

Werk

Titel: Stability of Einstein - Hermitian vector bundles.

Autor: Lübke, Martin

Jahr: 1983

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0042 | log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

STABILITY OF EINSTEIN - HERMITIAN VECTOR BUNDLES

Martin Lübke

Einstein - Hermitian vector bundles are defined by a certain curvature condition. We prove that over a compact Kähler manifold a bundle satisfying this condition is semistable in the sense of Mumford - Takemoto and a direct sum of stable Einstein - Hermitian subbundles.

1.Introduction

In his paper [6] Kobayashi introduced the notion of an Einstein-Hermitian vector bundle, i.e. a bundle satisfying a certain curvature condition (Einstein condition). This condition is (over a compact complex manifold) sufficient for the bundle to be semistable in the sense of Bogomolov [1], as Kobayashi proved in [6]. In his recent paper [4] Kobayashi announces the following

THEOREM. An Einstein - Hermitian vector bundle over a compact Kähler manifold is semistable in the sense of Mumford - Takemoto and a direct sum of stable Einstein - Hermitian subbundles.

The purpose of this note is to give a proof of this Theorem *). Therefore we at first recall the definition and some properties of Einstein-Hermitian bundles and state a result on the first Chern forms of an Einstein-Hermitian bundle and a subbundle (Proposition 1), which is proved by purely differential geometric methods.

Next we define a differential geometric version of the (semi-)stability in the sense of Mumford-Takemoto and prove the first part of the Theorem: An Einstein-Hermitian vector bundle is semistable (Proposition 2). The main tool of the proof is a vanishing theorem of Kobayashi for sections in Einstein-Hermitian bundles.

If an Einstein - Hermitian bundle E is not stable, we get by Proposition 1 a splitting of E outside an analytic subset of the base manifold, which we extend to a global splitting by sheaf theoretic arguments. This leads to a splitting of E into stable subbundles (Proposition 4).

Although stable bundles and Einstein - Hermitian bundles share many common properties, it is not known until now if every stable bundle satisfies the Einstein condition.

2.Einstein - Hermitian vector bundles

We start with some general facts on Einstein - Hermitian bundles; details can be found in Kobayashi's papers [4], [5], [6] or in [7], [8].

^{*)} I communicated this proof to Prof.Kobayashi, and he wrote me that his proof is in essential parts different from mine. He kindly suggested a publication of my proof because his will not be published "probably for another year or so"

Let M always be a n-dimensional complex manifold with Kähler metric g and associated 2-form ω .

Let \mathbf{E} denote the sheaf of differentiable functions and $\mathbf{E}^{1,1}$ the sheaf of differentiable (1,1) - forms on M. Then we define a morphism

$$\tilde{g}: E^{1,1} \longrightarrow E$$

as follows:

With respect to local coordinates $z_1, ..., z_n$, a (1,1) - form σ is given by

$$\sigma = \sum_{i,j=1}^{n} \sigma_{ij} dz_{i} \wedge d\bar{z}_{j},$$

the metric g determines a matrix (g_{ij}) , and we set

$$(g^{ij}) = (g_{ij})^{-1}$$
.

We define

$$\tilde{g}(\sigma) = \sum_{i,j} g^{ji} \sigma_{ij}$$
.

With

$$\omega = \frac{i}{2} \sum_{i,j} g_{ij} dz_{i} \wedge d\overline{z}_{j}$$

one gets

(2.1)
$$\sigma \wedge \omega^{n-1} = \frac{2}{in} \widetilde{g}(\sigma) \omega^n$$
.

Now let E be a holomorphic vector bundle of rank r over M and h a Hermitian metric in E with associated curvature operator D^2 . With respect to a local frame, D^2 is given by a matrix $\Omega = (\Omega_{\alpha\beta})$ of (1,1) - forms.

(2.2) $\tilde{g}(\Omega) = \varphi I_r$ (Einstein condition)

with a differentiable real function φ , where I_r denotes the r*r unit matrix.

By definition, every line bundle is an Einstein-Hermitian bundle.

If h is an Einstein metric with factor ϕ and f a positive function on M, then fh is an Einstein metric with factor

 $\varphi' = \varphi - \Delta \log f$,

which becomes a constant by a suitable choice of f if M is compact. So we always can assume that the factor of an Einstein-Hermitian bundle over a compact Kähler manifold is a constant.

If E is an Einstein - Hermitian bundle with factor ϕ , then the dual bundle E* is an Einstein - Hermitian bundle with factor $-\phi$; the symmetric powers S^kE and the exterior powers Λ^kE are Einstein - Hermitian bundles with factor $k\phi$ (with the induced metrics). If E' is another bundle satisfying the Einstein condition with factor ϕ ', then E&E' is an Einstein - Hermitian bundle with factor $\phi + \phi$ '.

3.First Chern form and stability

Let 7 be a coherent sheaf of rank r over M. Then

 $det \mathfrak{F} = (\Lambda^r \mathfrak{F}) **$

is a line bundle. The first Chern form of \(\mathbf{F} \) is defined by

$$c_1(\mathcal{F}) = c_1(\det \mathcal{F}) = \frac{i}{2\pi}\Omega$$
,

where Ω is the curvature form of a Hermitian metric h in det**7**. The cohomology class of $c_1(\mathfrak{F})$ in $H^2(M,\mathfrak{C})$ is independent of the choice of the metric h.

If ${\bf E}$ is a holomorphic vector bundle of rank ${\bf r}$ with Hermitian metric ${\bf h}$, then one has

$$c_1(E) = \frac{i}{2\pi} \operatorname{trace}(\Omega)$$
,

where Ω is the matrix of the curvature operator associated to h with respect to a local frame. A simple calculation shows

(3.1)
$$c_1(\Lambda^p E) = {r-1 \choose p-1} c_1(E)$$

for $1 \le p \le r$.

DEFINITION. Let F be a coherent sheaf over M.

i) We define

$$d(\mathcal{F}) = c_1(\mathcal{F}) \wedge \omega^{n-1}$$
.

ii) If M is compact we define

$$\deg(\mathcal{F}) = \int_{M} d(\mathcal{F})$$

and

$$\mu(\mathbf{F}) = \frac{\deg(\mathbf{F})}{\operatorname{rk}(\mathbf{F})} .$$

Both $deg(\mathfrak{F})$ and $\mu(\mathfrak{F})$ depend on the choice of g, but not on the choice of the metric in $det \mathfrak{F}$.

If M is compact and (E,h,g) an Einstein-Hermitian vector bundle with constant factor ϕ , then one has

(3.2)
$$\varphi = \frac{\pi n}{\text{vol}(M)} \mu(E)$$

(see [4] 3.3), where $vol(M) = \int_{M} \omega^{n}$.

Our first result is

PROPOSITION 1. Let (E,h,g) be an Einstein - Hermitian vector bundle of rank r with constant factor φ over M and

(*)
$$O \rightarrow F \rightarrow E \rightarrow G \rightarrow O$$

an exact sequence of vector bundles.

i) One has

$$\frac{d(F)}{rk(F)} \leq \frac{d(E)}{rk(E)} ;$$

ii) If M is compact one has

$$\mu\left(\mathbf{F}\right)\leqslant\mu\left(\mathbf{E}\right)$$

with the same consequences as in i) for the case of equality.

Proof.

We have only to prove i), because ii) then follows by integration.

Since ω^{n} is a positive 2n - form it suffices to show

$$\frac{2\pi}{\mathrm{is}}\,\widetilde{g}(\mathrm{c}_1(\mathrm{F}))\leqslant \frac{2\pi}{\mathrm{ir}}\,\widetilde{g}(\mathrm{c}_1(\mathrm{E}))$$

(see (2.1)) with s = rk(F).

For this we choose a unitary local frame e_1,\ldots,e_r for E such that e_1,\ldots,e_s is a local frame for F. Let $\Omega=(\Omega_{\alpha\beta})$, Ω^F , Ω^G be the matrices representing the curvature operators in E, F, G, and $A=(a_{\alpha\beta})$ the matrix of the second fundamental form of F in E with respect to this frame. Then one has

(3.3)
$$\Omega = \begin{pmatrix} \Omega^{F} + A \wedge^{t} \overline{A} & * \\ * & \Omega^{G} + {}^{t} \overline{A} \wedge A \end{pmatrix}$$

([3] p.78, [8] proof of Lemma 1.6) and

$$\frac{2\pi}{i} c_1(E) = \sum_{\alpha=1}^{r} \Omega_{\alpha\alpha},$$

$$\frac{2\pi}{i} c_1(F) = \sum_{\alpha=1}^{s} \Omega_{\alpha\alpha} - \sum_{\alpha=1}^{s} \sum_{\beta=1}^{r-s} a_{\alpha\beta} \wedge \bar{a}_{\alpha\beta}.$$

The Einstein condition (2.2) gives

$$\tilde{g}(\Omega_{\alpha\alpha}) = \varphi$$

and therefore

$$\frac{2\pi}{ir}\widetilde{g}(c_1(E)) = \varphi ,$$

$$\frac{2\pi}{is}\widetilde{g}(c_1(F)) = \varphi - \frac{1}{s}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{r-s}\widetilde{g}(a_{\alpha\beta}\wedge \overline{a}_{\alpha\beta}).$$

From the fact that A is a matrix of (1,0) - forms ([3] p.78) one gets by a simple calculation

8 Lther

$$\tilde{g}(a_{\alpha\beta}\Lambda\bar{a}_{\alpha\beta}) \ge 0$$
,

which proves the desired inequality. Equality occurs if and only if A=0, but in this case the sequence (*) splits ([2] p.422, [8] Corollar 1.5), and from (3.3) it is easily seen that F and G satisfy the Einstein condition with factor ϕ . Thus the proof is complete.

<u>DEFINITION.</u> Let M be compact. A vector bundle E over M

is called stable (semistable), if for every coherent

subsheaf F of E with O < rk(F) < rk(E) one has

$$\mu(\mathcal{F}) < \mu(E)$$
 $(\mu(\mathcal{F}) \leq \mu(E))$.

Remarks

i) From some arguments in [9] Chapter II, §1 it follows, that for the (semi-)stability condition of a vector bundle one has to consider only reflexive subsheaves (a coherent sheaf \mathcal{F} is called reflexive, if the canonical morphism $\mathcal{F} \longrightarrow \mathcal{F}^{**}$ is an isomorphism).

ii) If M is projective algebraic and g induced by an ample divisor H, then our (semi-)stability coincides with the H-(semi-)stability of Mumford - Takemoto.

4.Proof of the Theorem

Now let M always be compact.

The second part of Proposition 1 means in particular, that an Einstein - Hermitian vector bundle over M satisfies the semistability condition with respect to subbundles. We strengthen now this statement and prove the first part of the Theorem.

PROPOSITION 2. If (E,h,g) is an Einstein-Hermitian vector bundle with constant factor ϕ over M, then E is semistable.

For the proof we need

PROPOSITION 3 (Kobayashi [6]). Let E be as in Proposition 2. If $\phi < 0$, then E has no nontrivial global holomorphic sections. If $\phi = 0$, then every global holomorphic section is parallel.

(see also [8] Satz 3.3)

Proof of Proposition 2

Let % be a reflexive subsheaf of E with

$$0 < s = rk(F) < r = rk(E)$$
.

The inclusion

$$\Phi: \mathcal{F} \hookrightarrow E$$

induces a morphism

$$\det \Phi : \det \mathscr{F} \longrightarrow (\Lambda^{S} E)^{**} \cong \Lambda^{S} E$$

which is a monomorphism of sheaves because \mathcal{F} is torsion-free. By tensoring with $(\det \mathcal{F})^*$ one gets a nontrivial global holomorphic section

$$f : \mathcal{O}_{M} \hookrightarrow \Lambda^{S} E \otimes (\det \mathcal{F})^{*}$$
.

From (3.2) we know

$$\varphi = \frac{\pi n}{\text{vol}(M)} \ \mu(E) ,$$

and $\det \mathcal{F}$ (as a line bundle) admits an Einstein-Hermitian metric with factor

$$\psi = \frac{\pi n}{\text{vol}(M)} \ \mu(\text{det}\mathcal{F}) = \frac{\pi ns}{\text{vol}(M)} \ \mu(\mathcal{F}) \ .$$

The bundle $\Lambda^S E \otimes (\det \mathcal{F})^*$ then is Einstein-Hermitian with factor $s\phi - \psi$, and from the existence of the section f one gets by Proposition 3

$$s\phi - \psi \geqslant 0$$

or equivalently

as asserted.

Now let \mathcal{F} be as in the proof above with $\mu(\mathcal{F}) = \mu(E)$. Then one has

$$s\phi - \psi = 0$$
 ,

and by Proposition 3 the section f is parallel, in particular has no zeroes, i.e. $\det \Phi$ is a monomorphism of bundles. Thus Φ must be a monomorphism of bundles outside the singularity set S of \mathcal{F} (S is the set of points where \mathcal{F} is not locally free), and over $M = M \setminus S$ one gets an exact sequence of vector bundles

$$(*) \qquad 0 \longrightarrow \mathcal{F} | M \longrightarrow E | M \longrightarrow \mathcal{G} | M \longrightarrow 0$$

with ${\bf q}={}^E/_{\bf F\!\!\!\!/}$. By (3.1) and Proposition 1 , the equality $\mu\left({\bf F\!\!\!\!/}\right)=\mu\left(E\right)$ implies

$$\frac{d(\mathcal{F}|\widetilde{M})}{s} = \frac{d(E|\widetilde{M})}{r}$$

and therefore (again by Proposition 1) the sequence (*) splits.

Now \mathcal{F} and E are normal sheaves ([9] Chapter II Lemma1.1.12; a sheaf \mathcal{F} is called normal, if for every open subset $U \subset M$ and every analytic subset $A \subset U$ with codim $A \geqslant 2$ the restriction map $\mathcal{F}(U) \longrightarrow \mathcal{F}(U \setminus A)$ is an isomorphism), and because \mathcal{F} is reflexive we have codim $S \geqslant 3$ ([9] Chapter II Lemma 1.1.10). Therefore the splitting of (*) implies the global splitting of the sequence

$$0 \longrightarrow \mathcal{F} \longrightarrow E \longrightarrow \mathcal{G} \longrightarrow 0$$
,

because the morphism

$$\Psi : E \mid M \longrightarrow \mathcal{F} \mid M$$

with

$$\Psi \bullet \Phi \mid M = id_{\mathcal{F} \mid M}$$

extends canonically to a morphism

$$\Psi : E \longrightarrow \mathcal{F}$$

with

$$\Psi \circ \Phi = id_{\overline{\Phi}}$$
.

As an immediate consequence we have the second part of the Theorem:

Proof

If E is not stable, there exists a reflexive subsheaf \mathcal{F} of E with $\mu(\mathcal{F}) = \mu(E)$. As we have seen, the sequence

$$0 \longrightarrow \mathcal{F} \longrightarrow E \longrightarrow \mathcal{G} \longrightarrow 0$$

splits; in particular, $\mathcal F$ and $\mathcal F$ are bundles and $\mathcal F$ is a subbundle of E. From $\mu(\mathcal F)=\mu(E)$ one gets by Proposition 1, that $\mathcal F$ and $\mathcal F$ satisfy the Einstein condition with factor ϕ , and a simple induction on the rank of E completes the proof.

References

- [1] Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR Izvestija 13, 499 - 555 (1979)
- [2] Griffiths, P.A.: The extension problem in complex analysis II. Amer.J.Math. 88, 366-446 (1966)
- [3] Griffiths, P.A., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978
- [4] Kobayashi,S.: Curvature and stability of vector bundles.

 Proc.Japan Acad. 58 A 4, 158 162 (1982)
- [5] Kobayashi,S.: Einstein Hermitian vector bundles and stability. to appear in Proc.Symp. Global Riemannian Geometry, Durham, England (1982)

- [6] Kobayashi,S.: First Chern class and holomorphic tensor fields. Nagoya Math.J. 77, 5-11 (1980)
- [7] Lübke, M.: Chernklassen von Hermite Einstein Vektorbündeln. Math. Ann. 260, 133 - 141 (1982)
- [8] Lübke, M.: Hermite Einstein Vektorbündel. Dissertation, Bayreuth 1982.
- [9] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Boston - Basel -Stuttgart: Birkhäuser 1980

Martin Lübke
Mathematisches Institut
der Universität
Postfach 3008
D - 8580 Bayreuth

(Received December 14, 1982)

