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ON INTERIOR REGULARITY AND LIOUVILLE'S THEOREM

FOR HARMONIC MAPPINGS

Atsushi Tachikawa

It is well known that the weakly harmonic mapping
U: M > N (M,N: Riemannian manifolds) is regular if the
image U(M) is contained in some sufficiently small ball
and for this case Liouville's theorem is valid. In this
paper we show that the smallness condition for U(M) can
be released if U minimizes the energy functional and
the sectional curvatures of the target manifold N are
bounded by some suitable function of the distance from
some fixed point of N.

0. Introduction

This paper deals with the problem of the regularity
and the theorem of Liouville-type for weakly harmonic
mapping U: M - N, whose energy is minimal.

Let M and N be Riemannian manifolds of dimention
m and n, and class C1 and C3 respectively. Furthermore

: 1
we assume that N is complete. For every C map U: M > N
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TACHIKAWA 2

we can define the energy

(0.1) E(U) = S e(U) du
M

where duy denotes the volume element on M and

e(U) = itr (U*,U,>N

2™ M
the energy density of U, is the trace of the pull-back
of metric tensor of N under the mapping U with respect
to the metric tensor of M. In local coordinates it can
be written in the form
e(U) = % haBDaulDBngij(u)

where (haB) is the inverse matrix of the metric tensor
(haB) of M, and (gij) is the metric tensor of N. More-
over we write u = u(x) for a representation of the map
U: M> N in local coordinates x=(x1,...,xm) and u=(u1,..
% un) on M and N respectively.

A mapping U: M > N is said to be harmonic if it is
of class C2 and satisfies Euler equation of the energy
functional. In local coordinates it can be written in

the form
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i i i, k aB _
(0.2) AMu + Pj k(u)Dau DBu h =0 1

7N
=
A
o

where

bt

AM =h

D_(h haBDB)

is the Laplace-Beltrami operator on M. Here h = det(haB)
5 rjik are the components of Christoffel symbols for
(gij)'

For the general case there are the papers by
Hildebrandt—Kaul—Widman[11] for the regularity, and by
Hildebrandt-Jost-Widman (9] for the theorem of Liouville-
type (see also Giaquinta-Hildebrandt[4]). Roughly
speaking these works say that if the range U(M) of a
weakly harmonic mapping U: M - N is contained in some
geodesic ball B(Q,r) in N with radius r < w/2vk ( k =
maximum of the sectional curvatures of N) which does
not meet the cut locus of the center Q, then U is
regular and the theorem of Liouville-type is valid.

In this paper we show that the assumption that
U(M) is contained in some small ball can be released if
we suppose that the sectional curvatures K(P) is bounded

by a sufficiently rapid decreasing function of the

distance dist(P,Q) from some fixed point QeN. With this
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assumption we prove existence and interior regularity of
a weakly harmonic mapping which minimizes the energy and
a Liouville-type result for such mappings.

Finally the auther wishes thank Mariano Giaquinta
and Enrico Giusti for stimulating discussions and useful

advices.

1. Auxilary differential geometric estimates

Let K(P) be the maximum of the sectional curvatures

of N at P. We consider the following condition for K(P):

ASS. £,
( Qo’ 0 ro)

For some point QOGN, some positive constant r0>0 and

2
some function fOEC ([O,ro)) such that

%38 fo(t)/t =1, fo(t)>0, fo'(t)>0 for all
te(o,ro)

where r=dist(P,Q )<r

0=20
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Lemma 1.1

Assume that N satisfies (ASS. Qo,fo,ro) and that
the geodesic ball B(Qo,ro) does not meet the cut locus

1
of Qo. Let (u ,...,un) be a normal coordinate system on
B(Qo,ro) such that QO has the coordinates (0,...,0).
Denote by g..(u), I'.. (u) and P.l (u) the coordinates of
1] 1k j k

the metric tensor and the Christoffel symbols in this

; . n
coordinate system respectively. Then for all £€R we

have the following estimates

fo'(|u|)

(t.2) 0O < IUIESZT;T;—

g..(u)F,lEJ
ij

A

. . -
g, . (WEE +ur t el
1] m k

The estimates (1.2) follows from Rauch's comparison
theorem, (as [10] Lemma 6) by comparing N with the
n-dimensional manifold ﬁ which has the following metric

tensor with respect to some normal coordinate system

(zi)

2 1] 2
2] Ho el

15



TACHIKAWA 6

~

Writing fo(t)=fo(t)/t, Christoffel symbols of N are

ijk

r, .(z) = (1-f (I e, i |-ty +
1k] 'ZI
j i k 2
| |3 z +6 jkz -Gijz )|z[ +
—zlszk}
“k 1 1 -2 -
T = —(— - = 1
3@ 3T (z])-£ £ "(]z]))x
X (6 z lzl -z sz ) +
£ 7(|z]) . .
s ~O {(5.kZJ+5.kZl)|Z|2‘221z3zk}
2" £,
and
- 2~ k 1
gij,kl(z) =9 gij(z)/az 9z
= _~2 _1__ ijkl
= (1 fO (lz]))|z 5 {(Gikajl ij 1 Izl +82 z z z +
_ j1 ik il j k i] 2
2(6 z z +6J1z z +6jkz z +6i1z z +6k1z z”)|z| "1+
== 1 4 ijk1 i1
| -
+2f0f0 (Iz]) Z|S'Bij6k1|z| +52 27z z (Gikz z +

16
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1 k il ] k i j k1 2
+6j1zlz +6jkz z +6ilsz +5klzlzJ+5ijz z)|z| 1+

1

4
z

- k1 2 13jkl
1y ¢ -
+2(fof0 ) (|z|) (Gijz z |z| z z°z z )

Therefore
i (z)= — f 2(l—f 'Y(s8..6. =8 .8.)
hijk IZIA 0 0 ij hk hj ik
f = ’
1 0 2 h j
+ f "+ -f ! § +
5 Eofo AR LR
E2 | 2|
ik h k i]
+§ -8 -8
jhz z ijz z hkz z7)
For a,bean
hblajbk=

R
hijk(z)a

2 ,2 2 2, 2
- " £, (1-£," ) ((a.b) " =[a] |p| )+

£ 2

0
"y
4 {fOfO 2
2] 2]

+ (1-f0'22{(a.z)2|b|2+ (b.z)2|a12+

-2(a.b)(a.z)(b.z)}
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and
< i 1 fo2
g, (2)a pl= ~(2.2) (b.2)+ —— (a.b)+
! | 2| ||
£ 2
- 4(a.z)(b.z)
| 2|
n . . 2
where (a.b)= } a'b’ , |a|“=(a.a)
i=1
1 (a.2)”
Assuming that (a.b)=0 and writing 6= ———E(—ELEE—
lz|® |al
2
+ ib;i%—) , we get
|b]
- hijk 2 1 fg
13, X5 —— "y -
Rhijk(z)a b a’b =|a Ib[% Izlz fofo 6 |214 x
2
x(1-f ') (1-6)}
0
2 2
£ f
2 2 - 2 0 0 2 2
Hal "Bl "~g (a,b) "= ———{8 + ———(1-0)}]a|"[b|
| 2] ||

~

2
where Rall =g(a,a)

Therefore K1T (z), the sectional curvature of N at
ab

z with respect to m . which is a plane section at z

i ab
spanned by a and b is
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K (z) =
™
ab

=22 02 -0)— "

_ | z| £ (|z|){1-f0 (]=])¥(1-6) £.£, (|z])e
2 -2_2
fo (|z]) {e+] z| fo (|z])(1-8)}

=3 i (9)

z

For any plane section T at z , we can choose

aJ)EEglwmich span ™ and (a.b)=0. Therefore

Oé?éné} Kz(e) ézK“(z) = Oi?gxi} KZ(G)

But K (8) is a monotone function of 8, thus we have
z

£,"(zD) 1—f0'2(|z|)

min {- " } <
fo(lzl) foz(lzl)
. fo"(|z|) 1—f0'2(|z|)
<K (2) swax - =~y s T !
0 fo (| z|)

Now because N satisfies (ASS. Qo,fo,ro), we can
apply Rauch's comparison theorem for N and N , thus we
get (1,2) as the proof of Lemma 6 of [10], remarking

that for our case, for £ such that (£.z)=0

19
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1 .
~ i s k ‘Zlfo (IZI) ~ J k 3

J.K_ _ 2z
Fikj(z)z £°¢ =( f0(|z|) 1)(gkj(Z) Iz|2 )ETE

k

Examples

i) If the sectional curvaturesof N are bounded above by
-1

a constant kO we can take f0=(/§0r) sin(/Ebr) and r0=

w/Z/Eb and get the estimates in [10] lemma 6.

ii) If we can take, for some Qo,

(PN
Q

(PN
)

s -1
£ (r) = [ 1+ de 0
0 0

then we can take r0=<n.

2. Maximum principle and existence of weakly harmonic

mappings

In order to give a precise statement of our result
we introduce the notion of normal range QR(P) of a point
PeN as a complement of the cut lccus of P in N, i.e. the
maximal domain of any normal coordinatesystem with
center P.

The Sobolev space Hl’z(M, R") is constituted by
measurable mappings u:M - R" such that u-x-leHl’z(W, RP)
for every coordinate map x of M with rangetJeR$ =

1,2

{xe Rm; xm > 0}. H M, Rn) is a Hilbert space with

20
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norm

2
“u“ 1.2 = g |u| dy + 8 é(u)dy
t]
H M M
where |u|2 = E (ul)2 and
i=1
s =5 0% @iy o hxh
o B

For the normal range “N,(Q) for some QeN, we can
define H1’2(M,°n,(Q)) as follows : Hl’z(M,‘\'\.(Q)) is
constituted by measurable mappings U: M - N such that
UM) €N (Q) and its representation u with respect to
the normal coordinate system centered at Q is contained
in 5 2(M, B

Throughout this paper, for U € Hl’z(M,oﬂ. (Q)) we use
the representation with respect to the normal coordinate
system centered Q.

We introduce the notation (B,K(Q) for K < dist(Q,
3% (Q) by

@, @ = fue 1 2RN@; sup Ju]® <&}
M
QK(Q) can be identified with convex, weakly

1

: 52
Sequentially closed subset of H (M,IRn). Indeed the

21
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energy functional E can be extended to B,K(Q) (also to
1,2
H™ (MRWQ)).

If M is isometrically imbeddable in Rm it is well
known that E is lower semicontinuous on & _(Q) with
respect to weak convergence in H1’2(M, IRn). Moreover on
the geodesic ball B(Q,K) = {ueM(Q); 'ul2 & K2} the
metric tensors (gij (u)) are bounded and positive

definite and therefore for some positive constants >\1

and Az

A

2 i] 2
A A
1I«El £ gij(u)g 3 2lal
n
for all ueB,K(Q) and all £€ R . then we can see that for

ue® (Q)
2
full 1.5 < const.{K" + E(u)}
H bl

and this means that a minimizing sequence in @& k(Q) is

1,

2
bounded in H °~ (M, an). Thus we get the follwing lemma:

Lemma 2.1
For every ¢ € QK(QO), K < dlst.(Qo,Bcna(QO)), there

exists a solution of variational problem

22
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E(u) - min. ue® (Q )"‘{u-d)EHl’z(M Rn)}
K 0 0 ’

A straight forward computation shows that the
first variation of the functional E at ue QK(QO) in the

direction of ¥, defined by

SE(u,¥) = lim E—l{E(u + €Y) - E(u)}
eY0

1,2

exists for all LIJGHO L (M, [Rn) such that u+ElJJEﬁ.K(QO)

for all small enough €> O, and is given by

SE(u,y) = S Se(u,V¥)du

M
where
aB_ i 3 1 aB i j k
Y s = o D P .
e(u,¥) glJ(u)h D u Bw + 2DkgiJ(u)h Dau DBu Y
(2.1) = g,,(u)haBD u'D wJ + T ,.(u)haBD w'D quk
1] a B kij a B

ag_ i j j 1 k
..(uh D D + T D
8 (u) AR N 1™ Qo v }
The minimizing mapping u of Lemma 2.1 satisfies

(2.2) SE(u,y) 20

23
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1,2 =
for all VeH *“nL (M, R") such that uteye@ () for all
small enough €>0. But we can not yet say that this u is

a critical point of E and weakly harmonic.

Lemma 2.2
Suppose that N satisfies (ASS. QO’fO’rO) and the
boundary condition ¢ of Lemma 2.1 satisfies ¢€6K,(QO)

for some K'<K<r0. Then the solution u satisfies

(2.3) S n*®> Jul®p nan <0
w o &P

1,2 2
for all nEHO’ (M, R). Therefore for |u|  the maximum
principle is valid, and u is also contained in Q%K,(QO)

and satisfies
1,2 = n
(2.4) SE(u,¥) = 0 for all weHO NnL (M, R)

i.e. u is a critical point and weakly harmonic.
For neCZ(M, R), n>0 we can see that Iu—eunl =
|1-en||ul < K for sufficiently small €>0, therefore we

can use Y=-nu as a test function in (2.2) and thus

(2.5) ) SE(u,-nu) > 0

24
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Now using (1.2) and the Gauss'lemma (cf. (8] p.136)

we can see that from (2.2) follows

-se(u,-nu) = gij(u)haquDaulDBn + ngij(u)hasx

. . 1 .
x{DaulDBuJ + ukrkll(u)Dau DBuJ}
£ '(Ju])
1. aB 2 0
(2.6) >—=h D |u|l D n+ nlul—————— x
=2 C!.I l Bn nl l £ (|ul)
0
xg..(u)D u'D thaB
1] o B

v

1. aB 2
Sh Da|u| DBn

From (2.5) and (2.6) we obtain (2.3), and it
follows from Stampacchia's maximum principle that

2 2 2 2
sup |u] < sup |u| ésup|¢»| <K'

M oM oM

By this estimates now we can see that uieweﬂﬁK,(Qo) for

every weﬂé’z

aL”(M, R") and for all small enough e>0.
Therefore we get (2.4) from (2.2).

By a simple computation we can see that

25
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i ]

B k. aB i
Dau DBu h ¢

DubDy' -T,
o B

h o
[ . = h
e(u,giJ¢ ) 5k

therefore (2.4) is equivalent to

(2.7) S 2B o'p vt —pir.t p oI
M o B o

k
Du )dp =0
jk B )

1,2 o
for all y eH ‘oL (M, R")
and this means that u is weakly harmonic.

Now we can formulate the results of this section:
Theorem 2.1

Assume that N satifies (ASS. Qo,fo,ro). Then
for any qbeG_K,(Qo) for K' < ro,there exists a weakly
harmonic mapping ueﬁK,(QO) such that u—chH(l)’z(M, (Rn)

and this u minimizes the energy functional.

3. Interior regularity of weakly harmonic mapping

whose energy is local minimum

In this section we shall prove the interior
regularity for the minimum u of the energy functional.
For this case the method of M.Giaquinta - E.Giusti (3)

is available. The proof of the following theorem is

26
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based on the method of [2] and (3].
Theorem 3.1
1,2 .
e M B b B = ¢ d = ; ’ _<< b
Let u Hloc( . K) K B(QO K)= {ueN; dist(u QO)__}

be a local minimum for the energy functional E(u). Then

for every xOfM and any a€(0,1) there exist some positive
numbers EO and R_ such that;
If for some RO >R >0

R S Iou] Zdx =< &

B(xO,R)

then for all p <R

(3.1) W22 S L X |Du | 2dx

B(xo,o) B(xo,R)
Proof

Let R0 be sufficiently small and take normal
coordinate system around xo in B(xo,Ro) such that XO =
(0,...,0). We denote Br= B(O,r) = B(xo,r).

1|22 n
For R < R0 let veH > (BR, R ) be the solution of

the Dirichlet problem

S ﬁaBD le wldx = 0 for all weHl’z(B 5 Rn)
B a B 0 R

R

1,2 n
- veH B
u-veH, ( R,ﬂi)

27
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- a
where ha8= h B/E . Then by the theorem of De Giorgi -

Nash we get

(3.2) ngv|2dx < Cl(%)n—2+2ag |Dv|2dx
B B
P R
therefore
(3.3) S |DVI2dx =< Cz(%)n-2+2a S |Du|2dx
B B
P R

1,2 PR
On the other hand u-vEl&) (BR,IRn) satisfies

g EGBDa(u—v)lDB(u-v)ldx = S EaBDaulDB(u-v)ldx =
B B
R R
(3.4)
i -aB ] k i
= ', (uWh D uDu (u-v) dx
3 J k o B
R
therefore

(3.5) &|D(u—v)|2dx =< C3 g |Du|2|u—v|dx <
B B
R R

1 94 g1

< C4( S]Dulzqu)q( glu—vlq_ldx) f for any g>1

B B
R R

28
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Now because u is the minimum of E(u), by {3] theorem 4.1

we get
1 1
r r 2 2
( ¥|pu| dx)" < CS( |Du | “dx) for all re(2,r0]
B B
R R for some ro > 2
taking q= % we get
1 n
2q. .q q " 2
( X|Du| qu) ;CSR S |Du | “dx
B B
R 2R

Combining this with (3.5) we get

(3.6) SID(u—v) |2dx =€ ( ngulzdx ) %

B B
R 2R

a4 i
x(R—n Slu—v|q_1 dx) 4
BR
Moreover because u-v € H(l)’z(BR, Rn), and Iu-v| < 2K we
get by Poincaré inequality
.

Slu—v|q-1dx < C7R2 SID(u—v) |2dx < CsRZX[Dulzdx

BR BR BR
taking q (= % > 1) be sufficiently near to 1.

Thus we get

29
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g1
(3.7) 8|D(u—v)|2dx:; Cg( S|Du|2dx)(R2-n ngulzdx) &
BR BR BR

From (3.3) and (3.7) we get

(3.8) S|Du|2dx =<

B
p

q-1
=< Clo{(-%)n-2+2a+ Cll( RZ-n ;'Dulzdx) 14 ]§ |Du|2dx
R 2R
From (3.8) the assertion of the theorem follows by the
following well known lemma (for example cf.f[6]).
Lemma 3.1

Let ¢(t) be non-negative function satisfying

(3.9 6(0) AL + w1 s(R) I ®)

= Rn—2

+
where w(t) - 0 as t - 0 . Then for any oe€(0,1) there

exists a constant EO > 0 such that if for some R > O
RE(R) < ¢

0

then

30
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~n+2-2 ~n+2-2
(3.10) o T 0) < AR TTITT%®R) for all pR

where A' and £ depend only on A,a and w(t), but not on
R.
Proof

Choose 1€(0,1) in such a way that 2At ¢ =1. Let

60 > 0 be some constant such that
n
2 <T
w(eo) =<

_+2
Then if R n $(R) < €0 we get from (3.9)

$(TR) < ALT™ + TTHO(R) = 2aTT9(R) =t 2 2% (R)

therefore

(R 2o (tR) < T RET(R) < so

thus by induction we get for every k

k(n-2+2a)
T

$(x°R) < $(R)

k+1
Now for any pe(O,R) there exists k such that T "R <

k
P £ T R then

31
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0(0) < ¢(1R) < TF@TH2Nypy <

-n+2-20 n-2+2a
. (%) T(R)

_+—
Therefore we get (3.10) with A' = 1 n+2 2a.

Theorem 3.2

Assume that N satisfies (ASS. Qo,fo,ro). Then
any local minimum u for the energy functional E(u) such
that dist(u,QO) < T, is of class CO,a in the interior
of M, int M.
Proof

In viaw of Theorem 3.1 and the integral characteri-
zation of Holder continuous functions due to Morrey and
Campanato (cf.[i]) it is sufficient to prove that for
every X € int M we have
(3.11) g2™ S |Du | 2dx <e02

B(x_,R)
1 0

for some R <‘E dist.(xo,aM).

To prove (3.11) for an arbitrary point xoe.int.M,

we introduce the normal coordinate system in a suitably

small ball B(xO,RO), as in the Proof of Theorem 3.1 .

1 oo
Let R <'§ Ro. Taking Y=nu in (2.4), nECO(B(xo,ZR)),

32
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n >0, we get as the proof of Lemma 2.2

1 2
0 = X L |ul’p b vRax +
2 o B

B
2R

i
k1

+ g ng..(uw){D u'p ul + ukP D u'D ul}hae/ﬁax
ij a B o B

B
2R

therefore by Lemma 1.1

fo'(IU|)

ol ey
f (|u|)
R 0

(3.12) S

g..(u)Dd u'D thaB/ﬁdx
B 1] o B

lg 2 _ap
=5 Dalul DBnh vhdx

B
2R

By assumptions (ASS. Qo,fo,ro) and ]ul < rO, we can

see that

£ 0
inf IUIfO(FITJ)
0 u

B
Xe€ 2R

> 6
(X)=0
for some constant 60 > 0. Therefore the integral of the

. : 2
left-hand side of (3.12) is bounded below by AlDuI for
some positive constant A.

Thus we have
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2 1
(3.13) A S |Du| dx < - 2 g Da|u|2DBnhaB/ﬁdx
B B
2R 2R
. 2 2 .
The function z =m (2R) - |u|”, where m(t) = s§p|u|, is

. - I t
a non-negative super solution of an elliptic operator.

From the weak Harnack inequality (cf. [7]) we have

(3.14) R S z dx < C_ . inf z

B B
2R R

1,2 . . .
Let we!a) (BZR) be the solution if the equation

0B . -2 g 1,2
S h /‘r_xDBwDacbdx = -R ¢ dx for all ¢eHO (BZR)

Bor Bor

Taking ¢ = wz we get

1 2
E g haB/EDBw Dazdx + Szhas/ﬁbawDdex
B ..
2R B2R
= R_2 S wz dx
B2R

The second integral on the left-hand side is non-

2R
weak Harnack inequality w g:az >0 in BR since w is a

negative, moreover we have w §:a1 in B and from the

positive super solution of an elliptic equation. We note

34
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that al and uz do not depend on R. In conclusion, taking

2
n=w we get

g haB/Eb zDBndx_5 CIZR-Z & z dx
o =
BZR BZR
which together with (3.13) and (3.14) gives
2 =2 =2, 2 2
(3.15) ngu| dx < C13Rn inf z = CMRn {m (2R) - m (R)}
B
R BR

On the other hand we have

(3.16) T @2 ™R - 0@ R} <mi(2R) <
=0

2
< suplul” <r

0
M

and therefore inequality (3.16) implies (3.11) with
_k -
p =2 R for some k {0,1,2,..., eo 1sup|u|2 +1}. Thus

the theorem is proved.

From Theorem 3.2 by the method which now are
1,0
standard (cf. [4]) we can see that u is of class C
interior M, and by the theory of linear equation we can

2,0

also see that u is of class C interior M, and is

harmonic.
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4. Liouville-type result for the minima of energy

functional

In this section we shall prove a Liouville-type
result for a bounded minimum u: M = N of the energy
functional E(u), under the condition that N satisfies
(ASS. Qo,fo,ro). For the case that the sectional
curvatures of N is bounded above by a constant, see [5]

and {9].

Theorem 4.1

Assume that M is a simple or compact Riemannian
manifold of class C1 and that N is a complete Riemannian
manifold of class C3 which satisfies (ASS. QO’fO’rO)'

Let ue@lRo(Qo) for RO <1y, be a local minimum of the

energy functional E(u). Then u is a constant. For the
case r = o any bounded solution is constant.
Here a Riemannian manifold M is said to be simple

. p . m .
if it is described by coordinates x on R and by metric
do® = h__(9dx"dxP

aB

for which there exist positive constants A and p such

that
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2 2
(4.1) Mel’s b g%’ <ulel

for all x,geRm. In the following we use these
coordinates {x} for M when M is simple.

If M is compact, the assertion of the theorem is an
immediate consequence of the maximum principle for
|u(x)|2. (see Lemma 2.2)

If M is simple the assertion of the theorem follows

from proof of Theorem 3.1 and Theorem 3.2 : Since M is

simple, Theorem 3.1 is valid with Xy = QO and R0 = o,

Moreover from the last part of the proof of Theorem 3.2,

-1 2
for any R > O there exists k€ {0,1,2,..., €. sup|u| +1}

0
such that

-n+2 2 -k
p S |Du|"dx < €y for p =2 R
B(0,p)
therefore we can take a monotone increasing sequence

{R.}, R. » = such that
i i

-n+2 g 9
R. Dul“dx < £ R.
: |Du| “dx = €5 or any R.

B(O,R,)
1

Then by Theorem 3.1 for p < Ri
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-n+2-2a -n+2-2a

|Du|2dx:é Cri |Du|2dx
B(0,P) B(O,R,)

-n+2-2a
CR. for ever R.
1 E0 e 1

(PN

therefore, letting Ri > o, we get

-n+2-2 2
p o g |Du]“dx = 0 for all p >0
B(0,p)

i.e. Du= O and this means that u is a constant map.
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