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A FIXED POINT INDEX THEORY FOR SYMMETRIC PRODUCT MAPPINGS

Nancy Rallis

In this paper we develop a fixed point index theory for
symmetric product mappings of ENR-spaces. For such mappings
we show that an index can be defined which is an extension
of the usual integer-valued fixed point index. Further, we
show that the classical properties of the index hold in this
setting: The index is additive, multiplicative and commuta-
tive, the index is preserving under homotopy, and finally,
the index is equal to the Lefschetz number as defined by
Maxwell [9].

1. INTRODUCTION. Let X be a topological space and

x"  the nth cartesian product. Given a group G of

permutations of the numbers [1,2,...,n], the nth sym-

n .
metric product, SPGX, of X with respect to G is the
orbit space of the action of G on X with the identifi-

cation topology. A continuous map of the form
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f :X— Sng is called a symmetric product mapping. A

point x € X 1is said to be a fixed point of f if x is

a coordinate of f(x).

Many of the results of classical fixed point theory
generalize for fixed points of symmetric product mappings.
C. N. Maxwell, for instance, defined the notion of a
Lefschetz number for symmetric product mappings of compact
polyhedra and established a Lefschetz fixed point theorem
for such maps [9]. S. Masih [7] and C. Vora [14] each ex-
tends these results, respectively, to compact symmetric
product mappings of metric ANRs and to compact symmetric
mappings of metric manifolds.

Recently interest has turned towards generalizing the
above Lefschetz theory to a fixed point index theory for
symmetric product mappings. S. Masih, for example, defines
by means of chain maps an index for symmetric product map-
pings of compact polyhedra and shows that most of the basic
properties of the index hold [8]. S. Kwasik, appealing to
the Poincaré duality principal and to the notion of trans-
fer, develops a coincidence theory for symmetric product
mappings of manifolds without boundary [6].

In this paper we develop a fixed point index theory
for symmetric product mappings of euclidean neighborhood
retracts (ENRs) which generalizes the work of Dold [3].

The main tool in defining the index--the trace
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homomorphism--involves the notion of the transfer. Having
described this homomorphism in section 2, we apply it in
section 3 in order to define the index for symmetric prod-
uct maps of the form g : Vv — spgnfﬂ where V is open
in R"'. We show that this index satisfies formulae and
properties analogous to those in the classical case. One
of these properties--the invariance of the index under
commutativity-—-allows us to extend this theory to symmet-
ric product mappings of ENRs. We conclude by showing that
for compact symmetric product mappings of ENRs, the index
is equal to the Lefschetz number as defined by Maxwell.
The author is indebted to Professor J. W. Jaworowski
and Professor A. Dold for their valuable guidance in the

preparation of this paper.

2. THE TRACE HOMOMORPHISM. In this section we de-

scribe the trace homomorphism as well as introduce nota-
tion and terminology which shall be used throughout this
paper; more detail may be found in [1, III], [9] and [10].
Let H, denote singular homology with rational coef-
ficients unless otherwise stated.
Let n : X s SPgX be the identification map with
n(xl,...,xn) = [xl,...,xn] and mos x® —> X the ith

projection.
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n :
For x € X and y € SPGX, we say that x 1is a

coordinate of y if n(z) =y implies that x = zi (where
z = (zl,...,zn) € Xn) for some 1< i< n. Let xXEy
read x 1is a coordinate of y. Then a point x € X is a

fixed point of f : X —> spgx if x € f(x).
Amap f : X —> Y induces maps £ . x" — ¥" and

~ n n
f : SP X —> SP Y where f (xl,...,xn) = (f(xl),...,f(xn))

G
and n fn = fnx.

<K QB

Let X be a compact polyhedron and A C X a subpoly-
hedron which is closed under the action of G. From Bredon

[1, p. 119] there exists a natural homomorphism

n n n _n
Ty ¢ Hy (SPX,SPA) —> H, (X ,A")

such that

3
*
~
*
I

n n n n
|| : H,(sP_X,SP.A) —> H, (SP_X,SP.A)
(*)

e = L 9, : H(x",A") — H, (x",a")
gEG

where IGI denotes the order of the group G. The homomor-

phism 1, is referred to as the transfer.

We now define the following homomorphism,
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n n
w = ST ¢ PGSR — (),

which we shall call the trace homomorphism. We note that

M is natural. Further it can be shown that

m., (**)
1 tx

N, =

[l s Bl

i

3. THE FIXED POINT INDEX IN EUCLIDEAN SPACE. The

notion of local degree of a self-mapping now readily extends
to symmetric product mappings. For f : V — SPgSm, where
V is open in Sm, we define the preimage set of a point

y € s* by £l - (xev:ye £(x)}. Assuming that f;l
is compact ang modifying the usual definition of local
degree by the trace homomorphism we obtain the notion of
the local degree of f about the point y. All properties
of the local degree are preserved in this more general set-
ting. 1In particular, additivity holds. Consequently, we
obtain a measure of the "number of points in f;l". So for
a symmetric product mapping the fixed point set can be mea-
sured by finding the local degree of an appropriate differ-
ence map. This local degree will be the fixed point index.

We proceed now to give a formal definition of this concept.
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m .
Regard S as ® U {®}, m>1. Let { : R —> S
be the inclusion with 4(0) = P € s™.

From section 2 there is a homomorphism

T, : H, (spgsm) — H, ((sH™)

satisfying both conditions in (*). Using this homomorphism
together with the long exact sequences of (SPnSm,SPn(Sm—P))
and (Sm,sm—P) and the contractibility of SPn(Sm-P) and
(Sm-P), we construct a homomorphism

nm __n, m mn ,. .M _.n
Ty ¢ Hy(SPS,SP.(S-P)) —> H,((S7) ", (S-P)")

*

satisfying the conditions of (*). In turn, the trace

homomorphism, described in section 2,
u : H,(sp g™, spMs®-pj) — 8, (s",s"-p)
* G G *
is obtained.

3.1 DEFINITION. Let V C R' be open and

g:V—> spgl¥n. Assume Fg ={x€V:x€gx)}, ¢the

fixed point set of g, is compact. Consider the composi-

tion
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d*

nm _n, m
Hm(V,V Fg) > Hm(SPG]R ,SPG(]R -0))

~

L s

nm .. n,m
> -
Hm(SPGS ,SPG(S P))

5oL

*

>H (s",s™P) =~ HS
m m

u m

where d : Vv — SPg]Rn1 is defined by d(x) =

; n_m
= — i - = —
[x YyreeeoX yn] if g(x) [yl,...,yn], 4 SPGR

SPgsm is induced by the inclusion 4, Wu is the trace

. m PR :
homomorphism and 4§ : S —> (sm,sm—P) is inclusion. Then

for a generator On of Hm(sm) and the fundamental class

(o] € H (V,V-F_) associated with it
Fg m g =

-1
Jx U'L*d* (OFg) = Ig.om

where Ig is a uniquely determined rational number. This

number will be called the fixed point index of g.

For n =1, u is the identity homomorphism and so the
above definition coincides with Dold's fixed point index [3,
1.2].

We now list some properties of the index. 1In what fol-

m , .
lows V is open in R and d, u, A4 and 4§ are the
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maps described above. The first property is an immediate
generalization of Dold [3, 1.3] and the proof will be omit-

ted.

3.2 LOCALIZATION. For g : V —> spgmm, assume that
Fg is compact and Fg CKCWCV, where K is compact
« ~1
and W is open. Then {, uL*(dl(w,W-K))*(Ok) = Ig'om'

Suppose next that the symmetric product mapping g :
v —> SPEI?‘ factors through K. Then Ig is given as

follows:

3.3 FACTORIZATION. Let g : V —> spgnm and

wp : V—> Ign for 1< p<n, be such that g =

n(¢l,...,¢n). Assume each F

is compact. Then

2
n p

n
F =\UF, and I = )} I .
9 p1 Y 9 p1 %

PROOF. By expression (**) of section 2 we have that

-
o
Il

e M - . . :
Fihulady 0p ) = j7tun, A" gy ) O] )
g g

n
= T iy, 0,)
p=l g
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where i~y :V —> R"  is defined by (i-y) () = x-b_(x).
Then by property 3.2 above it follows that

I -0 = Jo A -y ), 0, ) = ( I, ) o . =
9" pa1 P F‘Pp p=1 lpp "

If the map g factors through IgMI via constants then

the preceding property, together with Dold [3, 1.4], gives:

3.4 UNITS. Let g : V—> SPLR' be such that g =

mo :
n(cl,...,cn) where c; ¢ V— R is a constant mapping,

for 1< i< n. Then Ig is equal to the number of c,'s

intersecting V each counted with their multiplicity.

The next property describes the local nature of the
index; specifically, it tells us that the "global index is
equal to the sum of the local indices". The property follow-
ing states that the index remains invariant during a deforma-
tion provided the fixed points stay away from the boundary
of V. Both properties are immediate generalizations of Dold

[3, 1.5] and [3, 1.7] and so are presented without proof.

3.5 ADDITIVITY. Let g : V—> SPLR'. Assume V is

the finite union of open sets VP' 1< p<*hX, such that

every Fg|V = {x € Vp : x € g(x)} is compact and

p

287



RALLIS

n
F NF =@ for p#9q. Then F_ =\_) F
v v _— ——— v
ql P ql q 9 pml sl p
and I = I .
== g .Z_l glv
p= P
3.6 HOMOTOPY INVARIANCE. Let g, : V —> SPg]Rm,
0< t<1l, be a deformation such that \J F =
o<t<1 ¢
{x€Vv:x€g . (x) for some t} is compact. Then
1 =1 .
9 9

In formulating a multiplicative property we need to
introduce the following map: For spaces X and Y de-
r n
fine a map Kk : SPX X SP.Y —> SPén(XxY) by
KUy eeenx 1 Iyyreeny 1) = [ixgey) | 1< i<,
1 < j<n]. We shall refer to maps of this type as

separation maps.

3.7 MULTIPLICATIVITY. Let U C ]Rq and V C Rm be

open and f : U —> spg:qu and g : V —> spgnm.

Assume that the fixed point sets Ff and Fg are both

compact. Consider the composite

U x v 229, SPZ]Rq x SPg]Rm b sp(r;n(]qunm)
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. . . - %
where «k is a separation map Then FK(fxg) Ff Fg and

IK(fxg) = If-Ig.

PROOF. The proof follows from the commutativity of
Figure 1 below, where the oa's are Klinneth homomorphisms,
the p's are induced by sT x s™ —> 5?2V g™ —»
sTIA ™
as described above. We omit the straightforward details.

[2, p. 19] and all other homomorphisms are

By applying the above properties to a set of appropri-
ate deformations we next establish a commutativity property
for the index. 1In order to obtain the necessary deforma-

tions we will need the following result.

3.8 LEMMA. SP R" is an absolute retract (AR).

The proof of this lemma follows immediately from
basic results in the theory of retracts. The space SPEF@
is metrizable, moreover, locally finitely triangulable

(see Maxwell [9]). Hence by Hu [5, p. 98] SPgItnl is an

ANR. But SPgl{n is contractible. Therefore SPg]fn is

an AR,
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1 @anbtg

5
(Pa-n*8)"4@ 2-n*0) Pu

ﬂmmxu..._|>xa~>x3_=+

b
H

w b = w+b = u+b
(S) H&S) H (S pS) H wspS)  H
0 *g
retrl = i 1l =
, ooau P - = w+b = " wb
(4d-;S*,S) H@(d-pS’pS) H - A.mxmlsmxvm.waUwv H II'- A.mxml=—+~vm E...Umv H
d
n@n il
i
((,SaSx(d=p3) 2SI N(,d=,S) 245X 5.5 ((,dxd-ySxS)  ods
r3) o . u 9 s..b = , o 9., ub 9.  usb 5 9. _.ub
((1d-yS) dS* SydS) H&X (d-pS) ;dS’S7dS) H ”' wSydS*pSzdS) :l-:' (ySxSlyAS) T H I-a' ((rdxd-y §S) :..»mw._=+mvwc.~.n~wv
A -~
*r ey * ) *r
o 9
(M dSx(0-p) 245 N
_ aen D, 2D il 9., .0 B = 9 9 ] o __ u+b 9 9. . u+b

((0-,d) dS” M dS) HRX (0-pd) dS pX,dS) H Lur' (0~ ) (dSx A7dS) * A dSx M dS) ~ H I.yl.':o::_ﬁxvﬁﬁmm. (LX) | 2dS)

*p®*p . *p

(pxp)

H

H
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3.9 COMMUTATIVITY. Let UC RY and vC R" be

open and let f : U — Igl and g : V— SPg]fl. Consi-

der the two composites

£y — SPg]Rq

gf : U'

and

~

fg : U"

-1 n n_m
pam— 4 .
g (SPGU) SP GR

Assume Fgf is compact and gf(Fgf) C SPgU. Then £ maps

F onto Fy¥ and 1
gf —— "fg =—— g

£= I}g.
PROOF. First it is shown that £ maps Fgf onto

ng' For any x € Fgf we have, by the assumption, that
f(x) € fg(f(x)). Hence f maps Fog into Fr. Next,

take any y € E?g’ Then there exists a X, € g(y) such

that f(xi) =y and X, (S gf(xi). So the first assertion

is shown.
In order to prove that I _ = IT we define a map
gf fg
¢ : U xV—> spg(qumm),

(x,y) — x(gly),£f(x))

291



RALLIS

n m . .
where K : (SPGRQ) x R —> SPE(RQ EgS is the separation

map defined by ([x .,xr],z) ——> [(xi,z) ] 1<is<n]. We

17

show that I® =1 and IQ = IEg'

gf
To begin we consider the following shaded region of

u' x g" x [0,1] x [O,1] (see Figure 2)

K
axu’

Figure 2

where K = {(x,f(x),t,s) : xe Uu', £(x) € U", t € [0,1],

s € [0,1]1}. From this region, which is a closed subspace

of U' x U" x [0,1] x [0,1], we define a map into SP R’
as follows: on the front side of the cube (x,y,0,s) —>

gf(x); on the back (x,y,1,s) — g(y); along the bottom
there runs a homotopy from gf(x) to g(y) through the

diagonal element [x,...,xXx] defined by
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[(l—2t)zl+2tx,...,(l-2t)zn+2tx]
(x,y,£,0) —> 0< t<1/2,
[(2t—1)y1+(2—2t)x,...,(2t-l)yn+(2-2t)x]
1/2 < t<1,

where gf(x) = [zl,...,zn] and g(y) = [yl,...,yn] for all
(x,y) € U' x U"; and along K a deformation defined by

[(l—2t)yl+2t(syl+(l-S)X).
soer (1-2t)y +2t(sy +(1l-s)x)]
(x,£(x),t,s) — osts<1/2,
[(2t-l)yl+(2—2t)(§y1+(l-s)x,
...,(2t—l)yn+(2—2t)(syn+(l—s)x)]
1/2 < t< 1,

where gf(x) = [yl,...,yn] for x € U'. This latter

deformation runs from a homotopy on the bottom of K

(s = 0) that takes gf into itself to a map on the top of

K (s =1) given by (x,y,t) — gf(x) for all t € [0,1].
By Lemma 3.8 SPgR(1 is an AR. So the map described

above extends to the entire cube. Let H : U' x U" X

[0,1] —> SPEFS be the restriction of this extension to

the top face of the cube. Then H(x,y,0) = gf(x),

H(x,y,1) = g(y) and H(x,f(x),t) = gf(x) for all t €

[0,1].
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A continuous homotopy wt : U' x g — SPg(mg If%
can now be defined by wt(x,y) =k H(x,y,t),f(x)) with
wo(x,y) = k(gf(x),f(x)) and wl(x,y) = k(gly),f(x)) =
®(x,y). Further, since wt(x,f(x)) = k(gf(x),f(x)) for

all t, U Fy = {x,y) €v' xu" : x€F_. and
o<t<1 “t J
y = £(x)}. Hence, by assumption, the fixed point set of

the deformation wt is compact and so by Homotopy Invari-

3. =1 =1,. i icti
ance (3.6), Iwo le IQ But wo is a restriction

of the map y : U' x r — SPg(quXJRm) defined by

Y(x,y) = k(gf(x),f(x)). Further, FW = FY since by
0

assumption gf(Fgf) Cc SPnU. So, by Localization (3.2),

G
I =71 .
wo Y

We next define a deformation of <y by Yt(er)
k(gf(x), (1-t)£(x)) for (x,y) € U' x R'. The fixed
point set of this deformation coincides with the image
of h:F . x [0,1] — U x R where h(x,t) =
(x,(1-t)£(x)). This set is compact and so by Homotopy

Invariance (3.6 1 =] =1 . But

n ( ) ’ Yl ,Yo Y Yl (XIY)
k(gf(x),0). So by Units (3.4) and by Multiplicativity
(3.7), IYl = Igf.Iconstant = Igf‘ Consequently,

IQ = Igf'

To show that I® = I;g and thus complete the proof

we use an argument similar to the one above
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(specifically, we use the deformations
[(Yl:tf(yl)+(l-t)f(x),---,(Yn,tf(Yn)+(l-t)f(x))]
and
[((l-t)erf(Yl)),...,((l-t)Yn,f(Yn))]
when g(y) = [Yl""'yn])' u

4. FIXED POINT INDEX FOR EUCLIDEAN NEIGHBORHOOD

RETRACTS (ENRs). Let X be an ENR-space. Then there

exist an open set W in some euclidean space Rg

and

mappings h : X —> W and r : W —> X such that rh = lX'
; n

The symmetric product mapping g : U —> SPGX, where

UC X is open, admits the decomposition U I » v T
r—l(U). If the fixed point set of g is
h

n
SPGX where V =

compact then F and hence I~

Fﬁgrlv hger is defined by

Definition (3.1).
Suppose there exist another open set W' in, say, Ry

and mappings h' : X —> W' and r' : W' —> X such that

th! — : ; ~ = I~
r‘h lX:1 It is claimed that Ihgrlv Ih'gr'lv' where
V' = (r') " (U). To show this we proceed as follows.

Set o =h'r : W — R"  and B = hr'E'gr' : V' —>

SPgFg. Take the composites
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Ba : hr'h'gr'h'r : a-l(v') = v —> spPrY

G
and
oaB : h'rhr'g‘gr' : B_l(SPEW) = V' > sPéIﬁh
Clearly, Ihgr|V = IBa and IE'gr'lV' = IgB. Since
Ba(FBa) C SPZW we have by Commutativity (3.9) that
IBa = IEB' Consequently, Iggr|v = Iﬁ'gr'lv' and the

claim is shown.
So we define the index of g to be the rational num-

ber 1 and denote it by Ig as before.

hger

Properties 3.2 through 3.7 and 3.9 of the preceding
section hold in this more general setting. The reformula-
tions are clear and the proofs are obvious reductions of
3.2-3.7 and 3.9; hence are omitted.

We continue this section by extending the Lefschetz-
Hopf Fixed Point Theorem to symmetric product mappings of
ENRs. We recall that this theorem states that under suit-
able conditions the index of a self-mapping is equal to
the Lefschetz number of that mapping. For symmetric prod-
uct mappings the notion of a Lefschetz number is given as
follows: Let X be a compact ENR and g : X —> SPnX.

G
The Lefschetz number of g is defined by
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L(g) = pgz quPtrace<upg*p)

where g, : H,(X;Q) —> H*(SPgX;Q) and where u
H*(SPE;Q) —> H,(X;®) is the trace homomorphism [7] and

[10]. The Lefschetz-Hopf Fixed Point Theorem for symmet-
ric product mappings states that L(g) is equal to Ig.
Before proving this theorem some algebraic preliminaries
are given. A general reference for what follows can be
found in [4, VII].

For every grafed vestor space V = {Vp}pEZ: over
Q anf its dual V = {Vp}pszﬂ define homomorphisms
B : VvV  V— Hom(V,V) and e : V @ V—> Q respec-
tively by [Gp(wébz)]V‘ = (-1)PP(v)ev and e(yxv) =
Y(v) where ¢ € Vp and v, Vv' € Vp. If VvV is a
finitary graded vector space over @ and a : V—>V
an endomorphism of degree zero then 6 is an isomorphism

and

e(®@ () = J (-1)Perace(a ).

PEZ
Next, suppose W and W' are finitely generated
vector spaces over ® and h : W—> W, ¢ : W —> W',
and Y : W' —> W are homomorphisms such that y¢

W —> W is the identity; then trace(h) = trace(¢hy).
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The Lefschetz-Hopf Fixed Point Theorem for symmetric
product mappings of ENRs is now given. The methods used
in the proof of this theorem are based on Dold [3, 4.1
and 4, VII, 6.13].

4.1 THEOREM. Let X be a compact ENR and g :

X — SPgX. Then Fq, the fixed point set of g, is

compact and Ig = L(g).

PROOF. For the ENR-space X there exist an open

h>W-—]’:-—>X

set W in some Euclidean space Ig‘ and X
such that «rh = 1x. Then the index of g 1is equal to the
index of hgr : W—> SP.R'. Since H,(X) and H,(h(X))
are finitary graded vector spaces and since (rlh(X))*h* =

1H*(x) we have that trace(ug,) = trace(hgug, (r|h(x)),).

So by the naturality of wu, L(g) = L(hgrlh(x)). Set
Y = h(X). It suffices then to show that Iggr = L(hgrlY).

Consider the following diagram (Figure 3),

298



RALLIS

::u:@.u (x) Py

z3b
(52

(€)

~——
®9

b
(3)

w=b4+d

w
'
(d-,S'yS) H
»
N»ci
d
HA(A-M‘M) H

®

€ @inbra

~——— mvunm. wu,_.:sz
((d=;S) (4575 ds

¥
(@) Tiry

g w=b4d

uvi
g (RydS) HOU-W'M) M ®

MEIN )

w
(A-M‘M) H

() P@(a-m'm)

d
H

w=b+d

®
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where A is the diagonal map, 4 : (W,W-Y) —

SPg(If“,qu-O) is defined by x — [x—zl,...,x—zn] when

n n_m
—_—

GY SP GJR and

Yy WX Y—> R are difference maps defined respec-

hgr (x) = [zl,...,zn], Y, @ W X SP

tively by (x,[yl,...,yn]) —> [x—yl,...,x-yn] and

(x,y) — x-y, the 4's inclusions of ®"  into s™,

e 1is the homomorphism described above and B is defined
by ([B(w)]K)Om = L*Yz*(wébk) for we€ H,(W,W-Y) and

kK € H _(Y).

Subdiagram (1) commutes since it is induced by a
commutative diagram at the level of spaces and maps. The
homomorphism B is so defined as to make subdiagram (3)
commute. We now turn to the commutativity of subdiagram
(2). Let Y3 ¢ Wwx YY" — R™ be defined by

(x,(yl,...,yn)) — (x—yl,...,x-—yn).n Then by expression
Y
*3*

(**) of section 2 we have that pn*i L*yz (1®un,) .
*

~

But n*&'fv3* = 4oy @@y, so wlyy =4y, A8

. n .
since the homomorphism n, : H*(Yn) —> H*(SPGY) is onto
to expression (*) of section 2. Thus subdiagram (2)

commutes, that is,
I~ . = e(B®uh,g,r,)8,(0,).

hgr

Therefore,
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I~ = ] (-Ptrace(s (B®uh,g,r,)4,(0))).
g EZ p

In order to complete the proof we need to show that
6 (B®uh,g,r,)8,(0,)) = u(hgr|Y),. To do this we consider
the diagram (Figure 4) below, where t(x,y) = (y,X). The
commutativity of the left square is immediate. The
commutativity of the right square is obtained by tensoring
subdiagram (3) of diagram (Figure 3) with u(ﬁgr)*. So by

the commutativity of this diagram we have that
8 (B®uh,g,r,)A, (OY) = Hh,g,r,2(Y,wW)

where O¢(Y,W) = {¢i(Y’w)}ﬂEz: is the composition

O, X
Y
Qi(Y,W) $ Hi(Y) ————————p Hi+m(WXY,(W—Y)XY)

(Axl) *
> Hi +ii (WXWXY, (W=-Y) XWXY)

(1xt),
> Hi+m(WXYXW,(W-Y)XYXW)

. -1
(Ly,%x1) (0_x)

2 * m m m
_— Hi+m(s XW, (S =P) XW) — > Hmw.

In Dold [4, pp. 210-211] it is shown that Qi(Y,w) is in-

duced by the inclusion map of Y into W. Therefore
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v 2anbta

¥ b 7 b, =P - b p Z®
(X)" H@D <——=——  (A) H®(X) 'H® ((X) H) @B — (M H®(A) H® (1) H) @D
®° * 101 *
*(aby)n *(26Y) 1@ T®Y 18" (b)Y
% . b 3 d w=b4+d 4 b ,..d w=b4d
(M) "H@(d-;S*S) H <t (M) H®(X) ‘H®(A-M'M) H D - () "H®((M) uU(x-Mm‘M) 1) @D
BT

® A%y
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6 (B®uh,9,r,)4,(0,) = u (hgr|v),
and the theorem is shown. ®

Theorem 4.1, together with the Lefschetz Fixed Point
Theorem [7] and [9], imply that if X is a compact ENR
with g : X — Sng fixed point free then Ig = 0.

As an analog to Dold [4, 6.22, p. 212] we relate the
index to the Euler-Poincare characteristic. Let Y be a

compact connected ENR-space and y0 any arbitrary point

of Y. For an integer k, 1< k<n, let dk 2 ¥ —
be the identity on the first k factors and the constant
value Yo on the remaining n-k factors. Set Ek = ndk.

From properties 3.3 and 3.4 and Theorem 4.1 above we

obtain

4.2 COROLLARY. Let Y be a compact connected ENR

and let f : ¥ — SPgY be a mapping homotopic to Ek,
where dk is as described above. Then I.= kx (Y) +

(n-k) where x(Y) is the Euler-Poincaré characteristic

of Y.
We note that in Masih [7] and Maxwell [2] a similar

result is expressed in terms of the Lefschetz number of a

symmetric product mapping.
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If Y is a compact ENR such that E(Y) = 0 then
for any map f : Y — SPGY, I.= nx (Y) = n. Spaces
satisfying this condition include contractible spaces and
real projective spaces of even dimension.

For a further application of Theorem 4.1 we consider
symmetric product mappings of complex projective space.

We denote complex projective n-space by Pn¢ and we
shall view PnC as the set of all nonzero complex polyno-
mials where two polynomials are identified if and only if

they are proportional. As indicated in Dold [4, p. 193]
the mapping

n
..,anz+bn) —> TT_ (avz+bv)

n
(le) e Pn¢, (azl+b
v=1

,a2z+b

1 2"

induces a homeomorphism SPg(Pl¢) g Pn¢, where G 1is the
symmetric group.
2

Suppose f : Pl¢ =S —> an is a map. By the Sim-

plicial Approximation Theorem there exists a map

such that f and ¢ are homotopic. The degree of £,
deg £, can be defined by deg ¢.
For the map
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say w(h e, - H,(P,€) —> H,(P,€) is multiplication by
m. Then by Theorem 4.1

B “F} =m 4+ m.

[
I

However, I 1 =1 and by Factorization (3.3) above,

h f htig
I = deg $ + (n~1) + n. So deg £ + (n-1) = m.
ntig

2 .
4.3 COROLLARY. Suppose f : pec=s — PC is a

map and h is as described above. If deg f # -2n+l then

h™lf has a fixed point.

In the case that n =1 we obtain the well known re-
sult that if £ : 52 _ 82 and deg f # -1 then £ has
a fixed point.

We conclude by applying the above index theory to vec-
tor fields on manifolds. In what follows all manifolds are
closed, that is, compact without boundary. Let M be a
smooth manifold and E a smooth n-sheeted covering of M
with p : E —> M the covering map. Take a smooth vector
field v on ﬁ. For each x € E, the tangent space

TxM = Tp(x)M‘ We define the map
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vV :iM— spgTM, viy) = VY ) seeesviy )]

n~
3 GM .
said to be a singularity of v if and only if for some i,

-1
where p “(y) = [yl,...,yn] € SP A point yE€ M is

1<i<n, v(yi) = 0 where p-l(y) = [yl,...,yn]. If the
singularities of Vv are isolated we may associate with v
amap f : E = E, homotopic to the identity, having as
its fixed points the isolated set of points {z € M

v(z) = 0}. We then define the map

£f:M—> sng, f(y) = PE(Y ) reenspfl(y )]

where p_l(y) = [yl,...,yn]. If y€E M is an isolated
singularity of v in an open neighborhood U we define
the index of Vv at vy, A,o by dgy- If n =1 we ob-
tain the classical definition of the index of a vector
field at an isolated singularity. From property 3.5 and

Corollary 4.2 we obtain

4.4 COROLLARY. Let M ES a closed smooth manifold

and M a closed smooth n-sheeted covering of M. For a

~

smooth vector field v on M let v be as described
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above. If the singularities of v are isolated then the

sum of the indices of v is

z iy = IE
Yy

ny (M) .
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