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DECREE THECRY ON ORIENTED INFINITE DIMENSION2I. VARIETIES
ANC THE MORSE NUMBER OF MINIMAL SUPFACES SPANNING A CUPVE
n
IN R

Anthony Joseph Trorba®

The algebraic nurber of disc riniral surfaces spanning a
wire in TR is defined and shown to be equal to one.

Fart T :n=3

In [16] the author developed a limited "Morse theory" for
minimal surfaces spannina a smooth curve T in R" ¢

nx>4 . It was shown that for alrost all T a Morse number
of minimal surfaces was defined and this number, indepen-
dent of I was always one. The reason why the results of

[16] were not applicable to =3

, is, rouchly speakinc,
the existence in JR3 of formrally degenerate minimal sur-
faces which are stable under perturbation of the boundary
wire T . Thus generic non-degeneracy breaks down. However
in [4] the author and Reinhold Bohme introduced for 1R3

a new notion of non-degeneracy and showed, that relative
3 had the

prorerty that only a finite number of "non-decenerate"

to this new concept, almost all wires T in IR

miniral surfaces spanned T .

As stated in Section 7 of [16] we shall prove that a Morse
nurber of minimal surfaces spanning a generic wire T in

]R3 is still defined and is, as expected, still one.

Finally we indicate a proof of a strencthed version of
Morse-Shiffran-Torpkin's famous mountain pass theorem for

wires in ]R3 C
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STATEMENT OF MAIN RESULT

Let D be the unit disc in IR2 , oD=8 and o : S1~>IR3

an embedding of Sobolev calss #Y with 1°% =0(S') the
image wire. Let N(a) be the space of all S maps u:
D-'lR3 , U= (u1,u2,u3) such that for all i, Aut =0 (each
1

ui is harmonic) and u:S$S — 1% is horotopic to o . We

1

shall assume that s27 , r>2s+4 and the total curvatu-
res of I 7 K(l“a) <7 (s -2) {the choice ‘of regularity class

depends on the wirel.

A minimal surface of disc type is an elerent u€N(a) sa-

tisfying
_ A~ _ _0ou )
(1) <uxruy>m3—0—<_x‘ ’ 3—\:7>
(0.1) (2 Hla = |lu
)l =gl
(3) u: ST->1" is a horeomorphism.

Armap u€N(a) satisfying (o.1) is a critical point of
Dirichlet's functional E, : N(a) R defined by

n . .
(0.2) E (u)=1/27 J vul - vut .
o .
j=1°D
Let G be the three dinemsional conformal croup of the
disc. Each g€G is of the form g(z)=c - 12__aaz . el =1,

fal <1 .

G acts on N (a) via g#(u)(z) =u(o(z)) and E is equi-
valent with respect to this action. Consequently if u is
any critical point of Ea the orbit of G through u ,
Ou(G) consi?tsof critical points. For such a critical
point let D Ea(u) :TuN(a)><TuN(a)—>R denote the Hessian
or second derivature, where TuN(a) is the tangent space
to N(a) at u . By equivariance, it follows that

Tuou(G) the tangent space to Ou(G) gt u , will always
be the kernel of the quadratic form D Ea(u) . The surface
u 1is said to be non-~degenerate if this is the only kernel.
If u is non-degenerate there is (rodulo this kernel) a
maxiral subspace on which the Hessian is strictly negative,
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and this dimension is called the Morse index of u .

We should remark at this point that in [14] the author,

and independently Reinhold Bohme derived an expression for
2

D Ea(u) , namely for h,k €TuN(a) , u a critical point
2 3 i i
(0.3) D°E_(u) (h,k) = § I Vh™ - Vk -J k_ <h,k> .ds
o ¢ a o 3
j=1JD - = R

where kg is the geodesic curvature of r¢ .

Unfortunately, by the Fredholm index theorer of BShme-Trom-
ba [4] it is false that almost all wires (open dense) «

in 1R3 enjoy the property that there are only a finite
number of non-degenerate minimal surfaces spanning r*,
although this is true for Rr" , n>4 . This is the main
distinction between the theory in Euclidian three space

and Ifl , n>4 .

This finiteness result enabled us to define a Morse number
for a generic Fa in ®R" , n>4 , namely let Uqreee Uy
be the finite number of minimal surfaces which span r®

with Morse numbers Mqreeerbp respectively. Then

biod s
(0.4) =1 d =1

3=1
the right hand side of (0.4) is by definition the Morse
number of minimal surfaces spanning ra . Thus, indepen-

dent of T'% the Morse number is always one.!

As already mentioned in Euclidian three space a new notion
of non-degeneracy was introduced which enabled one to prove
that for a generic wire r% there is only a finite number
o although these
may well be degenerate in a sense previously described.
Thus the "old" formula (0.4) for the Morse number does not
seem to hold. However, since for the generic wire one has
only isolated solutions another strategy for defining this
number will work, and it rouchly goes as follows. For each

Ugeeoup of minimal surfaces spanning T

@ it was shown in [14] that there is a vector field X :
N(a) > TN(a) whose zeros wire precisely the minimal sur-
faces spanning r® . This vector field had the wonderful
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property that at every zero u , the derivature Dxa(u):
TuN(u)-+TuN(a) was a linear map of the forr identity plus
compact. This fits in with the theory of Euler-characteri-
stics for vector fields on Banach manifolds as developed
in [15]. In any case if a zero u of xa is isolated one
can define (and we shall do it in this paper) a local de-
gree of Xa about u , say deg(xa,u) =

Now if TI%* has only finitely many minimal surfaces Uyreer

u. which span it we define the Morse number Morse (%)

of minimal surfaces spanning e by the formula

(0.5) Morse (Fa) =
J

~18

1deg(xa,uj)

REMARK (0.6): This generalizes the definition of Morse num-
ber for a curve in Ifl, n2>4 since it works for curves

r* such that the minimal surfaces which span it are only
isolated. Of course it can be shown that in the cgeneric

case both formulas yield the same number.

The main result of this paper is the following.
THEOREM: For a generic curve r* in ZR3 ’

s a

] deg(X_,u.) =1=Morse (I") .

- a’"j

J=i
The basic methods used to prove this result will be the
Fredholm index theory of the author and Reinhold BShme, the

degree theory of Elworthy and the author [5] as generalized
in [15], and of course the basic results of [4].

A REVIEW OF THE LOCAL WINDING NUMBER OF A ROTHE VECTOR
FIELD

In this section we follow essentially [15]. Let IE be a
Banach space and let GL(E) denote its general linear
group. Let S denote those linear operators S :E@® such
that for O0<t<1 , tS+ (1-t)I belong to CL(E) , where
I denotes the identity mappinc. Let RCCE) denote all
those linear operators of the form S+K where S€S and
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K 1is a compact linear operator. Denote by GRCGE) =
f%mn@m).M@fmmHHweMW

THEOREM 1.1: no(GRCGE))==2 . Thus GRCGE) has two compo-

nents.

Denote by GREGE) the comrponent of the identity and
GREGE) the other component. These will be of importance
momentarily.

Let U be an open subset of E with Y:U-E a C2 map-
ping.

DEFINITION 1.2: Such a field Y is said to be a Rothe-
field on U if for each x€U , DY (x) GRCGE) o

Since every element of RCGE) is a linear Fredholm opera-
tor of index zero we get immediately from the definition
of non-linear Fredholm operator (one whose linearization
is Fredholm)

THEOREM 1.3: A Rothe-field is a Fredholr rap of index zero.

DEFINITION 1.4: Let McE be any subset. A map f:M->E

is proper if the inverse irage of a compact set is compact

in ¥ , or equivalently if f(x )~y , {xn} has a subse-
quence which converges to a point in M .

The next result is due to Smale [12].

THEOREM 1.5: Fredholm maps are locally proper.

Let x_ be an isolated zero of a Rothe field Y :U-+E
(Y(xo)==0) . We wish to define the local winding nurber or
degree of Y about X5 - Choose a neighborhood B of Xy
so that Y|B is proper and no other zero of Y is in B.
By properness IE - Y(3B) will be open and so let (0 be the
component of IE - Y(3B) containing O and let M=Y-1(0)
and YM==Y|M . The map Y, :M>0 is a proper Fredholr rap
of index zero.

By the Smale-Sard theorer we can find a regular value

143



TROMBA

y€O0 for YM . Then Y&1(y) contains only a finite num-
ber of points XqreoerXy v and since y is regular

DYM (xj ) € GRC E)

for all j . This permits us to define the signum of
DYM(xj) by

+1 if DY, (x,) € GRECIE)
sgn DYM(xj) = 2 -
-1 if DY, (x;) € GR ()

We now use this for the next basic

DEFINITION 1.6: The local degree or winding number of Y

about S deg(Y,xo) is defined by

m
deg(Y,x ) = j;]sgn DYM(xj)
Using the methods of Elworthy and the author [5] it fol-
lows that this definition is independent of the choice of

B and the choice of the regular value y .

More generally let U be any open subset of IE with

Y:U+E proper and Rothe on U . If O¢Y(3U) we may
then repeat the above construction to define a degree

deg(Y,U) . If no zeros of Y exist in U this degree
will be zero. Moreover if Y has finitely many zeros

XqreeerXp in U , then

(1.7) deg (Y, U) =Zdeg(Y,xj)
J

Finally, we have the basic property of all degree theories,
namely

THEOREM 1.8: If Y . Y, are two proper Rothe fields on

U such that there exists a homotopy Yo o 0O<t<1 with
the property that
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(1) each Y, is Rothe on U
(ii) OE£Y _(3U) for all t
(iii) (t,x)-—*Yt(x) is a proper map.

Then

deg (Y1 ,0) =deg(yo,6)

THE INDEX THEOREM FOR CLASSICAL MINIMAL SURFACES

Our main reference for this section is the Index theorem
of BShme-Tromba [4]. Let r® be a smooth wire in R®

which is the image of a differentiable embeddina o :S1 >

r" o a(S1) =T . A solution to the classical Plateau pro-
blem for % is a mappinc u : DR + D the closed unit

disc in R2 , 3D=S' such that (c.f. 0.1)

(0) Au=0
(1) u, *u
ot () lhal -ﬂuyll

(3) u -S1-*F is a homeomorphism.

Conditions (1) and (2) imply that the surface is conformal-
ly parameterized. Moreover these are the Euler equations
for critical points of Dirichlet's integral on the space

of all surfaces spanninc r® .

A point zg in the interior of D where F(2z) =ux-iuy ’
i=/=1 vanishes is called an interior branch point of u.
Since F is holomorphic 2, has a finite order A(F(z)=
(z-z) c(z) , Glz,) ¢o> .

A point 506281 where F vanishes is called a boundary

branch point and by the results of Heinz and Tomi [7] g
also has a well defined order. Equations (1) and (2) also

o

imply that all points where a minimal surface u fails to
be immersed are branch points. Moreover the monotonicity
assumption (3) implies that boundary branch points will
all be of even order.
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For integers r , and s , r>22s+4 , s>7 define
D=DS={(D:S1 —>S1 | dego=1 and c.pEHs(S1,C)}

where HS denotes the Sobolev space of s-times differen-

tiable (in the distribution sense) functions with values

in the complexes € .

(2.0) A ={0L 5! »R"| o € HF (5,R™) a differentiable
embedding}

By differentiable embedding we mean o is one to one and
o'(p) #0 for all p€S1 . Furtherrore we shall assume
that the total curvature of the image curve r* is boun-
ded by w(s-2) . (This 7 is not to be confused with
projection maps to follow).

Let m:AxD+A denote the projection rap onto the first
factor. A minimal surface u:D-IR" spanninc r* can be
viewed as an element of AxD , since u is harmonic and

therefore determined by its boundary values
u|3D=u]S1 =0 e , where (o,p) EAXD .

The classical approach to minimal surfaces was to under-
stand the set of minimal surfaces in n-1(a) . Our appro-
ach is first to understand the structure of the set of
minimal surfaces as a subset of the bundle N=AXxD as

a fibre bundle over A and then to approach the questions
of thé set of rinimal surfaces in the fibre n_1(u) in
terms of the singularities of the projection map m re-
stricted to a suitable subvariety of N . This is the spi-
rit of Thom's original approach to unfoldings of singula-
rities.

Let us say that a riniral surface u€ A x D has branchina
type  (4,V) 4 A= (greenidy) e’ , v= (Vqremnrvg) e2® ,
each }‘i ¢ \)120 , if u has p distinct but arbitrari-

ly located interior branch points z1,...,zp in D of
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integer orders A ")‘p and q distinct boundary branch

e
points €1""’£q1 in S' of (even) integer orders
v1,...,vq . In a formal sense the subset M of minimral
surfaces in N 1is an algebraic subvariety of N [4] and
is a stratified set, stratified by branchinag types. To be
more precise let Mt denote the minimal surfaces in N
of branching type (A,v) . We can now state the index re-

sult in [4].

THEOREM 2.1: (Index Theorem for Disc Surfaces) The set

MZ‘) is a ¢ 51 gubmanifold of N and the restriction
of m, 7 to M is cF 51 Fredholm map of index

o
I(A)+3=2(2-n)|A| +2p+3 where |[}A] =2Ai . Moreover, lo-

cally, for v # O , Mf‘)cwé such that w\", is a submani-
fold of N where the restriction "\A) of m to w\k) is
Fredholr of index I(A,v)+3=2(2-n)|A| + (2-n)|v| +2p+
g+ 3 . The number 3 comes from the equivariance of the
Dirichlet functional under the action of the three dimensi-

onal conformal group of the disc.

The index I(A,v) measures (in somre sense) the stability
of minimal surfaces of branching type (A,v) in R" and
the likelyhood of finding such surfaces; the more necative
the index of ) the less likely it is to find a wire
admitting minimal surfaces of branching type (A,v) which
span it.

It is easy to see that if n>23 I(A,v)<O and if n2>24 ,
I(A,v) =0 if and only if X =0 and v =0 . However when
n=3 I(A,v)=0 alsowhen v=0 and X=(1,...1,...1) ;
that is on the strata of minimal surfaces with only p
simple branch points.

We would like to "factor out" the action of the conformal
group G . Let Q1,Q2,Q3 be three fixed points on 3D .

1

Let ’ﬁ={w€0|w(Qi)=Q.} and let S=Ax¥ . S is cle-
arly a subbundle of N . Define Xi‘)=SnM3" . Then one

shows easily that the index of the projection map m re-

stricted to the manifold 22 is precisely I(A) . For
notational convenience denote this projection map again
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by "A . If n>4 the index of ﬂA will be less than or

equal to negative-two. However if n=3 and A= (1,...1)
(simple branch points) the index of nA as computed above
is zero. This astonishing fact permits us to cgive a new
definition of non-degeneracy, namely x1€XA is a non-de-

generate minimal surface in :m3 if Dwx(u) :TuZA-+TaA is

an isomorphism. Such a u will be, by the inverse func-
tion theorem stable under perturbations by o yet will be

forrally degenerate according to the definition given in

the introduction. However this definition of non-decenera-
cy certainly perrits one to conclude that in :m3 such
formrally degenerate surfaces are isolated.

These stratification and index results are the basis to
prove the ceneric (open-dense) finiteness and stability
of minimal surfaces of the type of the disc as announced

in [13]; i.e. there exists an open dense subset Rea
such that if a €A there exists only a finite number of
minimal surfaces bounded by o , and these minimal surfa-

ces are stable under perturbations of o . This open dense
set will be the set of regular values of the map = .

Moreover if n >3 the minimal surfaces spanning o € &

are all immersed up to the boundary, and if n =3 they
are simply branched. It should be emphasized that in this
theory we are considering not only area minimizing mini-
mal surfaces bounded by a €A , but all critical points of
the area functional defined on the space of surface span-
ning o which satisfy the classical monotonicity condi-
tion along the boundary.

Finally there are some other surprisinc consequences of
this index formula. For example minimal surfaces in :R3
are free of interior branch points if they minimize area
[1,6,10] , whereas most minimal surfaces with simple in-
terior branch points are stable with respect to perturba-
tions of the boundary [4.3]. Second, for n>4 minimal
surfaces in R" may have branch points even if they are
area minimizing but for such n no such minimal surface
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in R is stable as a branched surface under perturbation

of the boundary.

THE MINIMAL SURFACE VECTOR FIELD X

Let N=AxD be the bundle over A introduced in the
last section. Let o €A and T% its imace. Consider the
manifold of maps HS(S1,I‘a) . In [14] it is shown that
5(s',r% is a CF S subranifold of ES(S'R®) . Let
N(a) denote the comrponent of HS(S1,I‘G) determined by a.
(In [14], the notion Na was used for N(a)). Recall
that the tancent space to N(a) at the noint x € N(a)
can be identified with the H® maps h: S1 +R" with

h(9) ETx(e)l‘a (the tancent space to r* at x(8) ). By
harmonic extension we can identify elements of N(a) with

harmonic surfaces spanning o . We shall always assume

this identification.

1) that there exists a smooth c* 571

In [14] it was shown
vector field X, r on N(a) whose zeros are precisely the
minimal surfaces spanning r% . we should note here that
each of these zeros are miniral surfaces in a more general
sense than classically defined,since a zero u of Xa
viewed as a harmonic map wu: D+R" need not induce a ho-
meomorphism of S1 onto I'*. We have the followino the-

orem which is of great importance to us.

THEOREM 3.1: If Xa(u) =0 , then the Frechét derivative of
xu at u maps TN(a) into itself and is of the form:
identity + a compact linear operator. Thus each Xa is a

Rothe field.

We can give a definition of the vector field X, as fol-

lows. Let Ti : S1
r* ; i.e. for each per®, {Ti(p)}:.:‘=1 forms an orthonor-

K" , i=1,...n be a smooth framing of

mal basis for R" . We shall assume that Ti is always
tangential so that T1 (p) € TpI‘a . Then the vector field is

1)In this paper the author took s =2 ; however there is

vertually no difference in the proofs for s> 2
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characterized by the following conditions. For each
u €N(a) , X(u) : D>R" 4is harmonic so

(1) AX (u) =0
satisfying the mixed Neumann-Dirichlet boundary conditions

(11) Xa(u) + Ty 0) =2 7, (x)

(3.2)

(iii) Xa(u) . Tj (u)=0, j=2,...,n
where Tj (x) denotes the composition Tj (u(e)) and a_ar
denotes the normal or radial derivature along S1 . We can

paraphrase these boundary conditions as follows: Let Q:T%
+ OP (R™) , the orthogonal projections on Rr" , be the

Cr_2 map such that Q(p) 4is the projection of R" onto
TpI‘Ol . Then (3.2) can be written as
9X
' O faf = u
(3.2") 2 ()52 (w) =0 (s

where Q(u) again denotes the map 6 -+>Q(u(g)) .

Let N* =gN(u) and 7 : N*> A be the natural projection
map T7(N(a)) =a . The space N* (in [12] we used the no-
tation N for N* ) has the structure of a smooth fibre
bundle over A which is bundle equivalent to the product
bundle N=AxD via the map w : (a,9) *ae ¢ and hence

N* is globally trivial. One often identifies N and N*

via this trivialization.

The family of vector fields ch induces a Cr-—s—1 vector

field X on N*(N) by the rule X(u) =xa(u) if u€eN(a)
This vector field will be vertical in the sense that

xa(u) €TuN (@) . If u€N(a) is a zero of X (and hence

a zero of xa ) the Frechét derivature of X can be

viewed as a map DX(u) : TuN+TuN (a) .

The following facts concerning X and Xa are proved in
[14].

THEOREM 3.3: If u is a zero of Xa then Dxa (u) : TuN(a)a
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is of the form identity plus corpact linear.

This result will eventually tie into the results of Sec-

tion 1.

Before stating the next theorem we would like to discuss
the induced action of the conformed group G on N(a) .
We have already stated that every g€G is of the form

g(z) =c- % . lzl <1,
where |c| =1 and |al <1 . G is a three dimensional Lie

group which is not compact. G acts on 0 in the follo-
wing manner. Let ¢ : S'>C . Define g#((p) €Hs(S1,c) by

g#((p) (z) =0(a(z)) .

For fixed g,%* is a linear isomorphism of H° to itself
which fixes 0 . Thus g induces a diffeomorphism of D
to itself and hence of N(a) to itself. Again denote this
diffeomorphism by I * The correspondence G+ Diff(D)
given by g*-%u defines the action of G on D .

This G-action is not smooth (c.f. [14], p. 39), and this,
of course creates many technical difficulties for the the-

ory. We now have

THEOREM 3.4: The vector field X, (fixing a ) is equi-
variant with respect to this G-action on N(a) . This

means that
[Dg#(u) ]XG. (9#(U) ) = X(l (u)

where D denotes the Frechét derivature of the map u-~
gﬁgu) .

The fact that each xa is ecuivariant implies that the
kernel of Dxa(u) at any zero u contains TuOu(G) the
tangent space to the orbit of G through u . We must re-
mark at this point that formally Tuou(G) is not a sub-

space of TuN(a) unless u is of class HS+1 . However
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by the regularity result for minimal surfaces [8] all
zeros are in fact of class HY , the smoothness class of

the boundary curve. Thus
dim Ker Dxa(u) >3 .

One can show that u will be non-degenerate if this is
all the kernel. This is a consequence of a relationship
between the Hessian of Dirichlet's functional and the
derivative of Xa . Before stating this we need to intro-
duce the weak PRiemannian structure on the manifold N(a) .

DEFINITION 3.4: Let u € N(a) and h,k GTuN(a) . Define
<<h,k>>u , the weak inner product of h and k over u

by the formula
3

<<h'k>>u=I <% , k> 95 ) Jvhl-vk
s R i=1’'D

i

where acain h and k are identified with harronic ex-

tensions.

THEOREM 3.6: If Ea : N(o) >R denotes Dirichlet's functi-
onal (0.2) and u is a minimal surface then
(3.7) D’E_(u) (h,k) = <<DX_(u) [h],k>>

If 11€Mé (c.f. Section 2) then somethinc more draratic

accurs.

THEOREM 3.8: If u is a minimal surface of branchinc type
(A,v) then

dim Ker DX, (u) 2 2|A| +|v] +3

COROLLAR¥‘3.9: A branched minimal surface cannot be for-

mally non-degenerate.

For a proof of (3.8) see [14] p. 92 or the appendix of [4].
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We also have the following very important facts

THEOREM 3.10: The vector field xu is the cradent of E
with respect to << , >> . Thus

(¢}

DE (u) [h] = <X, (u) ,h>>
and

THEOREM 3.11: The weak inner product << , >> and Diri-

chlet's functional are G-invariant.

Let Ou(G) be the orbit of the conformal croup through

u . If u is a minimal surface Ou(G) will be a smooth
manifold. Let Tuou(G) denote the tangent space to this
orbit at u . Then Tu[ou(G)] has an orthoconal comple-
ment Tu[Ou(G)]‘L with respect to the weak Riemannian
inner product << , >> . The equivariance of Xa , E and

a
<< , >> under G implies the following.

\ % % . 1
THEOREM 3.12: At a zero u of Xa ‘ DXa(u) .Tu[Ou(G)] =)

COROLLARY 3.13: A minimal surface u :D-£R3 is non-deae-

nerate if Dxa(u) restricted to Tu[Ou(G)]l is an iso-

morphism.

THE MORSE NUMBER OF MINIMAL SURFACES SPANNING A WIRE IN

1R3

In this section we modify the vector field X, in such a
way that we can define a local rotation number about an
isolated zero along the lines described in Section 2.

First it is obvious that due to the action of G no zero
of xa can be isolated. So by isolated, we of course
mean isolated relative to some slice transverse to the
orbists of G .

We begin with the followinc result again from [14].
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THEOREM 4.1: The weak Riemannian structure << , >> on
N(a) induces a smooth C2 geodesic spray. The corres-
ponding exponential map exp, : TuN(a) +N(a) , u€N(a)
gives a local diffeororphism of a neighborhood of zero in
TuN(a) onto a neighborhood of u in N(a) . Moreover

with respect to the G-action on N(o) and on TuN(a)

g#(expuh) = expg#(u)g“h
Let u€N(a) an+1 (S1 ,IR3) . Then the weak complemrent of
T 0,(6) , T [0 (6)]" is a subspace of T N(a) . Let E=
expu(V) , V a neighborhood of O in Tu[Om(G)]'L . For V
small E is a codirension three subranifold of N(o)
transverse to the orbits of G .

Let T, N(a) > N(p) be the bundle trivialization 1 (u) =
p(m"1 (u)) . Then using 1 we may recard the family of
vector fields X as a fgmily of vector fields Xp on a
fixed N(a) via the formula

~ -1
(4.2) Xp(u) —DTp xp('rp(u)) 5

Thus for p=o0 , Xp=xa ‘

This new family of vector of N(o) will have the rroper-
ty that its zeros will represent via Ty minimal surfaces
spanning r® . It follows from (4.2) that this family will
also have the property that for fixed p its derivature
at a zero will be of the form identity plus compact linear.
However since the zeros of Xp are not isolated neither
will the zeros of Yp be isolated, and so the local de-
gree theory described in Section 1 could not apply. We rec-
tify this situation by defining a new family Yp on E

by the formula

(4.3) - Y (@) =P, ¥ (@)

where P : TwN(oz) -+ TwE is the weak Riemannian orthogonal
projection. Then from [14] p. 102 we have
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THEOREM 4.4: For E sufficiently small and p suffi-
ciently close to o we have that the zeros of Yp coin-
cide with the zeros of ip on E and will be non degene-
rate iff the corresponding zeros of the rinimral surface
vector field Xp are non-deagenerate. Moreover for fixed

p the derivature DYp(u) at a zero u will be of the

form identity plus corpact.

Now suppose we have fixed an o and let u, be an isola-
ted zero of Xu . Construct as above the family of vector
fields Yp on E .

By passing to a coordinate neighborhood we may regard E
as an open subset U of a Banach space IE and Yp as a
family of Rothe vector fields on U . By slightly shrin-
king U we may regard Yp as a family

Y ¢sU~+E
P
as a family of Rothe vector field on U . On the other
hand since DYa(uo) is Fredholm of index zero Smale's

local properness result for Fredholm maps yields

THEOREM 4.5: For E sufficiently small and p suffici-
ently close to o the family Yp will be proper in the
sense that if Pr> P and Yp (un)~+v then u, has a

n
convercent subsequence.

COROLLARY 4.6: For each fixed p the map Yo T+E is
proper and moreover for p sufficiently close to o and
E sufficiently small oeyp(aﬁ) .

We are now sufficiently equipped to define the local de-

gree of Xa about an isolated minimal surface.

DEFINITION 4.7: For u, an isolated minimal surface
choose E so that the consequences of (4.5) and (4.6)

hold. We then define the local degree of Xa about u
by

[e]
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(4.8) deg(xa,uo) =c’.eg(Ya,uo) =deg(Yu,U)

1f % has the (generic) property that only a finite num-

ber of minimal surfaces span it, say Ug...u, we define

the Morse number of minimal surfaces spanning r® by the
formula

a m
(4.9) Morse(I'") = J deg (X, ,uy)

J=1

REMARK: Although we have (in this paper) mostly restric-
ted our attention to curves in ]R3 formula (4.9) makes
perfectly good sense for any R as long as the set of

minimal surfaces spanning r* is isolated.

We now conclude this section with

3

THEOREM 4.10: For any wire r (in IR or R" , n>4)

which admits only finitely many miniral surfaces of disc

type which span it
Morse(ra) =1

PROOF: By the index theorem of Bbhme and the author [4]

one can find a p arbitrarily close to o (if r* 1lies
in ]R3 ' rf may have to lie in IR4 ) such that the zeros

of Xp are non-degenerate (c.f. introduction and (3.13)).

Let u.l,...um be the zeros of Xa and construct as in
(4.5) and (4.6) open sets Ui such that deg(Ya,Ui) and
deg(.Yp,Ui) are defined as in Section 1. For p suffici-
ently close to o either the regularity apriori results
of Hildebrandt [8] or the condition (CV) of the author
[14] together with the apriori estimates implies that all
the zeros of Y  will be in Vu, .

Also for p sufficiently close to o we can clearly
construct an isotopy of embeddings Py » O0<t<1 such

that is close to a and Po =P and pr=a .

P
By the homrotopy property of degree
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(4.11) deg(Yp,Ui) =deg(Ya,Ui) =deg(Ya,ui)

Let v?...vé be the zeros of Yp in Ui . Then by con-

struction ofldegree
By :
deg(Yp,Ui) = jz; sgn DYD(V;)
By the author's theorem on the Morse number of minimal
surfaces in Egl, n =>4 (theorer (5.38) of [16]) it fol-

lows that
m,
& i
J ] son DY (vi) =1
i j=1 LA

which together with (4.11) yield the fact that M(r*) =1 .

A STRONG VERSION OF THE THEOREM OF MORSE SHIFFMAN TOMPKINS

FOR IR3

As before let Ea: N(a) R be Dirichlet's functional with
a fixed. In [14] the author proved usinc the result on
the Morse number of minimal surfaces spanning a wire in

R® , n>4 that

THEOREM 5.1: Let o : S1+1RI1 , n>24 be an ermbeddinc. Sup-
pose that there exists two minimal surfaces u, and u,
spannino r* which are isolated in N(a) and are strict
minima for E, . Then there exist at least one other
minimal surface spanning r* . If the set of minimal sur-
faces spanning r* are isolated one of these other mini-

mal surfaces cannot be a relative minimum.

This result generalizes that of Morse-Tompkins [9] and
Shiffman [11] who proved it under the assurption of being
isolated in the topology of C°l1H1(DJRn) o

It is not difficult to see that the same proof coes
through if o :s1-gm3 . The essential lemma is the follo-

wing and its proof can be found in Section 6 of [16].
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LEMMA 5.2: If u, and u, are isolated minima for Diri-
chlet's integral E then
o

deg(xa,u1) =deg(Ya,u1) =deg (Ya,uz) =deg(xa,u2) =1 4
From (5.2) the result follows easily since if there were

no other minimal surface (5.2) implies that Morse(r%) =2
a contradiction.

It also implies that if the rest, say Uj...u —are iso-
lated not all could be strict minima, for if they were

deg(Xa,uj) =1

and then M(r%) =M , again a contradiction.

So we have

THEOREM 5.3: Theorem 5.1 holds for n>3 .

CONCLUDING REMARKS

In part I of this paper with the samre title we described
the Morse number of minimal surfaces spanning a generic
wire I'® in R" , n>4 in terms of the derivatives of
our vector field xa . To paraphrase this result let T
be such a generic wire and let Uyeeun be the finite
number of non-degenerate minimal surfaces which span r¢ .
Let Tui[oui(G)]l be the weak orthogonal complement of
the tangent space to the orbit of the conformed croup

throuch u; - Then
DX (u,) : T, [0, (6)1%
o i’ " Tu u e
i i
and is in (in the notation of Section 2)

GRC(Tu[Oui(G)]l) :

Thus we have a well defined signum for Dxa(ui) which is
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either 1 according to whether Dxa(ui) is in CRE or
GRC . Then

” m
(6.1) Morse (T ) =j£1sgn Dxa(ui)

For curves in 1R3 we could only describe Morse (r%) in
terms of a local degree. Now let o be a curve in Eﬁ
and u be a minimal surface spanning r® which has p-
simple branch points z1...zp in the interior of the

disc D . Then we have that
(6.2) dim Ker Dxa(u) >2p+3

and (6.2) holds even if u is non-degenerate in the sense

A

described in Section 2 ( w :ZA-*A is a local diffeomor-

phism about u ).

The question is whether, in spite of the existence a for-
ced kernel (6.2) a differential descrintion of deg(Xu,u)
can be civen only in terms of DXa(u) . The answer will

require a much deeper study of the forced kernel, the so
called forced Jacobi fields, and the relationship between
these fields, the minimal surfaces vector field Xa , and

the perturbation theory for miniral surfaces of disc type.

We conclude this section with a related question which
fascinates the author and which he is, at this moment un-

able to answer.

Let u be a non-degenerate simply branched minimal sur-
face spanning a wire r* in 2R3 . Then we know that u
is isolated as a critical point of Ea in the manifold
N(a) .

We know from the index theorem that by perturbing o
slightly to a wire p in :m4 there will only be trully
non-degenerate rinimal surfaces spanning r® , and cer-
tainly there will be a minimal surface v spanning i

near u .
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QUESTION: For any such perturbation p is there a unique
Vp spanning p% near u such that Vp depends diffe-
rentiably on p ?

The answer is clearly yes for perturbations p which
remain embeddings of S1 into E@ . But what happens if
we perturb o to a curve in 1R4 is intimately connected
with how the branch points might effect any bifurcation

process.
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