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A NOTE ON SIMULTANEOUS DIOPHANTINE
APPROXIMATION

Werner Georg Nowak

Refining earlier investigations due to J.M.MACK tﬂ by a
method of MORDELL it is proved that for any two irrational
numbers a, B there exist infinitely many pairs of fractions
p/r, g/r satisfying the inequalities

=32 - 32
la-Bl<Sr I8 -3)< L

1. Introduction and formulation of the results

By a well-known theorem of HURWITZ on diophantine
approximation there exist for any irrational number o in-
finitely many (reduced) fractions p/r fulfilling the ine-
quality

|a -B |z 52, (1

the constant 5 2

being best possible. It is much more
difficult to find a constant c as small as possible such
that for arbitrary irrational numbers o and B the inequali-

ties

=32 -3f2
| a= §|<cr , |8 -g |<cr (2)

hold simultaneously for infinitely many pairs of rationals
(p/xr, g/r). It follows readily from DIRICHLET's approxima-
tion theorem that ¢ =1 is an admissible value in the sense
of this problem. DAVENPORT and MAHLER [5] proved all
c>2Y2 23-1h , MULLENDER [8] all c>2”2 3" 2371% to be ad-
missible. Finally in 1951 DAVENPORT [ﬂ established the
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2 NOWAK

assertion for c >46‘”°, the best result for a long time.
The infimum o of all admissible values for c has not yet
been determined. CASSELS obtained the lower estimate

co 2 (2/n" [1] .

A few years ago J.M.MACK succeeded in improving
DAVENPORT's result by an ingenious new method [d ,[ﬂ . He
showed that all c > (2,6394)"Y2 are admissible values for

the above assertion.

Adding a new idea to MACK's arguments we are able to
establish the following slight improvement.

THEOREM 1. For any pair of irrational numbers (a,B)

there exist infinitely many pairs of fractions (p/r, gq/r)

satisfying the inequalities

- =32
Pyl 98,7
!CX r|< 131‘ ’ 'B r|<13r . (3)

Simultaneously we obtain the corresponding dual result on

linear forms.

THEOREM 2. For any pair of irrational numbers (ao,B)

there exist infinitely many triples of integers (p,q,r)

fulfilling the inequalities

2 2
|ap+Bq+r|<(1—83-) P, lap+6q+r|<(%)q'2, p’+g?>0. (4)

By a well-known principle in the geometry of numbers
(used first by DAVENPORT and MAHLER [ﬂ and formulated in
full generality by DAVENPORT [4]) both assertions are

immediate consequences of the following estimate.

THEOREM 3. For the critical determinant A (K) of the
three-dimensional star body

K:={(x,y,2)eR®: x?|z|<1, y?|z]|< 1} (5)

we have the inequality
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NOWAK 3

A(K)>(18§Y ) (6)

2. MACK's method and his results used in this paper

MACK starts by reducing the problem of finding a lower
bound for A (K) to a two-dimensional problem. For O e,
he considers the set So(t) of all points (x,y) of the plane
with the property that for any real number k there exists
a real number A congruent to k modulo 1 such that

[A|max {(x+At)?, (y+r)2} <1 (7

and proves the estimate

inf A (t) SA(K) (8)
oSt
for the critical determinant A(t) of So(t). To establish
our inequality (6) it is therefore sufficient to show

A(t) 22,64065 (9)

for O ét.§1. For O été 0,69 MACK already obtains estimates
even better than (9), the greatest difficulties arise in the
interval 0,9 §t§0,91. That is why we are going to describe
in detail the set So(t)(resp. a less complicated, only
unessentially smaller subset S(t)) for t near 0,9 (see Fig.1,

p.4). Since So(t) and S(t) are symmetric in the origin we
consider only the upper half-plane, throughout the paper.

The boundary of S(t) is given by the following smooth
curves: (Convention: From now on numbers with four places
of decimals are rounded-off values. For the exact analytical
definitions we refer to MACK's paper; the actual calculations
have been performed with ten-figure numbers. Numbers with
more or less than four places of decimals are to be con-
sidered as exact values.)
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Fig. 1. The set S(t) for t=0,9
(x,.y))
T
\
T
0

Fig. 2. The hexagons H; and H;
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NOWAK 5

Cy: x= -3(t/4)13 for Oéyiy*
(10)
(y¥ :=-1+0,2238¢"23 + (1-0,2238 £~2%)~12)
Co: x=(1-=-A)t =(1=-2)"12
(11)
y=-A+2"12 for y*<y=<1,8899
Cs: y= 3/4"3 =1,8899
Cy (the tiny curve between P' and P):
x=(1-2t-(1-21)"1 (A <-0,67)
(12)
y==A+ (= A2 for 1,8899 =y 21,9123
Cs: X=(2-A)t-(2-))"12
(13)
y=-A+ 2R for 1,9123 2y £2,1652
Ce s y=2,1652
Cy: =(1-2)t = (1=l (A<= 0,67)
(14)
y=-A+ (-2 for 2,1652 Sy £4,0800
Cg: y =4,0800
Co: x==t(1+A) + (=1-2)"12
(15)
y == A-(= )l for 2-N-(2-1,)V2 2y 24,0800

(A1 =X, (t) being defined by formula (12) of MACK's
paper.)

Cio: X ==tA (t) + (=), (£))"12
for 2-uy- (2= V22 yS2-), - (2-0, 2

(For the definition of ujy = ui(t) see MACK's formula (17).)

37



6 NOWAK

Cii: xX=-\t+\"V2
(16)

y=2-1-(2-2"" for y, (t) Sy<2-m-(2-m) e
C;2 (the small curve between Q and Q'):
x=(1=\t+ (1=
(17)
y=2-1-(2-2A¥ for y (02 ySy (¢)

yo(t):= 2 =X (£)-(2-x (£)¥
Q ° 0 (18)

A (£) 2 (1 -(1-4y(£)2)M2) /2, y(t):=((1+t2W2-1)¢"2

Cis: x=23(t/4) for 0 SySy~ (t) (19)

(Y (t):=(28)"2B 41-((2¢)"22 +1)"1I2)

The remaining part of the boundary of the O-symmetric
set S(t) is obtained from the part just described by re-
flecting it in the origin.

MACK proceeds by inscribing convex hexagons into S(t)
in two different ways for 0,69 ét.§0,9 and for 0,91§t§1.
Applying MINKOWSKI's theorem he thereby obtains lower
bounds for A(t). In the first case the hexagon is formed by
the tangent to C, at the point corresponding to the value
of the parameter A =0,5 and by the straight lines through
P and P, resp. Q and Q) , in the second case by the same
tangent to C,, the tangent to C, at P and the tangent to
C;2 at Q (and by the images of the given lines in the
origin).

For 0,69 ét é0,9 the area A(t) of the hexagon decreases
if t increases. The numerical calculation shows that for
t.§0,88 it is large enough to ensure the validity of our
inequality (9). For 0,913t51 the area A(t) increases with t
and is sufficiently large for t;0,94.
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There remains to deal with the interval 0,88 ét.éo,94.
The principle of the improvement for this range is to be
sketched in the following section.

3. The basic idea of our refinement

The salient point of our argumentation is the obser-
vation that the fourth vertex of the parallelogram generated
by the points O, P and Q lies in the interior of S(t) for
the values of t to be considered. We employ a method due to
MORDELL a detailed exposition of which can be found in
CASSELS' classical monograph [ﬂ , page 84 -98.

To this end we consider the tangent 1 to C; at the
point T corresponding to the value of the parameter
A =0,50470 = :u and the straight lines

g y = kix +o (20)
gQ: Y=k2X+BO (20")

through P resp. Q with slope k;= 0,269 resp. k»=6,66 (using
the most "favorable" values for k;, k, and p due to MACK's

computer calculations). Moreover we regard parallel lines

g : y =kx +0, (21)

k2X+81 (21")

9: ¥
lying outside S(t) near P resp. Q with small distance from P
resp. Q (see Fig. 2).

Let H; be the hexagon formed by T,g;,gQ(and their
images in the origin) and analogously H, the hexagon formed
by T,gp,gé (and their images). For their areas A;,A, we ob-
tain by some elementary, but rather lengthy analytic geometry
the following formula:

_ (a-B)? (v(t)+B)? _ (v(t)-a)?
Al) = 55—t O woE - (22
u(t)e= (2 +u~%) (2t + (1-p)~¥2)? (23)
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8 NOWAK

vit):= ((1=u) - (1-p)t)u(t)-p+ p2, (24)

(The indexes of o, B and A are to be added suitably accor-
ding to the definitions of H;,H, and to the equations of 9

9 9o

and gQ.)

We now suppose the critical determinant A(t) of S(t)
to be less than Ao:= 2,64065 for some fixed value of t bet-
ween 0,88 and 0,94. Then there would exist a lattice T
admissible for S(t) with lattice constant d(F)<Ao. (For the
definitions of the basic concepts in the geometry of
numbers used here we refer to CASSELS [2,.) If we choose a,
sufficiently large to ensure that A (t)Z 10,5626 =4s_,
MINKOWSKI's convex body theorem implies the existence of a
lattice point (a;,b;) of T in the interior of H;. Since T is
admissible for S(t) and since S(t) is symmetric with respect
to the origin, this point may be supposed to lie in the shaded
area near P (Fig. 2). The same reasoning applied to H, yields
another lattice point (az,b,) of T in the shaded area

near Q.

If we have choosen the numbers a; and B; cautiously enough
(i.e. sufficiently near to a, resp. Bo) we now can show that
the lattice point (§,n)=(a;+a,, b;+b,)of T necessarily lies
in the interior of S(t). This contradicts our assumption
that T is admissible for S(t) and thus our inequality (9)
is established for the particular value of t.

4. The details of our proof

In carrying out the program outlined above an essential
difficulty lies in the .fact that it is very hard to proof
that the various occurring functions are monotone on the
interval 0,88 2t £0,94. We avoid this problem by dividing
our interval into subintervals, where we can replace the
functions involved by suitable upper or lower bounds.



NOWAK 9
Let [t;,t;] be such a subinterval. Then we infer from
(20) and (12)

oy (£) =y, =kix, (£) =1,9123 =k, (( 1-Ap)t-(1-)\P)"1’2) v (25)

xP(t), Yo being the coordinates of the point P and
AP =-0,7800 the corresponding value of the parameter in the
equations (12). Hence ao(t) decreases with increasing t; we

choose o (t;) as a lower bound for a (t) on &l,tﬂ .
Similarly we obtain from (20'), (17) and (18)
= - = — - - -1J2 -

Bo (£) =y, (£)=ke X, (£) =2 = A (£)-(2-2, (£))

-kzt(1-)\o(t))—k2(1-)\o(t))""2. (26)

By some elementary analysis we infer from (18) that ko(t)is

a monotone decreasing function of t and therefore
By (t1, ta)z= 2 =2 (t2) =(2 =X (t2))7? -
~kat1 (1=A) (£1)) = kz (1=2 (£2))"¥2 (27)

is an upper bound for B (t) on [t1, ts] . We choose a =a (),
Bo= Bo(tl,tz) in (20) resp. (20'); then near P resp. Q the
straight lines 9 and g

for t1§t< ts.

0 lie even in the interior of S(t)

Moreover by (23) and (24) u(t) and v(t) are monotone
decreasing and the calculation shows

1,0085 Su(t)=1,0346, 1,8663v(t)=1,9220 (28)

for 0,88§t§O,94. By (22) we therefore see easily that

.= (a-B)? (v(t2)+B)2 vit)-a)?
A(t;,tz): %k, + —ETETF:E;_ - 13%%;7:75—_
(29)

is a lower bound for A(t) on [tl,tz]for the values of o and
B involved. (See the third and fourth column of our table
on page 12. Again the indexes of o, B and A are to be put
in suitably in two different ways according to the defini-
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10 NOWAK
tions of H; and H; .)

For our given subinterval [tl,td we now determine
numbers o; and B; (see our table) such that

min {A;(t1,t2), Az (t1,tz)} 210,5626 =44 . (30)

Let t be any value between t;and t;and let I' be a lattice
admissible for S(t) with lattice constant d(F)<A0. Then by
the arguments given in section 3 there exist lattice points
(a1,b1) and (az,bz) of I in the areas near P resp. Q which
are shaded in Fig. 2.

In order to establish estimates for a; and b, we simply
determine the points of intersection (x;,y;) of C; with

g; and (x2,y,) of Cs with g-.
Obviously we have
vi=3/4", xi= (i -a1)/k: (31)
independently of t. By (13) and (21) we obtain the eguation
K (2-0)t =k1 (2=0)"Y2 + o) + A-X¥2= 0 (32)

to determine the value of the parameter A corresponding to
(x2,y2) by (13). Since the left-hand side of (32) increases
both with A and with t, the value of A defined by (32) de-
creases with increasing t. By (13) y is a decreasing
function of X and so both x,(t) and y2(t) are monotone in-
creasing functions of t. This yields the estimates

xléaléxz(tz): Y1§b1§Y2(tz) (33)

for any value of t in the interval [t;,tj] .

In an analogous way we determine the points of inter-
section (x3,ys) of Ci;3 with g; and (x4 ,ys) of Cy with g;.
By (19) we get

x3(t) =3(t/) Y, yi(t) =k %3 (t) + By (34)

and from (16) and (21') we deduce the equation
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“koAt +ko A" -2+ +(2-0)"HR=0 (35)

to determine the value of the parameter X corresponding to
(x4 ,ys) by (16). The left-hand side of (35) is a monotone
decreasing function in both variables A and t. Hence the
value of X defined by (35) decreases with increasing t.
Since by (16) x is a decreasing function of A, both x4 (t)
and y4 (t) increase with t. Thus we get the estimates

x3(t1) Sa, Sxu(ty) , ya(t)Sboy, (ty) (36)

for any value of t between t; and t,.

Adding the inequalities (33) and (36) we obtain the
following bounds for the coordinates of the point
(E/n):= (a1 + az, by +by) :

Eri=x; + X3 (1) S £33, (b2) + x4 (£) = 1 &, (37)
M=y +ys(t1) Sn Sy (8) + v (£) = tmy (38

In order to show that the lattice point (&,n) really
lies inside S(t) we first determine the interval, say
[Ay(nz),k7(n1ﬂ ,0of all values of A corresponding to points
(x,y) of the curve C; with méyé N2 . (For the values in-
volved y is a decreasing function of A.) Then (14) yields
the following bounds for the corresponding values of x:

x7 2x3%, , (39)
x7=X7 (t1,t2) = (1=A7(m)) t1=(1=%7 (ny))" P (39")
X7=X7 (t1,t2): = (1=X7 (n2)) t2 = (1=%7 (ny) )2 (39")

In the same way we determine the interval [Ag(nz),
Ag(nl)] (say) which consists of the values of A corres-
ponding to points (x,y) of the curve Cy with nléyénz.Thereby
we get as bounds for the corresponding values of x
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< <

X9 X ;9 (40)

-1[2 [}
Xo=Xo (t1, t2) t == 3 (1+ Ag(ny)) +(=1=Ae(n1)) (40')

T —1[2
Xo=Xg(t1,tz2) : == t2 (14 Ag (N2)) +(=1-%g(n2)) . (40")

Carrying out the numerical calculations for each sub-
interval to be considered 1leads to the results given in
the table below.

t) t2 oy B X7 &1 E2 Xg

0,88 | 0,89 1,704 | -11,18 2,3601| 2,5021 | 2,6678 | 2,6983
0,89 | 0,90 1,699 | -11,221| 2,3949| 2,5275 | 2,6920 | 2,7246
0,9 | 0,91 1,693 | -11,271| 2,4290| 2,5566 | 2,7175 | 2,7445
0,91 0,92 1,688 | -11,32 2,4642 | 2,5819 | 2,7430 | 2,7647
0,92 | 0,93 1,683 | -11,37 2,4994 | 2,6072 | 2,7686 | 2,7840
0,93 | 0,94 1,678 | -11,42 2,5347 | 2,6324 | 2,7942 | 2,8029

The chain of inequalities
X7 <E1 <E2 <Xo (41)

being satisfied in each case, the lattice point (&,n)
necessarily lies in the interior of S(t) for any value of

t in the interval 0,88§t:;0,94. (The corresponding values
of n; are between 2,93 and 2,95 hence much smaller than
4,0800.) Thus we have reached the desired contradiction and
therefore proved our inequality (9).

There is no difficulty in showing that our shaded areas
are in fact the only parts of the hexagons H,; resp. H, which
are not contained in S(t). To this end one has to verify
(for the values of a;,B:1,t; and t; occurring in our table)
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that the points P;, Q; lie above g; resp. below g;, that
the slope of C4 at P is less than k; and that the slope of
C;2 at Q is greater than k;. All these facts can be deduced
easily from the given equations of the curves involved.

Obviously it would be possible to prove all our
theorems for a constant slightly smaller than 8/13, by a
refinement of the mere numerical details of the method de-
scribed. However such an improvement would be only of a
rather small order of magnitude.
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