

Werk

Titel: Sine - Laplace Equation, Sinh-Laplace Equation and Harmonic Maps.

Autor: Hesheng, Hu

Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0040|log13

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

SINE - LAPLACE EQUATION, SINH - LAPLACE EQUATION AND HARMONIC MAPS

Hu Hesheng*

The relationship between harmonic maps from R^2 to S^2 , H^2 , S^{1} , (+1), S^{1} , (-1) and the \mp sinh - Laplace, \mp sine - Laplace equation is found respectively. Existence theorems of some boundary value problems for the above harmonic maps are obtained. In the cases of H^2 , S^{1} , (+1), S^{1} , (-1) the results are global.

1. Introduction

The relationship between the harmonic map and the famous sine-Gordon equation was pointed out by K. Pohlmeyer in [1]. In fact, from the harmonic map of the Minkowski plane $\mathbb{R}^{1,1}$ to a sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ one can construct a Lax pair and its integrability condition is the sine-Gordon equation. Conversely, the solution of the sine-Gordon equation can be used to construct a harmonic map from $\mathbb{R}^{1,1}$ to \mathbb{S}^2 in general by solving a system of completely integrable linear partial differential equations. Moreover, Gu developed this idea, established the global existence theorem for the Cauchy problems of the harmonic map from $\mathbb{R}^{1,1}$ to any $\mathbb{R}^{1,1}$ to any $\mathbb{R}^{1,1}$

^{*}Research supported partially by the Institute for Applied Mathematics, Sonderforschungsbereich 72 of the University of Bonn

nal complete Riemannian manifold \mathbf{M}_n and gave a geometrical interpretation of the single soliton solutions of the sine-Gordon equation in [2].

Recently [3] Gu found the relationship between the sinh-Gordon equation and the harmonic map of $R^{1,1}$ to the sphere $S^{1,1}$ with indefinite metric in a 3 dimensional Minkowski space $R^{2,1}$, furthermore he proved an existence theorem of global solutions of the harmonic map with suitable initial conditions. It should be mentioned that the sinh-Gordon equation has been geometrically interpretated through time-like surfaces of positive constant curvature in $R^{2,1}$ by S.S. Chern in [4].

Thus, the following problem arises naturally: Whether there exists similar relationship between the nonlinear elliptic equation

$$\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = \mp \sinh u \tag{1}$$

$$\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = -\bar{t} \sin u \tag{3}$$

and the harmonic maps. We call equations $(1) - (4) \mp \sinh$ Laplace and $\mp \sin e - \text{Laplace}$ equations respectively.

Let S^2 , H^2 , $S^{1,1}$ (+1) and $S^{1,1}$ (-1) be the sphere, hyperbolic plane, the "spheres" with indefinite metric of constant curvature +1 and -1 respectively. In this paper we shall show the intimate relationship between equation (1) - (4) and the harmonic maps from R^2 to S^2 , H^2 and the indefinite $S^{1,1}$ (1), $S^{1,1}$ (-1) respectively. From the harmonic maps, we can obtain the Lax pairs with one of the equations (1) - (4) as their integrability conditions respectively, and from each solution of (1) - (4) by using the solution of the Lax pairs, we can construct the corresponding harmonic maps.

Further, we consider certain boundary value problems for harmonic maps from \mbox{R}^2 to the above mentioned 2 dimen-

sional manifolds of constant curvature. Owing to the known properties of non-linear elliptic equations, we obtained existence theorems of the solutions. In the cases of H^2 , $\mathrm{S}^{1,1}(+1)$ and $\mathrm{S}^{1,1}(-1)$, the results are global.

2. The case of S²

Consider a unit sphere S 2 in 3 dimensional Euclidean space R 3 and choose the parameter (t,x) such that the metric of S 2 can be written in the form

$$ds^2 = \cosh^2 \frac{\alpha}{2} dt^2 + \sinh^2 \frac{\alpha}{2} dx^2 \qquad (\alpha \neq 0)$$
 (5)

locally. Considering the formula of curvature

$$K = \frac{R_{1212}}{g_{11}g_{22} - g_{12}^2} \tag{6}$$

we obtain

$$1 = \frac{\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial^2 \alpha}{\partial x^2}}{-\sinh \alpha} \tag{7}$$

this is the negative \sinh - Laplace equation (1). Consequently, if the metric of $S^2 \subset \mathbb{R}^3$ is locally written in the form (5), then α must be the solution of the negative \sinh - Laplace equation (1). Evidently, the converse is also true, if α \neq 0.

Let 1 be the radius vectors of the points on S^2 , equation (5) can be written as

$$1_{t} = \cosh \frac{\alpha}{2} m ,$$

$$1_{x} = \sinh \frac{\alpha}{2} n ,$$
(8)

where m, n are unit vectors and 1, m, n are mutually orthogonal. For definiteness, we assume that det(1,m,n) = 1.

Hence we can write

$$1_{t} = \cosh \frac{\alpha}{2} m \qquad 1_{x} = \sinh \frac{\alpha}{2} n$$

$$m_{t} = -\cosh \frac{\alpha}{2} 1 - \sigma n \qquad m_{x} = -\lambda n \qquad (9)$$

$$n_{t} = \sigma m \qquad n_{x} = -\sinh \frac{\alpha}{2} 1 + \lambda m$$

From the integrability condition $l_{xt} = l_{tx'}$ we have

$$\lambda = -\frac{1}{2} \alpha_{t} \quad , \quad \sigma = \frac{1}{2} \alpha_{x}$$
 (10)

Substituting (10) into (9) and calculating $m_{tx} = m_{xt}$, $n_{tx} = n_{xt}$, we can verify easily that these integrability conditions of (9), (10) are the negative \sinh - Laplace equation

$$\alpha_{xx} + \alpha_{tt} = -\sinh \alpha$$
 (1)'

Consequently, equation (9) and (10) constitute a Lax pair of the group SO(3) with negative sinh-Laplace equation as its integrability condition. On the otherhand, from (8) we have

$$1_{t}^{2} - 1_{x}^{2} = 1$$
 , $1_{t} \cdot 1_{x} = 0$ (11)

By differentiation, it is easily seen that l(t,x) satisfies

$$1_{tt} + 1_{xx} + (1_t^2 + 1_x^2)1 = 0$$
 (12)

This is exactly the equation of harmonic maps from R^2 to S^2 . Consequently, l(t,x) is a harmonic map from R^2 to S^2 . In this paper, a <u>normalized harmonic map</u> is defined as a harmonic map l(t,x) which satisfies the condition (11).

Moreover, let $\alpha(t,x)$ be a given solution to the negative \sinh - Laplace equation on a simply connected region

 $\Omega \subset \mathbb{R}^2$. By solving the Lax pair with the initial condition $(t,x) = (t_0,x_0)$, $(1,m,n) = (1_0,m_0,n_0)$, where $(t_0,x_0) \in \Omega$, $(1_0,m_0,n_0) \in SO(3)$, and extracting 1(t,x) from the solution, we obtain a normalized harmonic map 1(t,x) from Ω to the sphere. Thus, we can construct a normalized harmonic map from a solution of the negative $\sinh - \text{Laplace equation}$.

Now there arises another question. Whether all of the harmonic maps 1(t,x) from R^2 to S^2 can be obtained through solving $\alpha(t,x)$ from the negative \sinh - Laplace equation. In the following we prove that in general a harmonic map from a region $\Omega \subset R^2$ to S^2 can always be constructed through a normalized harmonic map together with a conformal map.

Let 1(t,x) be a harmonic map from $\Omega\subset\mathbb{R}^2$ to S^2 . Then 1(t,x) satisfies equation (12) and the equation $1^2=1$. Since (12) is a system of elliptic equations with analytic coefficients, the regular solution 1(t,x) must be analytic. Hence the vector-valued function 1(t,x) can be complexified to $1(\tau,\zeta)$ where τ , ζ are complex variables and $1(\tau,\zeta)$ is a complex analytic function defined in a region $\Omega_{\mathbb{C}}$ ($\supset\Omega$) in \mathfrak{C}^2 , $1(\tau,\zeta)$ still satisfies the equation

$$1_{\tau\tau} + 1_{\zeta\zeta} + (1_{\tau}^2 + 1_{\zeta}^2)1 = 0$$
 (13)

Introduce

$$\xi = \frac{\tau + i\zeta}{2} , \quad \eta = \frac{\tau - i\zeta}{2}$$
 (14)

as two new independent variables, then τ , ζ take real values if and only if ξ and η are conjugate. Using (14), we can rewrite (13) into

$$1_{\xi\eta} + (1_{\xi} \cdot 1_{\eta})1 = 0$$
 (15)

Since $1^2 = 1$, we obtain

$$(1_{\xi}^{2})_{\eta} = 0$$
 , $(1_{\eta}^{2})_{\xi} = 0$ (16)

and hence

$$1_{\xi}^{2} = k(\xi)$$
 , $1_{\eta}^{2} = h(\eta)$ (17)

where $k(\xi)$ and $h(\eta)$ are all analytic functions. We assume

$$1_{\xi}^{2} = (1_{t} - i1_{x})^{2} = 1_{t}^{2} - 1_{x}^{2} - 2i1_{t} \cdot 1_{x} + 0$$

$$1_{n}^{2} = (1_{t} + i1_{x})^{2} = 1_{t}^{2} - 1_{x}^{2} + 2i1_{t} \cdot 1_{x} + 0$$
(18)

in the region $\boldsymbol{\Omega}.$ Then we can solve the differential equations

$$\frac{\partial \xi'}{\partial \xi} = 2k^{\frac{1}{2}}(\xi) \qquad , \qquad \frac{\partial \eta'}{\partial \eta} = 2k^{\frac{1}{2}}(\eta) \qquad (19)$$

and obtain the solutions

$$\xi' = \beta(\xi)$$
 , $\eta' = \overline{\beta}(\eta)$ (20)

in an open set Ω_1 ($\Omega \subset \Omega_1 \subset \Omega_{\bf c}$) such that ξ ' and η ' are conjugate when ξ and η are conjugate. Denote

$$\xi' = t' + ix'$$
, $\eta' = t' - ix'$

then

$$t' + ix' = \beta(t + ix)$$
 (21)

is a conformal mapping T from the region Ω to some region Ω' . Let 1(t',x') be the composition of T^{-1} and 1(t,x) (i.e. $1 \circ T^{-1}$), then we have $1_{\xi'}^2 = 1/4$ or

$$1_{t'}^2 - 1_{x'}^2 = 1$$
 , $1_{t'} \cdot 1_{x'} = 0$ (22)

on Ω '. Hence 1(t',x') is a normalized harmonic map and can be determined from a solution of the negative \sinh - Laplace equation. Consequently, when the condition (18) is satisfied, a harmonic map from Ω to S^2 can be constructed by solving the negative \sinh - Laplace equation, and solving the Lax pair (9), (10), and then combining the solution

with a conformal map.

THEOREM 1. Let $\alpha(t,x)$ be a given solution to the negative \sinh -Laplace equation (1) on a simply connected region $\Omega \subset \mathbb{R}^2$, we can determine a normalized harmonic map 1(t,x) from Ω to S^2 through solving the Lax pair (9), (10). Conversely, any harmonic map from $\Omega \subset \mathbb{R}^2$ to S^2 satisfying (18) equals to the product of a conformal map of region Ω and a normalized harmonic map constructed by solving the negative \sinh -Laplace equation and Lax pair (9), (10).

Remark. As is known, in 2 dimensional case, the product of a conformal map and a harmonic map is also a harmonic map. Remark. If $1_{\xi}^2 = 1_{\eta}^2 = 0$ identically, 1 is a conformal map.

3. Other cases

Let 1, m be vectors in space $R^{2,1}$, their scalar product is defined by

$$1 \cdot m = 1_1 m_1 + 1_2 m_2 - 1_3 m_3 \tag{23}$$

 $S^{1,1}(+1)$ is the locus of points in $\mathbb{R}^{2,1}$ satisfying the equation

$$1^2 = 1 \tag{24}$$

If the metric of $S^{1,1}(+1)$ is written in the following form locally

$$ds^{2} = \cos^{2}\frac{\alpha}{2}dt^{2} - \sin^{2}\frac{\alpha}{2}dx^{2} \qquad (\alpha + 0) , \qquad (25)$$

calculating the condition K = 1, we have

$$\frac{\partial^2 \alpha}{\partial t^2} + \frac{\partial^2 \alpha}{\partial x^2} = -\sin \alpha \tag{3}$$

this is just the negative sine-Laplace equation (3). Consequently, in order that the metric of $S^{1,1}(+1)\subset R^{2,1}$ can be written in the form (25), the necessary and sufficient condition is that α must be the solution of the negative sine-

Laplace equation (3) and $\alpha \neq 0$.

Hence l = l(t,x) satisfies

$$1_{t} = \cos \frac{\alpha}{2} m \qquad 1_{x} = \sin \frac{\alpha}{2} n \qquad (26)$$

Here $m^2 = 1$, $n^2 = -1$, $m \cdot n = 0$, and det(1,m,n) > 0. The Lax pair of the group SO(2,1) takes the following form

$$1_{t} = \cos \frac{\alpha}{2} m \qquad 1_{x} = \sin \frac{\alpha}{2} n$$

$$m_{t} = -\cos \frac{\alpha}{2} 1 - \frac{\alpha_{x}}{2} n \qquad m_{x} = \frac{\alpha_{t}}{2} n \qquad (27)$$

$$n_{t} = -\frac{\alpha_{x}}{2} m \qquad n_{x} = \sin \frac{\alpha}{2} 1 + \frac{\alpha_{t}}{2} m$$

Calculating $m_{xt} = m_{tx}$, $n_{xt} = n_{tx}$ we obtain the negative sine-Laplace equation again. Similar to the section 2 we have

THEOREM 2. For any solution of the negative sine-Laplace equation (3') in a simply connected region Ω , we can always construct a normalized harmonic map 1(t,x) from $\Omega \subset \mathbb{R}^2$ to $s^{1,1}(+1)$ through solving the Lax pair (26), (27). Conversely, any harmonic map 1(t,x) from $\Omega \subset \mathbb{R}^2$ to $s^{1,1}(+1)$ satisfying (18) equals to the product of a conformal map of region Ω and a normalized harmonic map constructed by solving the negative sine-Laplace equation and Lax pair (27).

We have the similar results on the sinh-Laplace equation and sine-Laplace equation, corresponding to the harmonic map from $\Omega \subset \mathbb{R}^2$ to $H^2 \subset \mathbb{R}^{2,1}$ and to $S^{1,1}(-1) \subset \mathbb{R}^{1,2}$ respectively. For simplicity, we write down here the metrics and the Lax pairs only.

If we write the metric of ${\rm H}^2$ in the form

$$ds^2 = \cosh^2 \frac{\alpha}{2} dt^2 + \sinh^2 \frac{\alpha}{2} dx^2$$
 (28)

we will obtain the sinh - Laplace equation

$$\alpha_{tt} + \alpha_{xx} = \sinh \alpha$$

Here H² is considered as the upper component of

$$1^2 = -1$$
 (29)

in $\mathbb{R}^{2,1}$. The corresponding Lax pair is

$$l_{t} = \cosh \frac{\alpha}{2} m \qquad l_{x} = \sinh \frac{\alpha}{2} n$$

$$m_{t} = \cosh \frac{\alpha}{2} 1 - \frac{1}{2} \alpha_{x} n \qquad m_{x} = \frac{1}{2} \alpha_{t} n \qquad (30)$$

$$n_{t} = \frac{1}{2} \alpha_{x}^{m} \qquad n_{x} = \sinh \frac{\alpha}{2} 1 - \frac{1}{2} \alpha_{t}^{m}$$

with $1^2 = -1$, $m^2 = n^2 = 1$, $1 \cdot m = 1 \cdot n = m \cdot n = 0$ and det(1, m, n) = 1.

If we write the metric of $S^{1,1}(-1)$ in the form

$$ds^2 = \cos^2\frac{\alpha}{2}dt^2 - \sin^2\frac{\alpha}{2}dx^2$$
 (31)

Here $S^{1,1}(-1)$ is the sphere

$$1^2 = -1$$
 (32)

in the space $R^{1,2}$ with $1^2 = -1_1^2 - 1_2^2 + 1_3^2$, we will obtain the sine - Laplace equation

$$\alpha_{tt} + \alpha_{xx} = \sin \alpha$$

The related Lax pair is

$$l_{t} = \cos \frac{\alpha}{2} m$$

$$l_{x} = \sin \frac{\alpha}{2} n$$

$$m_{t} = \cos \frac{\alpha}{2} 1 - \frac{1}{2} \alpha_{x} n$$

$$m_{x} = \frac{1}{2} \alpha_{t} n$$

$$m_{x} = -\sin \frac{\alpha}{2} 1 + \frac{1}{2} \alpha_{t} m$$

$$(33)$$

with $1^2 = -1$, $m^2 = 1$, $n^2 = -1$, $1 \cdot m = 1 \cdot n = m \cdot n = 0$, det(1, m, n) = 1.

4. A boundary value problem for normalized harmonic maps

From now on we will consider a boundary value problem for normalized harmonic maps. By using the properties of the elliptic equations (1) - (4), some existence theorems can be obtained.

We can pose the following boundary value problem: Let Ω be a simply connected region with C^2 boundary and $v=(v_1,v_2)$ be a field of unit vectors on the boundary $\partial\Omega$. We wish to find the normalized harmonic map from Ω to S^2 (resp. $S^{1,1}(+1)$, H^2 , $S^{1,1}(-1)$) such that L_V^2 (the square length of the v-direction derivative of 1) along $\partial\Omega$ equals to a given function σ .

For the S² case, from equation (8) we have

$$l_v = l_t v_1 + l_x v_2 = v_1 \cosh \frac{\alpha}{2} m + v_2 \sinh \frac{\alpha}{2} n$$
 (34)

The boundary condition $\mathbf{1}_{\mathbf{v}}^{\mathbf{2}} = \sigma$ means that

$$v_1^2 \cosh^2 \frac{\alpha}{2} + v_2^2 \sinh^2 \frac{\alpha}{2} = \sigma \tag{35}$$

It follows that

$$\cosh^2 \frac{\alpha}{2} = \sigma + v_2^2 \tag{36}$$

Suppose that

$$\sigma + v_2^2 > 1 \tag{37}$$

we can get two boundary values a defined by

$$\alpha = \pm 2\cosh^{-1}\sqrt{\sigma + v_2^2} \tag{38}$$

for the negative \sinh - Laplace equation. Using the known result of the nonlinear elliptic equations [5], it follows that the Dirichlet problem for the negative \sinh - Laplace equation admits solutions if Ω is small enough (or the variation of α is small enough). With no loss of generality, we can take + sign in (38), since the negative sign can be compensated by a symmetry. Hence the harmonic map is uniquely determined except an orthogonal transformation in \mathbb{R}^3 .

For the case $S^{1,1}(+1)$ and $S^{1,1}(-1)$, the condition (37) should be replaced by

$$0 < \sigma + v_2^2 < 1$$
 (40)

and for the case of H^2 , we still have the condition (37).

It is interesting to point out that the Dirichlet problem for positive and negative sine-Laplace equation and positive sinh-Laplace equation are solvable globally [5] since the right hand sides satisfy

$$|\sin \alpha| \le 1$$
 or $\frac{d}{d\alpha} \sinh \alpha = \cosh \alpha > 0$

Hence for the cases H^2 , $S^{1,1}(+1)$, $S^{1,1}(-1)$ the region Ω can be arbitrary large.

Thus we have

THEOREM 3. If (37) is satisfied for the cases of S² and H², or (40) is satisfied for the cases of S¹, (+1) and S¹, (-1). There exists a normalized harmonic map from a simply-connected region Ω to S² (or H², S¹, (+1), S¹, (-1)) such that at the boundary $1_v^2 = \sigma$ hold. In the S² case, Ω should be small enough. In the cases of H², S¹, (+1) and S¹, (-1), the results are global. The maps are determined except for a rotation in R³, R², or R¹, respectively.

The results of this section can be listed as follows:

Target manifold	boundary condition	$ \begin{array}{c} \text{equation} \\ \text{for } \alpha \end{array}$	normalized harmonic map
$s^2 \subset \mathbb{R}^3$	$l_v^2 = \sigma$ with $\sigma + v_2^2 > 1$	$\Delta \alpha = -sh\alpha$	exist for small Ω
$H^2 \subset \mathbb{R}^{2,1}$	$1_{v}^{2} = \sigma \text{ with } \sigma + v_{2}^{2} > 1$	$\Delta \alpha = \mathbf{sh} \alpha$	exist globally
$s^{1,1}(+1) \subset R^{2,1}$	$1_{v}^{2} = \sigma \text{ with } 0 < \sigma + v_{2}^{2} < 1$	$\Delta \alpha = -\sin \alpha$	exist globally
$s^{1,1}(-1) \subset R^{1,2}$	$l_v^2 = \sigma$ with $0 < \sigma + v_2^2 < 1$	$\Delta \alpha = \sin \alpha$	exist globally.

Acknowledgements. The author is grateful to Prof. S. Hildebrandt for his support and concerns.

Bibliography

- [1] Pohlmeyer, K.; Integrable Hamiltonian System and Interaction Through Quadratic Constraints. Comun.Math. Phys. <u>46</u>, 207 - 221 (1976)
- [2] Gu, C.H.: On the Cauchy Problem for Harmonic Map Defined on Two-Dimensional Minkowski Space. Comun. on Pure and Appl.Math. 33, 727-737 (1980)
- [3] Gu, C.H.: On the Harmonic Maps from R^{1,1} to S^{1,1} to appear
- [4] Chern, S.S.: Geometrical Interpretation of Sinh-Gordon Equations. Annales Polinici Math. 39, 63-69 (1981)
- [5] Courant, R. and Hilbert, D.: Methods of Mathematical Physics. vol II, 369 - 374 Interscience Publishers, (1966)

Prof. Hesheng Hu
Institute of Mathematics
Fudan University
Shanghai, China

(Received July 20, 1982)