{m}}+\dots+d_{1,m-1}t|t|^{\frac{2}{m}(m-1)}$$

+ ...

+ $\overline{d}_{10}\overline{t}$ + $\overline{d}_{11}\overline{t}$ | t

with $d_1 > 0$, if $m \ge 2$, and $e_{12} > 0$, if m = 1. We consider the distribution $\Delta \log d$. It is

$$\Delta(t\overline{t})^{\frac{\nu}{m}} = 4 \frac{\partial}{\partial t} \frac{\partial}{\partial \overline{t}} (t\overline{t})^{\frac{\nu}{m}} = 4 \frac{\nu^2}{m^2} (t\overline{t})^{\frac{\nu}{m}} - 1, \ \Delta(t(t\overline{t})^{\frac{\nu}{m}}) =$$

4 $(\frac{v}{m}+1)\frac{v}{m}\frac{v}{t}\frac{v}{m}\frac{v}{t}^{m}-1$ and $\Delta(\overline{t}(t\overline{t})^{\frac{v}{m}})$ similar, in the sense of distribution. The leading term is $\Delta(d_{1}(t\overline{t})^{\frac{2}{m}})=$

 $\frac{4}{m^2} = \frac{1}{2(1-\frac{1}{m})}$ which converges to ∞ for $t \to 0$. This

means that also in t=0 the Gaussian curvature of $\overline{\omega}$ ' is smaller equal -1.

3. If the local curve T does not intersect P transversally, we can approximate T by a sequence of curves T_{ν} which intersect P transversally. On T_{ν} , T we have a $\overline{\omega}'=d_{\nu}$ dtd \overline{t} , d dtd \overline{t} respectively with continuous non-negative functions d_{ν} , d . The sequence (d_{ν}) converges uniformly to d . Since always $2d_{\nu} \le \Delta \log d_{\nu}$ we get $2d \le \Delta \log d$ in the sense of distributions. The same procedure is possible, if T is not smooth. So the Gaussian curvature of $\overline{\omega}'$ is smaller or equal -1 .

Now our hermitian metric Ω is obtained as a mean value of some $\overline{\Omega}'$, which are C^2 -regular outside the set R . Here the formula for summing of metrics [GR] is valid. Thus the Gaussian curvature of Ω is smaller or equal -1.

4. Every line l(x), $x \in \mathbb{P}_2 \setminus D$ intersects D^* twice at least. Otherwise we would have $l(x) \cap D^* = \{y\}$ and the intersection number in y would be equal d^* . Since l(x) is not a tangent at D^* there would be a line through y of higher intersection number. This is a contradiction.

If $x \in \mathbb{P}_2 \setminus D$ runs on a smooth local curve T, there is at most one line P, for which every corresponding line l(p), $p \in P$ passes through a fixed singularity x_0 of D^* , that is a tangent at T in t=0. So at least one of the intersection points of l(t) and D^* changes with nonzero differential. Thus our metric Ω is positive definite even on R because of the order of vanishing of ds^2 in the points $\hat{x}_1, \dots, \hat{x}_1$.

Now suppose that x = x(t) runs on a smooth local curve T which intersects D in just one point $x_0 = x(0)$. The tangent at D in x_0 is a point $y_0 \in D^*$. We denote the minimal intersection number of a line with $\ D^*$ in y_0 by $p \ge 1$ and the intersection number of D* with its tangent in y_0 by q > p. The lines $l(t) \subset \mathbb{P}_2^*$ corresponding to T tend to $1(x_0)$ for $t \to 0$. There are q intersection points $x_1(t), \dots, x_q(t)$ of l(t) and D^* which converge to y_0 for $t \to 0$ with orders $s_1, \dots, s_q > 0$. If the intersection number n of T with the tangent y_0 is smaller than $\frac{q}{p}$, at least one of the orders $\,\mathbf{s}_{\,\mathbf{i}}\,$ is smaller than $\,\mathbf{1}\,$. This implies that $\,\Omega\,$ grows to ∞ on T by approaching t=0 . In particular this is the case for every curve T that intersects D transversally. If $n \ge \frac{q}{p}$, it is possible that the metric Ω tends to 0 on all branches x_1, \dots, x_{α} for $t \to 0$. But we have the condition that every tangent of D* intersects in at least two distinct points. In the second point y_1 either (if $1(x_0)$ is also a tangent of D^* in y_1) case 1 is valid or the intersection points of l(t) and D^* running to y_1 change with a nonzero differential such that Ω remains positive definite bounded away from zero by approaching t = 0 . The boundary depends only on \mathbf{x}_0 and not on the curve \mathbf{T} . So we get: There is a constant $\delta > 0$, which depends on D only, such that $~\Omega \geqq \delta \Omega_{\bf F}$, where $~\Omega_{\bf F}~$ denotes the Fubini-Study metric in \mathbb{P}_2 .

5. The existence of Ω implies that the Kobayashi pseudometric is a metric, since the Kobayashi distance is maximal in the set of distance decreasing pseudo-distances on X . For every point $\mathbf{x}_0 \in D$ there is a neighborhood U and a holomorphic map $\mathbf{f}: U \to E := \{z \in \mathfrak{C}: |z| < 1\}$ such

that f|D=0 . The pullback of the metric

$$ds^2 = \frac{1}{|z|^2 (\log |z|^2)^2}$$
 by f is a pseudometric on U of

Gaussian curvature -1 which converges to ∞ on every sequence $(x_{ij}) \subset X$ that converges to the boundary of X.

The existence of Ω implies furthermore that the family F of the holomorphic maps of the disk E into X is equicontinuous with respect to the metric Ω . Since $\Omega \geq \delta\Omega_F$, this family of maps considered as maps of E into \mathbb{P}_2 is also equicontinuous with respect to the Fubini-Study metric. Thus F is even ([R], p. 133). Therefore there exists an $\epsilon > 0$ and a neighborhood $U' \subset U$ of \mathbf{x}_0 such that for every $f \in F$ we have $f(E_\epsilon) \subset U$, where E_ϵ denotes the disk of radius ϵ , whenever $f(0) \in U'$. With the infinitesimal form of the Kobayashi metric $F_X(\mathbf{x},\xi) = \inf \frac{1}{R}$, where the infimum is taken of the set of all positive real numbers for which there is a holomorphic map $\phi: E_R \to X$ with $\phi(0) = x$ and $\phi'(0) = \xi$, we have on U' the inequality

$$\textbf{F}_{X} \geq \epsilon \ \textbf{F}_{U} \geq \epsilon \ \textbf{ds}^2$$
 .

This implies that $\ensuremath{\mathtt{X}}$ is complete with respect to the Kobayashi metric.

The authors thank the Sonderforschungsbereich 170 for supporting their work.

Bibliography

- [BK]: Brieskorn, E., Knörrer, H.: Ebene algebraische Kurven. Birkhäuser · Basel · Boston · Stuttgart. 1981
- [CG]: Carlson, J.A., Green, M.: Holomorphic Curves in the Plane. Duke Math. J. 43. 1976
- [GH]: Griffiths, P., Harris, J.: Principles of Algebraic Geometry. John Wiley. 1978
- [GR]: Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen. Math. Z. 89. 1965
- [K]: Kobayashi, S.: Intrinsic Distances, Measures and Geometric Function Theorey. B.U.M.S. 82. 1976
- [R]: Royden, H.L.: Remarks on the Kobayashi Metric. Several Complex Variables II. Lecture Notes in Math. 185. Springer-Verlag, Berlin. 1971

Hans Grauert

Mathematisches Institut der Universität Bunsenstr. 3-5 D-3400 Göttingen, West Germany

Ulrike Peternell Mathematisches Institut der Universität Einsteinstr. 64 D-4400 Münster, West Germany

(Received March 19, 1985)

