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CANCELILATION IAW FOR HONMOTOPY EQUIVALENT
REPRESENTATIONS OF GROUPS OF ODD ORDER

Pawex Traczyk

We prove that if V and W are real G-mod-
ules and G is a group of odd order, then V
and W are stably G-homotopy equivalent if and
only if they are G-homotopy equivalent,

Let G Dbe a compact Lie group. We will say after
Kawakubo [4] that the cancellation law holds for real
G-modules when the following is true: "if S(V®U) and
S(W®U) are G-homotopy equivalent for some G-module U,
then S(V) and S(W) are G-homotopy equivalent", It is
proved in [4] that the cancellation law holds for an ar-
bitrary compact abelian topological group G.

In this paper we give a proof that the cancellation
law holds for every compact Lie group such that G/G0 is

& group of odd order (here Go denotes the identity com-
ponent of G).

All the finite groups considered in this paper are
assumed to be of odd order.
We shall use notation V -% W <for the stable G-=ho-

motopy equivalence and V -%v W for the G-homotopy
equivalence,
Let us begin with the following simple observation,

LEMMA 1, If the cancellation law holds for groups of or-
der less than |G| and for such G-modules that for every

IxHEQG VE = wh

=W = 0, then it holds for G,
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2 TRACZYK

=
=,

PROOF, Assume that V & W, We shall prove that V
by the induction on the dimension of V,
1° Let dim V = 1. It is obvious that if V £ W, then

dim | dim WH for every subgroup HE&G, It follows
that dim W = dim V= 1 and V and W have the same
kernel, The isomorphism class of a one-dimensional re-
presentation is uniquely determined by its kernel, whence
V and W are isomorphic, whence V & W,

20 Assume that the cancellation holds for G-modules of

dimension less than dim V, By the assumtion it is enough

to consider the case when VH, Wl 0 for some I # H4G,
0f course if f: S(V®U)—»s(W@®U) is a stable G-homoto-

Py equivalence, then 2, S(VH@UH)—-)S(WH@UH) is a
stable G/H=-homotopy equivalence. IG/HI<I|Gl, whence by the
assumption of the lemma there exists an unstable
G/H-homotopy equivalence

g: s (w—ss (vH),
Let us consider the G~homotopy egquivalence
(1) t%g: S(VOU@WE)—»s (V@ U@ V.
If Vand W are decomposed as V = V@V, W = W@y
then (1) may be written as
(2) t¥g: s(vH®U@vH@wH)—->s(WH@U®VH@WH).

It follows that f%g 1is a stable G-homotopy equiva-
lence of VH and WFI' By the inductive assumption
V; & Wy. Combining this with V& &y

v £ W, which completes the proof,

we obtain

We shall prove our main theorem by the induction on
the order of G. It is obvious that the cancellation
holds for trivial group. In view of Lemma 1 to make the
inductive step it is enough to prove the following:

1 ¥ & W and VB = W' = 0 for I#HQG, then VEW,
In particular we need only consider such representations

thet V° = WC
sentations of groups of odd order admit a complex

= 0, It is a standard fact that such repre=-
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TRACZYK 3

structure (Curtis-Reiner [1], p. 223). It will be conven-
ient to assume for the rest of this paper that the con-
sidered representations are complex. But we shall still
consider the unoriented homotopy equivalence. The cancel-

lation law for oriented homotopy equivalence is proved in
tom Dieck [2].

The essential fact we need in our proof is the theo-
rem about the existence of equivariant maps and congru-
ences between the degrees on fixed points subsets. The
construction and the proof can be found in [3], section
8.4.

THEOREM 2. Let V and W be complex representations of G,
H

such that for every subgroup HEG dim V& = dim W
Then there exists an equiveriant map f: S(V)—aS(W).
If H is an isotrgg& subgroup of the action of G on
S(V), then deg £ (mod|N(H)/HI) is determined by

{ﬁeg fK}chK' For every integer k there exists‘g map
E

x Such that deg fg = deg 8 + k |[N(H)/E| and for every

subgroup H® which is not subconjugate to H

deg 2 = deg 8 .

We want to apply Theorem 2 +to prove a theorem in
which the existence of equivariant homotopy equivalences
for subgroups of G implies the existence of a G=homo-
topy equivalence, Apparently some restrictions should be
made in such a theorem on the kind of groups considered
and some coherence assumptions for the degrees of the
involved H-homotopy equivalences for HCG, Before for-
mulating the theorem we will prove two lemmas which ena-
ble us to show that for groups of odd order the coherence
assumptions may be stated in a simple form.

LEMMA 3., Let E Dbe the regular complex representation of
a group G of odd order. Asgume that 2EcV, Then if
S f, are self G-homotopy equivalences of S(V) and
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4 TRACZ YK

for some subgroup Hc@G

(3) deg f? = deg flzi,

then for every subgroup KeG

(4) deg f% = deg fg

PROOF. By the Theorem 10,1 in Rubinsztein [5] there is a
ring homomorphism

(5) [sW,sm], = ale),

where A(G) is the Burmside ring of G. By Proposition
1.5.1 in tom Dieck [3]

(6) ale)* =f21.

Let V=V°®C, where C is the trivial representa-
tion of G. Let gz S(C)—»S(C) be any map of degree -1.
Obviously g is a G-homotopy equivalence. Then
gq := idS (V) and g i= idS (V')*g are G-homotopy equi-

valences of S(V) and for every H<G

(7) deg gy = - deg gj.

It follows that [g,]#[g,] in [S(V),5(V)]4. A class of

a G-homotopy equivalence is an invertible element in
[S (V) ,S(V)]G, whence by (5), (6) and the fact that

[,] # [e,] we obtain that [31] and [g2] are the only
classes of self G-homotopy equivalences of S(V). From

this and (7) it follows that if £, and f, satisfy (3),

then they belong to the same class in [5(V),5(V)].,
whence they satisfy (4) sy Which completes the proof,

What we need directly in the announceé& theorem is the
following,

LEMMA 4. Let F De 2 group of odd order. If f f, are

2

B-hpmotopy equivalences from S(V) to S(W) and elther
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TRACZYK 5

(9) VoWt =0
or
(10) deg 11 = deg 12,

then for every subgroup HGEE
(11) deg f? = deg 1121.

PROOF., Let g: S(W)—»S(V) be an F-homotopy equiva-
lence., Then gyi= gi’i are self F-homotopy equivalences

of s(V) and deg g}i = deg I‘?-deg gH, whence

(12) deg gﬁz = deg gg@x}eg f? = deg fg.
It is thus enough to prove that

(13) deg g]?‘ = deg gg.

If E is the regular representation of F, then
gy *id: S(V®2E)~—»S(V@®2E) are self F-homotopy equiva-

lences of S(V@®2E). If Ve w = 0, then
F . W F
(14) deg (g, % 1d)” = deg(gz*ld) = 1,
If deg f1 = deg f2, then
(15) deg g.%#id = deg g, % id.

Now it is enough to apply Lemma 3 to gy % id in both
cases to obtain

(16) deg g? = deg (g,l-nid)H = deg(gz-nid)H = deg gg

which yields (13). This completes the proof.
With Lemma 4 we are ready to prove a theorem about

the existence of G-homotopy equivalence,

THEOREM 5. Let G be & group of odd order, non-isomor-
phic to a cyclic p-group. Let V and W be complex

Ge-modules such that 7H = WE 0 for every I+ HYG,

Ommm——

If there exists a set {IH} HEG H#AG of H-homotopy
S p— ’ — Snmmmns———

equivalences fH: S(V)—»S(W) such that
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6 TRACZYK

(17) deg £,y = deg T
H, B,

for every K,, HZCG, then there exists a G~homotopy

equivalence f: S(V)—»S(W) such that for every HeG

(18) deg Ty = deg o

(here the lower "H" is an index and the upper "H" is the
symbol for restriction to the fixed points of the action
of H).

PROOF, By the assumption IH is an H-homotopy equiva=-

lence, in particular dim VE = dim WP, This equality

holds also for G, because 7 = wE - 0.
Let G Dbe a p-group., We adopt the notation as in
tom Dieck [2] . From the above equalities it follows that

(19) X:= x(V-W) € ROO(G) X

(r denotes the restriction of scalars).

A1l the irreducible factors in V and W are imprimitive,
because they are faithful and G is not a cyclic group.

It follows that X represents & class in 107°(G).
Moreover resy X€ ROh(H) for every proper subgroup

HCG, whence by Theorem 2 in [2] X e€RO,(H), It follows

that res X = O, where res is the restriction map
res: 10°(¢)—> [] 10(E), By the Proposition 3.2 in (7]
H

this map is injective, whence Xé€ RO, (6) ., By the con=-
struction of Ge~homotopy equivalences given in [3] sec~
tion 9,5 there exists a G~homotopy equivalence
£: S(V)—»s(W).

Let H1 be & normal subgroup of index p in G, By the

H

assumption vV oawl e 0, whence by Lemme 4 applied to H,

0) deg r§1 = deg X

for every K€H,, in particular
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TRACZYK T
(21) deg fH1 = deg f.

Let H, be an arbitrary subgroup of G. Combining (21)
with (17) we obtain

(22) deg £, = deg f.
=

Lpplying the second part of Lemma 4 to F = Hz, f1 = f,

f2 = fH2 we obtain

5 5

23 deg f = deg f
( ) e H2

which completes the proof for p-groups.
Assume now that G is not a p-group. By Theorem 2
here exists a G-map £ : S(V)—>s(Ww). et H be a

maximal element among those igotropy subgroups for which

(24) deg floI #deg fg.

We shall show that the same inequality holds for all sub-
groups conjugate to H, Every element ge€G acts on V
and W as a unitary map. We shall denote by Bys By» gg,
gg the restrictions of these maps to S(V), s(W), s ()&

and S(W)H respectively. Let K = gHg'1. Then

€57) £ ¢ s(ME = g(s(ME)—ss(v)E
and

gy : ST —sg(s)®) =sw)* .

For ff: we have a formula
H -1, K
flé = gw’f]oi"(gv) ’
whence

- K
(25) deg f% = deg g%-deg fE-deg(gv)
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8 TRACZYK
Let us consider a K-homotopy equivalence fK given by

the formula ‘?K = gwoszog.;1 . Then
K H -Hh K
fx - gw‘f%‘(gv) ¥

We obtain the following formulas for deg 'fK and degf%
K H -h K
(26) deg{K = deg gy-deg fg-deg(gv)
(27} deg 'PK = deg gw-deg i‘H-deg g#:deg fH =
= deg fK

The second equality in (27) is obtained from the fact
that g, and g§1 are odd-order self-homeomorphisms of
1

S(W) and S(V) respectively, whence deg g; = deg gy = 1.
The third is a consequence of the assumption (17) .

The equality (27) enables us to apply Lemma 4. We obtain
(28) deg{% = deg f%

Combining (28) and (26) we obtain

(29) deg f]é = deg gg-deg fg-deg g"," S
Using (25) and (24) we get
(30) deg fg # deg gv}‘}'deg i‘g-deg (g{ﬂ) S

(29) and (30) yield
(31) deg f§ # deg .f% .

If E _is not the trivial subgroup, then KN(H)#G,
because V and W in this case and H is assumed to be
an isotropy subgroup of the action of G on S(V),.

Let HcKgB(H). By Lemma 4 applied to K-homotopy equi-
valences fK and fR (H)

deg fﬁ(ﬂ)g deg fIK{ = deg fg .

(By the assumptiorps)deg f% = deg fg for every isotropy
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TRACZYK 9

subgroup of the action of G on S(V) containing H as
& proper subgroup. To obtain the same for arbitrary K
we use the fact, that there exists an isotropy subgroup

K’, KcK’ such that S(v)¥ = s(v)X', this is an easy
consequence of the fact, that for representations the in-
tersection of isotropy subgroups is an isotropy subgroup.
For the proof see Rubinsztein [5], Remark-8.2.)

Applying Theorem 2 +to the group N(H) we obtain
deg fo = deg fg(m (moa |N (&) /H)).
By the other part of Theorem 2 applied to G there
exists a G-map f,: S(V)—>S(W) such that deg f? =
deg fg for every subgroup M which is not subconju-~
gate to H and deg f% = deg fg(H) = deg fg .

After a finite number of such steps we obtain a G-map
£,: S(V)—>s(W) such that deg fﬁ = deg fg for every

proper subgroup H, except possibly for the trivial one,
In particular if p divides the order of G, then for a

Sylow subgrounp G and arbitrary subgroup HE€G_ we

b p
have by Lerma 4 deg fg = deg fg s, Which implies
p
deg fg = deg fg for nontrivial subgroups of G_.
P p
By Theorem 2 applied to GP we get
(32) deg f = deg fGP(mod 16,,1)

This is true for every prime p dividing the order of G.
If I denotes the trivial subgroup of G, then by the

-

assumption (17)
(53) deg fg = deg I
Combining (32) and (33) we obtain

(34) deg £ = deg fI(molepﬂ
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10 TRACZYK
It follows that
deg £, = deg fr(modlal),
By Theorem 2 there exists & G-map f: S(V)—»sS W)
such that for every HEG
deg fH = degfg-i‘l.

By Proposition 8,2.4 and Remark 8,2,5 in [3] f is a
G-homotopy equivalence, This completes the proof of
Theorem 5,

Now we are ready to prove our main theorem,

THEOREM 6, The cancellation law holds for groups of odd
order,

PROOF, We shall prove the theorem by induction on the or-
der of G, To start the induction let us recall that

I. The cancellation holds for abelian groups (Kawakubo
[4] , Theorem 2.5).

To make the inductive step 1t is enough to comnsider stab-
ly homotopy equivalent complex representations V and W
such that V° = Wo = O for every I#*HYG (Lemma 1),

Let us assume that the cancellation holds for every

group of order less than |G|, We shall consider several
casese.

II, Let G ©be a semidirect product of Z_ and F, so that

p
G = zp?E, z,4¢, FaZ =1
Assume moreover that the action of F = G/Zp on Zp is
effective,
There exists a Zp-homotopy equivalence t, . By
‘ Y
Lemma 4 deg 1, is uniquely determined. To prove that

P
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TRACZYK 11

a G-homotopy equivalence exists we need to show that for
every proper subgroup Hc<cG there exists an H-homotopy

equivalence fH such that deg fH = deg fZ and apply
P
Theorem 5. First consider the case when H+Zp (the sub-

group generated by the union H\sz) is proper. Then by

the inductive assumption there exists an H+Z_~homotopy

P

equivalence fH+Z which is also a Zp-homotopy equiva-
P

lence, whence deg fH+Z is uniquely determined and

deg fy,;, = deg f; . The same map is also an H-homotopy
p p

equivalence and it may be taken for f..

Assume now that H 1is a proper subgroup and H+Zp = G,

It follows that ZP¢H, whence Han =1 and G = ZPS(" H.

By the inductive assumption there exists an H-homotopy
equivalence fH' It is well-known that every irreducible

faithful representation of G is induced from Zp. It

follows that resy V and resy W have trivial factors,

S0 fH may be choosen to have the degree 1 or -1 as re-
quired,

ITI. Let G ©be a semidirect product of a p=-torus

P = pr... pr # Zp and F, Assume moreover that P is

a minimal normal subgroup in G and that the action of F
on P is effective. To proceed with the proof we will
need some preparations. For K€ G denote by V(K) (resp.
W(K)) the intersection of all subrepresentations con-

taining vk (wK respJ .

LEMMA 7, Let V and W Dbe stably G-~homotopy equivalent
representations of G. Suppose that

(35) V(K) = indg(K)vK, W(K) = indg(K)wK

Then V(K)‘L and W(K)L are stably G-homotopy equivalent,
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12 TRACZYK

PROOF, VE and WX are stably N(K)~homotopy equivalent,
Let U be a representation of N(K) such that there
exists an N(K)-homotopy equivalence

£: s(VF@u)—s(Weu).

It is proved in tom Dieck [3], p. 251 +that £ induces
& Gehomotopy equivalence of induced representations

£°: S (indf g V@ U—> S (1nd§mth@ ).

Combining this with (35) we obtain V(K) % w(K) y Whence

V(&) & W),

We would like to apply Lemmea 7 to reduce case III

to the situation when F is not isomorphic to Zq and

for every F such that G = PXF +there exists K4F

such that 7E=awk a 0O, Then we could easily apply The-~
orem 5, To do this we are going to choose suitable sub-
groups in the considered semidirect product to apply
Lemma 7,

Let P’ be a subgroup of P such that P/P’'® Zp.
P’ is not a trivial group, because by the assumption
P Zp. Denote by F(P’) the subgroup in G consisting
of those elements x€N(P’) for which the induced action

on P/P’ 1is trivial, Obviously P& F(P’), whence
F(P’) = PXF”

where F’ 1is a suitable subgroup in F,
We can also define F(P’) as the kernel of the action
of E(PY) on P/P’, From this it is obvious that

F(P’) g K(P’).

It follows that
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TRACZ YK 13
(39) K(p°):=[F(p°),F(p)]+P g N ("),
Let us observe that

F(p)/(2+[F*,F]) =(2RF°)/(2"+[F",F7]) = (2/2 W(¢7[F",F)

and the right side is an abelian group, whence

F(P)F(P)JnPEP’. It follows that K(P’)aP = P° and
finally

(40) N(k(p7) = §(2°).
It is also easy to see that
(41) K(P‘) = [F°,F°]+P".

LEMMA 8, Let KsF<N and Kd4N, Let X ‘ngﬁ F-module.
Then

. aN
42 res, ind, X = + X
: u2) X F ng/F -

where gx (k) = gx(s'1ks), for k€K,
s -

PROOF, This is a straightforward consequence of the dou-
ble coset formula for the restriction of the induced re-
presentation (see Serre [6], Proposition 22), It is

enough to observe that the double coset KsF is equal to

1AK=K

the left coset sF and that for every s€N sFs~

We want to show now that we can apply Lemma 7 to
K = K(P).

IEMMA 9, Let X be an F(P’)-module such that

K(P") eker gy and %% = 0, Then

(43) (indd (P,)X)K(P') - 1nall {2 ]x,

PROOF, It is enough to apply Lemma 8. to K(P‘)< F(P’)
< N(P’) to obtain

147



14 TRACZYK

(44) res . indN (P: X = X
K()FE)T T eniTY) /m(py ©

where $y (k) =€y (s 'ks) = idy, for k €eK(P*) (because
s

s ks = k"€ K(P’) and K(P')lergx, whence gx(k')n idx).
Thus res indN(P')X is a trivial K(P’)-module, so
K(P’) F(P’) ’

(45) indgg,;xg(ind%(ly)x)K(P ),

Applying Lemma 8, to PEF(P)cG, P4G we obtain

.G
res, ind X = <7> X

where gX (g) =95 (s"1gs), for g €P. Obviously for
s

s¢N(P) X}S‘D = 0, because P';tsP's°1.:__'ker ng and

P

Xs

= 0, It follows that

(46) dim (indg(P,)X)P = 5@ /F(P)din X =
.. N(PY)
= dim lndF(P’)Xo
Combining this with the obvious inequality

(47) aim (inad @ ,)X)K(P') ¢ dim (indg(P,)X)P’

end the inclusion (45) we obtain (43).

We can return now to the inductive step in case III.
This will be split into two subcases,

IIIa, Suppose that there exists a subgroup P°€C P such

that P/P’%Z_ and v (B KB o, Let X, be an

irreducible F(P*) submodule of VECF )(K(P') is normal
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TRACZYK 15

in F(P’), so VK(P ) is an F(P')-module). P is normal,
whence Xf = 0 and ker gx NP =P, It follows that
1

F(P’) is exactly the isotropy subgroup of resp X1 with

respect to the action of G on the isomorphism classes
of irreducible representations of P (resP X1 is irredu-

cible because X1 factorizes to a representation of an

abelian group and as an irreducible representation is
therefore one-dimensional).
FNow it is enough to apply the Mackey’s irreducibility

criterion to see that indg(P,)X1 is irreducible (for

the details see the description of the irreducible repre-
sentations of a semidirect product by an abelian group
given in Serre [6], Proposition 25).

By the Frobenius reciprocity

(48) {indf (p X1, Vg = KXy resp (pr) Vp(p7) -

By the assumption the right side is not zero, whence the
irreducible representation indg(P,)X1 is contained in V,

Every irreducible factor in V(K(P‘)) and W(K(P‘) is of
that form, whence

(49) V(K(P*) = 1nd1§(1,,)x, w(K(2)= indgu,,)z,

where X and 7 satisfy the conditions

P P

(50) K(P‘) c ker ¢4, K(P’)Cker ¢,, X = Z° = O,

Applying Lemma 9 to X and Z we obtain

(1ndg(P,)x)K(P') = indngg ;

(51)
‘ ’)
(1ndg(P,)x)K‘P ) o 1ndl‘(£ X

Combining this with (49) we obtain
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16 TRACZYK

P'
p)*
P
F(P

(P°)

(52) N

w K L wik(@)¥®) a in
By the transitivity of the induction we have

V(K(P’) = 1nd§ () indg g :)) X
(53)

W(K(P) = indl

P’)

This together with (52) and (40) yields
, G
V(K(P) = ind

v P')
N(k(P) o

54 .
( ) W(K(P'n = indN(K(P'” K(P )

Applying Lemma 7 to K = K(P’) we obtain
1
(55) V(k(2) %W(K(P'))":

We shall show now that V(K(P“) %w(K(P ). For this let

us observe that N(P’)%#G Dbecause P was assumed to be
a minimal normal subgroup of G and P’#I, By (39), (40)

K(P)g (P’ = N(K(P"), whence V(B 54 WwE(B”

, Which

in view of (52) may be rewritten as
BBy o8 me

By the inductive assumption the cancellation law holds

for N(P’) so we can write NT%/') in the above formula,The

. N(P“) . N(P')
N(P’)-homotopy equivalence of 1ndF(P’) X and indp ;)%
induces a G-homotopy equivalence of induced G-modules,

this combined with (53) yields

(57) v(K(2") gw(x(p).
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TRACZYK 17

From (55) and (57) it follows that it is emough to consi-

der such V and W that VEE 2w B 6 tnig may be
done for every P‘, whence III, is reduced to the fol-

lowing second subcase:
IITb., Suppose that for every P’€CP such that P/P’= Zp
vE(E) _ KB,

If dim V #0, then for a suitable P’ VP;O, whence
K(P)#P°. It follows that F(P%)#P, in particular

N(P‘) # P. On the other hand N(P’)# G, because P is a
minimal normal subgroup. It fcllows that the sequence
PcN(P’)eG is strictly increasing, whence the order of F
is not a prime number, By the famous Feit and Thompson
theorem F 1is solvable. Let KQF ©be a normal subgroup
of index q, where g is a prime number, We shall show
that

K

(58) v -wkao

By the description of the irreducible representations of
a semidirect product every irreducible representation of

) Tt . oG ;
G is of the form lndF(P’)X =1ndP’(F, X, wiere Tresp. X

is an irreducible representation of F’ = F(P’)AF and
Tesp X is an isotypic representation of P such that

ker resp; X = P” (we consider faithful representations on-

ly). Applying the double coset formula we obtain

. G P
(59) resFlndF(P,)X - 1ndF, Tresy - X
Applying the same formula once more to indg, Tesp- X we

obtain the following formula for resKind%(P,)X.
(60) resKindg(P,)X = <;> ind% Xs’
s€K\F/F° s

= @ ind% X
s€F/F’ s !
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18 TRACZYK

1

where K_ = sF‘s”'AK = s(F’nK)s™! and gxs(k)=

= ?X(s'1ks) for k€K . It is obvious that X  con-
tains a trivial factor if and only if X, = resg ‘nK X

contains a trivial factor. On the other hand by the Fro-
benius reciprocity

(61) <ind%s X, 10 = <XS'1Ks>Ks'

and if resy indg (P ,)X contains a trivial factor, then
the left side is not zero for some s, whence resp sk X
contains a trivial factor. Obviously F'A K{F’ so

x¥ "X 45 an F’-module, whence by the irreducibility of
X X=X "% ana X factorizes to an F/F° EK-module.
The last group is abelian, whence [F',F '] Cker gX' By the

assumption also P‘Cker Sx» whence K(P')-[F’,F’J+P'g

& ker 3X’ which is a contradiction

With (58) proved we are ready to apply Theorem 5,
Let H be a proper subgroup of G, If H+P$#G, then by
the inductive assumption there exists an H+P-homotopy
equivalence :EH +D? which is in particular H- and P-homo=-

topy equivalence, By Lemma 4

(62) deg fyy,p = deg Ty
for every P-homotopy equivalence f]?’ because VP = WP =0

If H+F = G, then PAnHYH and PA~AHQP, whence PnH4LG,
Since P is a minimal normal subgroup of G +this means
that PmHE =1 and G is a semidirect product of P and
H. It foliows that there exists a subgroup Kd4H of in-
dex q in H, and by (58) ¥ = wk = 0. Obviously P+K is
a proper subgroup in G, and by the inductive amsumption
there exist equivariant homotopy equivalences ‘tH and

:EI, +K° Using the fact that IH is in particular a K-homo-
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topy equivalence and that fP+K is also P~ and K-homo=-

topy equivalence and applying Lemma 4 first to K, then
to P we obtain

(63) deg fy = deg fp o = deg fy.

(62) and (63) enable us to apply Theorem 5., It follows

that V % W.

It remainsto consider the last case.

IV, Suppose that G 1is not an abelian group and not a
semidirect product by a p-torus with an effective action,
G 1is solvable, whence a minimel normal subgroup of G

i a "'t P=Z X.Q.XZ.
s a p-torus . D

Let H ©be a proper subgroup of G, If P+H#G, then by
the inductive assumption we have an fP+H' and as in IIID

(64) deg fp 5 = deg fp

so that fP+H may be taken for fH‘

Let P+H = G, Then G is a semidirect product of P and
H, Suppose that G = P xH., Then the order of H 1is not

a prime number, because in this case G would be abelian,
It follows that there exists a non-trivial proper normal
subgroup K<H,

If G is not a direct product of H and P, then

K:= the kernel of the action of H on P 1is a non-tri-
vial proper normal subgroup of H. In both cases K is
contained in the kermel of the action of H on P, hence
K is normal in the whole G, By the inductive assumption
there exist equivariant homotopy equivalences fH’ fK,

IK+P' fP. v -wkovF . L 0, whence applying Lemma 4
to K and P we obtain
(65) deg fy = deg fy = deg fp . = deg f.

Applyig Theorem 5 we obtain V ,%, W, which completes
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the inductive proof of Theorem 6.

By Theorem 3,1  in Kawakubo [4] the cancellation
law holds for a compact Lie group G if and only if the
cancellation law holds for G/Go. This together with
Theorem 6 yields the following,

THEOREM 10.Let G be a compact Lie group., If G/GO is a

group gf odd order, then the cancellation law holds for G,
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