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SELFINJECTIVE AND SIMPLY CONNECTED ALGEBRAS

Otto Bretscher, Christian L&ser and Christine Riedtmann

In this paper, we present a new approach to the prob-
lem of classifying all basic finite-dimensional algebras
over an algebraically closed field k which are connected,
selfinjective and representation-finite. By [12], we can
associate with such an algebra A a Dynkin-graph A , a
subset C of vertices of ZA (see fig.1l) and a non-trivi-
al automorphism group N of 2ZA stabilizing C , in such
a way that these data uniquely determine the Auslander-Rei-
ten quiver of A . Our main result is an alternate descrip-
tion of these sets C

In general, there may be non-isomorphic basic alge-
bras yielding the same data A , C and I , but among them
there is always exactly one standard algebra (1.3). In this
article, we explicitly describe the standard selfinjective
algebras by their quivers and relations. In addition, we
give a sufficient (though not necessary) condition on A
and 1 , ensuring that all algebras with A and N in
their data are standard. We show that all algebras with

A = ES ’ E7 or EB are standard.

In order to state our main result, we need a few no-
tations and definitions, which we introduce now. Throughout
the paper we assume the field k to be algebraically clo-
sed. Unless stated otherwise, we consider right-modules,

or, if we are dealing with representations of k-linear ca-
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2 BRETSCHER et al.

tegories, contravariant k-linear functors to the category
of vector-spaces. By A we always denote one of the Dyn-
kin-graphs An 3 Dn ; ES 5 E7 or E8 , and X is a Dynkin-
quiver, i.e. a quiver with underlying graph A . We identi-
fy B with a full subquiver of 2A which contains exactly

one representative of each t-orbit of vertices of 7A .

We associate with a subset C of vertices of 2ZA
the translation-quiver ZAC whose underlying quiver is ob-
tained by adding a vertex c¢* and arrows c¢ =+ c* ,
c* » T_lc to zA , for each ¢ € C . The translation of
ZAC coincides with the translation of ZA on the comman
vertices and is not defined on the remaining ones. In par-

*

ticular, each vertex c is projective and injective in

ZA, . We define C to be a configuration of 24 if 74,

is a representable translation-quiver, i.e. a Riedtmann-

quiver in the sense of [4],2.

We define a K-section-algebra to be a pair consisting

of a simply connected algebra A ([4],6) and an isomorphism
w from 2 onto a section of the Auslander-Reiten quiver

r, of A ([3],2.5).
Our main result is the following:

THEOREM. For each Dynkin-quiver 2 , the configura-

tions of ZA correspond bijectively to the isomorphism

classes of K-section—algebras.

As a consequence of our main result, we find that the

configurations of 2A correspond bijectively to the iso-

morphism classes of square-free tilting modules over KX .

In fact, using the criteria of [3), it is not hard to see
that for a K—section-algebfa (A,w) with Auslander-Reiten
quiver Ty the module ek(FA)(p,wd] is a square-free
tilting (left-) module over kX ; here p ranges over the

projective vertices of FA and d over the vertices of
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BRETSCHER et al. 3

X . Conversely, each such tilting module gives rise to a -

section-algebra by [3],2.5.

After the completion of our results, we received a pa-
per by D. Hughes and J. Waschbiisch [10] in which they state
that each configuration of ZA can be obtained from a tilt-
ing module over the quiver-algebra kA . A similar result

has been announced by Tachikawa.

In [12] Chr. Riedtmann defined configurations as sets
satisfying two combinatorial conditions; we will call these

combinatorial configurations here. It is obvious that con-

figurations as defined in this paper are combinatorial con-
figurations. She obtained a classification of the combina-

torial configurations by the end of 1977, under the further
6 E7 or
g were

determined by her along with F. Jenni by computer). The re-

assumption of T"k~periodicity (1.1) in case A = E

EB (the periodic combinatorial configurations of 2E

sulting list of combinatorial configurations coincides with

the list presented at the end of this paper.

The first question arising in her work on the classi-
fication of selfinjective representation-finite algebras was
to what extent the data A , C and I associated with such
an algebra A actually determine A . The ordinary quiver
is easily obtained from its Auslander-Reiten quiver, and in
1878 it seemed that the methods developped in [8] for An
should yield the corresponding relations also for the other
Dynkin-graphs, so that A , C and T would determine A , up
to isomorphism. This was still the perception at the Ottawa
Conference in 1978, where Chr. Riedtmann presented her de-
scription of the algebras of tree class Dn by quivers and
relations. At that time, problems arising in characteristic
2 went unnoticed, a mistake which she corrected at the end
of 1979.
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4 BRETSCHER et al.

The second question was whether all combinatorial
configurations C of 2ZA and all admissible automorphism
groups T of 2ZA stabilizing C actually arise. A first
approach was to show that the residue quiver ZAC/H actu-
ally is the Auslander-Reiten quiver of the bounden quiver
given by the projective vertices of IAC/H . As long as no
algorithms for the computation of Auslander-Reiten quivers
were known, it seemed simpler to try a second approach,
which was to verify directly that the mesh-category asso-
ciated with ZAC/H satisfies Auslander's conditions.for
categories ind A . This was worked out in [12] for An ’
and since then also for Dn , by Chr. Riedtmann. It could
be verified by computer for E8 > E7 and E8 , since it
suffices to consider T = {1} .

In the meantime, the development of covering tech-
niques has provided algorithms for the computation of Aus-
lander-Reiten quivers ([15]). Using these techniques, it
is not difficult to check by computer that the combinato-
rial configurations listed by Jenni and Riedtmann actually
occur. It was 0. Bretscher who discovered that the reduc-
tion to simply connected algebras given by covering tech-
niques can also be used to obtain a new classification of
the configurations. His work is recorded in a first and
less complete version of this article, which appeared as a
preprint ([5]). The lists given at the end have been es-
tablished by Chr. L&ser on the basis of the 1977 lists and

computations of his own resting on Bretscher's results.

The authors thank P. Gabriel for helpful discus-

sions.
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6 BRETSCHER et al.

1. Configurations and standard selfinjective algebras

1.1 We denote the Nakayama-permutation on 2A by v

A
([7],6.5; notice that in the case of E6 the correct formula
shauld be v. = (p+q+2,6-q) if g < 5). For each vertex x of

E
27 , there ig a path w : v

mesh-category k(ZA) 1is not zero, and w 1is a longest

;1x + x whose image w in the

path stopping at x with this property. We define ma to
be the smallest integer m such that v = 0 in k(ZA)
for all paths v in ZA whose length is greater than or
equal to m . Thus mA—l is the common length of all
paths from v;lx to x , and a computation yields

m =n, m = 2n-3 , m =11 , m =17 and m = 29.
An Dn EE E7 EB

1.2 Let C be a configuration of ZA , and denote by A
the full subcategory of the mesh-category k(ZAc) whose
objects are the projective vertices of ZAC . Choosing as
representatives for the indecomposable A-modules the re-
strictions M(x) = k(ZAc)(?,x)IA of the representable
functors to A , we obtain an isomorphism M from k(ZAC)
onto the category ind A ([4],2.4). The M(c*) for c € C
are the only projective and the only injective modules in
ind A .

PROPOSITION. Let ¢ be a point of C . The injec-
tive envelope of the simple top of M(c*) 1is isomorphic

to M(d*) , where d = T ™c € C; accordingly, C is

stable under Tm‘z »

Proof. Let s be the vertex of ZA for which M(s)

is isomorphic to the simple module M(c*)/rad M(c*) . As
T s = vi T-l ([7],6.5), it suffices to show that v;l
= 1_1c and V8 = d . We establish the first equality,

the second one being similar.

]

Let x be a vertex of ZA . Since M(c*) 1is the

projective cover of M(s) , k(ZA)(x,s) 1is obtained from
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BRETSCHER et al. 7

k(ZAC](x,S) by annihilating the morphisms which factor
through c¢* . On the other hand, all compositions M(x) -
M(c*) °8"" M(c*)/rad M(c*) are zero in k(?AC)(x.s) ;
accordingly, k(ZACJ(x,s) is identified with k(ZA)(x,s)

Let v : v;ls + s be a path in ZA with non-zero
residue class v in k(ZA) . Identify M(T-lc) with
M(c*)/soc M(e*) ([7],3.5). Since the canonical projection
M(T_lci + M(s) factors through M(v) , there is a path

w:T ¢c =+ v;ls with residue class w in k(ZA) such

that M(v) M(w) # 0 . By 1.1, w must be trivial.

Remark. Let v : x =y be a path in ZAC with non-
zero residue class v in k(ZAC) ._Since v can be exten-
ded to a non-zero morphism c* + x ¥ y = d* for some ¢c
in C and d =1 "™c ([4],2.8), the length of v is at

most 2mA

1.3 Following [4],5.1, we call a representation-finite
algebra A standard if A 1is basic and ind A 1is iso-
morphic to the mesh-category k(PA) associated with the

Auslander-Reiten quiver FA of A .

PROPOSITION. The standard representation-finite alge-

bras which are connected and selfinjective, but not equal to

k , are classified by the isomorphism classes of triples

(zpr,C,M) , where A is a Dynkin-graph, C 1is a configuration
of #A , and T # {1} 1is an admissible automorphism group
of A stabilizing C

Admissible automorphism groups were defined in [11],
1.5. An isomorphism f : (zA,C,1I) =+ (ZA',C’,N’') 1is an iso-
morphism f : ZA + ZA' of translation-quivers such that

£C = €' and fIf Y =

Proof. It was shown in [12],2.5 that the Auslander-
Reiten quiver PA of a connected selfinjective represen-

tation-finite algebra A is isomorphic to ZAC/H ,» where
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8 BRETSCHER et al.

A is a Dynkin-graph, C is a set of vertices of #A , and
I # {1} is an admissible automorphism group of 2A sta-
bilizing C€ . By [4].,2.9 ZAC/H is a representable trans-
lation-quiver if and only if ZAC has this property. So
the translation-quivers ZAC/H , or equivalently the iso-
morphism classes (2A,C,I1) , where C 1is a configuration
of 2A , classify the Auslander-Reiten quivers of connec-
ted representation-finite selfinjective algebras. But a
standard representation-finite algebra is uniquely deter-

mined up to isomorphism by its Auslander-Reiten quiver.

1.4 The fundamental group 1 of a connected representa-
tion-finite selfinjective algebra A 1is infinite cyclic
([11],4.2) with generator ¢ , where r 1is a positive
integer and ¢ 1is an automorphism of ZA which fixes at
least one vertex. (It was shown in [12],3 that the only
admissible subgroups of Aut 7ZA which occur as funda-

2n
mental groups have this form.)

PROPOSITION. Let A be a basic algebra with Auslan-

der-Reiten quiver ZAC/H . If I = (TP¢JZ with ram

then A 1is standard.

A ’

Proof. For each arrow a : x >y in FA , we choose
an irreducible morphism a € HomA(x,y) . Modifying the o
by non-zero scalars as in [4],5.1, we can assume that
I aogaé€ R3(Tx,x) for each x of ZA/Il , where R deno-
tes the radical of the category ind A , a ranges over
all arrows stopping at x , and oa 1is the arrow from Tx
to the source of o . We will show that R3(Tx,x) = 0 for
all x .

Let F : k(ZAC) > ind A be a covering functor. Then
Ra[Tx,x) > %k[IACJ(Ty,wy) , where Fy = x and ¢ € I is
such that the common length of all paths Tty =+ yy is =2 3
([4),3.2). Thus it suffices to prove that k[ZAC)(Ty.wy]
=0 forall y in ZA and all ¢ € NI\{1l} . But if
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BRETSCHER et al. 9

v # 1 , the length of a path v : Tty + py 1is at least

2r+2 > 2mA , and hence v = 0 in k(ZAc) (1.2).

1.5 PROPOSITION. Any basic connected selfinjective and

representation-finite algebra A of tree-class A = EB ’

E, or E

7 is standard.

8
Proof. Let the Auslander-Reiten quiver of A be

ZAC/H , where 1 is generated by TP¢ for some positive

integer r . Then (TP¢]2 = Tzr and 1 both stabilize

C . Since in our cases m is an odd prime (1.1), we con-

A
clude that my divides r , in which case we are done by
1.4, or that Tt stabilizes C . But then the number of
points of C/TmAZ is divisible by my whereas we will

see in 2.3 that it equals the number of vertices of A

impossible.

1.6 In this section, we use the coordinates on an in-
troduced in fig.l. We call a vertex (i,j) low if

jJ = n-2 and high otherwise. By ¢ we denote the automor-
phism of ZDn which fixes the low vertices and exchanges

(i,n) and (i,n-1) for i in 7 .

PROPOSITION. Let A be a basic algebra with Auslan-
der-Reiten quiver (IDn)C/H . If ¢ is stable under V¢ ,

then A is standard.

Proof. The following lemma implies that T is gene-
rated by TP¢ (notation as in 1.4), where r 1is a multi-

ple of my = 2n-3
n

LEMMA. Let C be a configuration on 2D_ . The re-
T(2n-3)2

presentatives of the high vertices of C modulo

can be chosen in one of the following two ways: a) (i,n-1)

and (i,n) for some i€ Z or b) (il,jl).(iz,jz) and

(13.33] , where 0 < ip=i,=iy< 2n-3 and NPENPYN

2 n-1 .
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10 BRETSCHER et al.

Proof. Remember that C 1is a combinatorial configu-

ration as well (see introduction and [12],2.3). So the set

contains a point of C . It is not hard to see that A,
consists of the vertices (p,q) satisfying either p =1
or else q < n-2 and p+q = i+n-1 . Since there are no
non-zero morphisms in k(ZDn) between distinct points of
c, Ai either contains exactly one point of C or
(i,n-1) and (i,n) both lie in C . On the other hand, a
low point (i,j) of C belongs to Ai as well as to
Ai+j+1—n . set € = ¢/r(2n3)2 ani Z = 2/(2n-3)7 . De-
note by h the number of orbits x € C of high vertices
x € C, by d the number of residue classes i of inte-
gers such that (i,n-1) € C and (i,n) € C. Finally, let S
be the set of pairs (i,x) € Zx C , where i € Z and

x € A, N C. The cardinality S| of 5 is given by

Is| = 2n-3+d (consider the fibres of the first projection
Z x C+7Z) and by |S| = 2(n-h)+h (consider the second
projection and use the equality |U| = n , which we prove
in 2.3 belowl). We infer that d+h = 3 , or equivalently
3d+(h-2d) = 3 . Hence we have either d =1 and h = 2,
or d =0 and h =3

Remarks. i) Far n =2 5 , y-stable and y-unstable
configurations of ZDn cannot be isomorphic. The configu-
rations of 204 are easy to determine. It turns out that
there are only two isomorphism classes, and for each of
them we can choose a y-stable representative (see §7 ,
fig. 14).

ii) It was shown in [12] that all selfin-
jective algebras with A = An are standard. So non-stand-
ard algebras can occur only for A = Dn , if n = 3m (by

part b of our lemma, 2n-3 must be divisible by 3) and if

2m-1 4m-2
or T

I is generated by 1 In fact, non-stand-
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BRETSCHER et al. 11

ard algebras exigt only for the group I = T(2n—1)2 , and
only if char k = 2 ([13]).
2. The section-algebra associated with a configuration

We fix a configuration C of 2ZA and use the nota-
tions A and M : k(ZAC] 3 ind A introduced in 1.2.

1 Write x < & if zh admits a path from the vertex
to some vertex d of < ZA . The definitions of

2.
X
Iy Ma}
<x, 1T%)N < x ... are analogous.

Let Ac = A be the full subcategory of A whose
objects are the projective vertices p of ZAC satisfy-
ing el < p < 2 . We denote by S the subset of verti-
ces x of 2ZA, for which k(ZAC)(p,x) = 0 for all pro-
jective vertices p of ZAC not belonging to A . Clear-
ly, extension by 0 allows us to identify the indecompo-
sable A-modules with the indecomposable A-modules whose
support lies in A . As representatives of the indecompo-
sable A-modules, we choose the M(x) with x € S . Notice
that Extp(M(x),M(y)) ¥ Exty(M(x),M(y)) if x and y
both belong to S .

For any arrow o : x >y in ZAC between points of
S , the morphism M(a) : M(x) =+ M(y) is irreducible in
the category ind A of indecomposable A-modules. More-
over, since the length of a path v of ZAC yielding a
non-zero morphism v in k(ZAC) is at most 2mA (1.2),
Ko lies in S . Therefore, M yields a morphism from X
into FA , which we denote by € . We denote by Ta the
Auslander-Reiten translation of PA .

PROPOSITION. The algebra ek(ZAC)(p.q) » where p

and q range over the objects of A , together with

e: L~ FA , is a K-section-algebra.
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12 BRETSCHER et al.

Proof. We will show in 2.4 that e(R) is a section
through the Auslander-Reiten quiver PA of our algebra.

That FA is simply connected will then follow from [3],2.5,

provided that it contains no periodic t-orbit. But since

IAC is simply connected, I', contains no oriented cycle.

A

2.2 LEMMA. Let x belong to S . Then we have:

a) Extk(M(x),M(d)) 0 for all vertices d of &

if and only if x < K i

0 for all vertices d of R

b) Exty (M(d),M(x))
ii and only if x = Z .

Proof. We prove only a), the proof of b) being dual.
It suffices to show that x < & if and only if
k(za) (1 Yd,x) = 0 for all vertices d of & . Indeed, we
have the following string of isomorphisms: Exti(M(x],M(d))
3 Exty (M0x),M(d)) 3 DHom, (17 TM(d),M(x)) 3 D k(Za)(t 'd,x)
The second isomorphism is the Auslander-Reiten formula ([1],
2.2 and §3), and the third one expresses that M induces an

isomorphism from k(2A) to the stable category ind A

So let us assume that x &£ 2 , or equivalently that
r'lK < X . There is a path v 1in IAC from a projective
vertex p to x with non-zero residue class v in
k(ZA,) ; by the definition of S , p satisfies ™k < p
<k .So v crosses T'lK , i.e. there is a factor
w:tld>x of v with W #0 for some d in K_ . The
residue class of w in k(2ZA) cannot be zero, since other-
wise w would pass through a projective vertex q not be-
longing to A , which would yield k(ZAC)(q,xJ # 0, a con-
tradiction. Therefore, k(ZA)(T_ld,x) # 0 . The other impli-

cation is trivial.

2.3 LEMMA. For all d in Ko , the projective dimension
is

of M(d) s an A-module i

at most 1 .
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BRETSCHER et al. 13

Proof. We will show that HomA(M(x).TAN[d)) = 0 for
all vertices x in S yielding an injective A-module
M(x) and for all d in Zo , which is equivalent to our
statement by [3],2.2 . Clearly, we can assume that M(d)
is not projective, so that TAM[d) is isomorphic to M(e)
for some e in S . As Exti[M(d),M[eJ) # 0 , we have

e < 1k by 2.2, and thus it suffices to prove < x .

Let s be the vertex in S for which M(s) is iso-
morphic to the simple socle of M(x) , and let M(c*) be
the projective cover of M(s) as a A-module. For any y in
S , we have dimkk(ZAC](c‘.y] = dimkk[ZAC](y,x) , both num-
bers being equal to the multiplicity of M(s) as a compo-
sition factor of M(y) . Since c* =< st Mg , there is

a y € Ko for which k(ZAC)(C*,y] # 0 , and we conclude

Zsx.

COROLLARY. The number o
ZAC such that 1% < p =<

of K
— o

Proof. We set T = gM(d) , where d ranges over

B . o1f Exti(M[x),T] - @ = Exti(T,M(x)) for &omE x i

S , we know by 2.2 that x 1lies in Zo . Since, in addi-
tion, Ext;(T.T) =0 and pdim T <1, T is a tilting mo-

-+

projective vertices p of

>+|

equals the cardinality

dule over A ([3],2.1), and hence the number of its inde-
composable summands equals the number of non-isomorphic
simple A-modules, i.e. the number of projective vertices p

of 28, with t™Rs<ps?.

2.4  PROPOSITION. The quiver e(R) is a section through T,.
Proof. By definition ([3],2.5), we have to show that

the vertices of E(K) form a set of representatives for

the TA—orbits of vertices of PA and the arrows a set of

representatives for the oA-orbits of arrows of FA .

Assume that M(d) 1is isomorphic to TXM(d') in
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14 BRETSCHER et al.

mod A for some d and d' in Ko and a natural number
r=1. Let x be the vertex in S for which M(x) is
isomorphic to TAM(d') . Then on the one hand, there is a
path in FA from M(d) to M(x) ; hence there is a path
from d to x in ZAC and & < x . On the other hand,
Ext;(M[d').M(x]) # 0 implies 3 $ x (2.2). Hence the
e(d) with d € Zo belong to different TA-orbits in T

A
As FA contains no oriented cycle, the number of 1T1,-or-

A
bits equals the number of projective A-modules, which co-
incides with the cardinality of Zo (2.3). As a conse-
quence, the vertices e€(d) , d € Ko , form a complete set

of representatives of the t,-orbits.

A
Since we know that M(a) 1is irreducible in mod A

for any arrow o in I3 , it remains to show that each

OA-orbit BOA in FA contains an arrow from E(K] . Let

BOA connect the TA-orbits of e(d) and e(d') . Since

PA contains no oriented cycle, it is easily seen that the

p formed by e(d)™ , e(d")™

has one of the two forms illustrated in fig.2.

sub-translation-quiver of T
and g%

The figure shows that, given any two vertices x € e(d)™

and x' € e(d')TA , Bo‘ contains either an arrow T;PX >
T:x’ or an arrow T;rx' > Tix , where r,s € N . Set
x = €(d) , x' = €(d’') and assume for instance that @a con-

tains an arrow T;re(d) > T:E(d') , where r,s € Nl. If r
was > 0 , the vertex c € S such that M(c) = A e(d)
would satisfy the relation c % 2 by lemma 2.2a. So there
could be no chain of irreducible morphisms from M(c) to
e(d’') in mod A , a contradiction. We infer that r = 0 ,
and similary that s = 0 . As a consequence, we have an
irreducible morphism f : é(d) + ¢e(d') in mod A . If f
admitted the decomposition f = E M(hi] M(gi) in mod A ,
where g4 € k(ZAC](d,di) , each vertex di would obvi-
ously belong to 2 .so £ would be reducible in mod A
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BRETSCHER et al. 15

too. We conclude that f 1is irreducible in mod A and

that Z contains an arrow d -+ d’

£()™

fig. 2 A YA . _—,Zk___.___._-s(&')ra

e —gA

_/f__\;./__/_i— _\_;ZS_/V T é(d')t‘

3. The configuration associated with a section-algebra

By k : ZA » 2A2 we denote the unique morphism of
translation-quivers such that the minimal value of «k on
Zo is zero ([4],1.86).

3.1 Let P be a set of representatives of the T-orbits
of (ZA)O , and let NP be the full subquiver of ZA

whose vertices are the T-Pp for p in P and r in

N . For x in (NP]O , we denote by x the set of tails
of arrows of NP with head x . Notice that «(y)

= k(x)-1 for y € x . By induction on «x(x) , the fol-
lowing formulas define an integral-valued function GP =86
on (NPJO

1 + 28(y) if x € P and 6(y)> 0 for all y € x
§(x) =4 -6(tx) + L8(y) if x ¢ P and 0< &(tx) < Ié(y)
0 otherwise
where y ranges over x in all summations. Denote by
RP the full sub-translation-quiver of NP whose vertices

form the support of GP . Call P a K-Eattern if RP

contains the subquiver 2 of 2n .
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16 BRETSCHER et al.

We use notations and results of [4],§6 in order to
establish a bijection between K-patterns and isomorphism
classes of K-section-algebras. Clearly, a K-pattern P de-
fines a unique grading gp on A (gP(d] = K(p)-KO , where
p € P lies in the t-orbit of d € AO and Ko is the mini-
mal value of k on P), and our function & 1is obtained
by adding up the components of the dimension-map associated
with (A,gp) . Since P 1is a K—pattern and A a Dynkin-
graph, Ep is admissible and representation-finite. Thus
RP is the Auslander-Reiten quiver of the simply connected
algebra AP = @k(RP)(p,q] with p,q € P, and AP togeth-
er with the embedding of 2 into RP is a K—section-alge-
bra. Conversely, for every K-section-algebra (A,w) we can
map the Auslander-Reiten quiver PA into ZA 1in such a
way that «(X) is identified with 4 < ZA . The projective

vertices of FA < ZA then form a K-pattern.

3.2 Let P be a Z—pattern and t € N U {«»}. By induction
on «k(x) , the following formulas, in which y ranges over

x , define an integral-valued function dt on (NP)O

1+ zd, (y) if x € P
y

o - -d (X)) + §dt(y) if x ¢ P and O<<dt(rx]<<§dt(y]
t d, (tx) if x ¢ P, dt[Tx]>>§dt(y) and k(x) < t+l

0 otherwise

We denote by Dt the set of vertices ¢ of NP for
which «k(c) = t:l and dt(c] b Edt(y) , where y ranges
over the set ¢ of heads of arrows in NP with tail ¢
The sets DO < Dl < 02 ... form an increasing sequence
with union D°° . Our aim in this chapter is to prove the

following

PROPOSITION. Dm is stable under T Ma , and CP

= Tmﬁsz is a configuration of 7A
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fig. 3
P RP:
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3+3 Let St be the full sub-translation-quiver of NP

whose vertices x satisfy dt(x)> 0 . With St we associate

the translation-quiver Rt which is obtained by adding a

=]
vertex c¢* and arrows ¢ > c* , c* > 1 "¢ to St for

each ¢ € Dt ; the translation on Rt coincides with the

translation of St on the common vertices and is not defi-

ned on c* . We extend dt to Rt by setting dt(c*)

= dt(c)+l . Similarly,we set «k(c*) = k(c)+1 . Clearly, NP
and Rt are full subtranslation-quivers of R_ , and each
vertex x of R_ such that «(x) s t belongs to Rt . As
2 is a Dynkin-quiver, St is finite if t € N (Consider
the full subquiver of X formed by the x such that
dt(T_NX) >0 for all N €N ; let O be a connected com-
ponent of this subquiver; by the definition of dt , the
restriction t|T ~H- 15 is the Coxeter transform of
dtlr ﬁ for large N ; on the other hand, a positive vec-
tor does not stay positive when acted upon by the powers of
the Coxeter transformation).

is

In order to prove that the translation-quiver Rt
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18 BRETSCHER et al.

representable for all t € N , we first reformulate a result
of [4),§6. Let T be a simply connected finite translation-
quiver, «x : I' =~ ZAZ a quiver-morphism and dF i FO +~ 7
the function which we define by induction on «k(x) wusing
the formulas
dr(x] _ yEx'd (y) + 1 if x .1s projective
-dF(Tx) + yéx_dr(y) otherwise.

LEMMA. For a simply connected finite translation-

quiver T the following statements are equivalent:

(i) I' is the Auslander-Reiten guiver of an algebra.

(ii) dF(X) > 0 for all € FO and dr(J) =

X
1 + yéj*dr[y] for all injective j € PD
(iii) dr(x) > 0 for all x € r, and dP(J) = yéj*drty)

for all injective j € PD

—

Proof. (i) = (ii) : If T 1is representable, dF(X) is

the dimension of the module attached to x € FO

(ii) = (iii) : clear.

(iii) = (i) : Let T = Gp be the graph associated
with T ([4],4.2). As T 1is simply connected, T 1is a tree
(a simply connected locally finite translation-quiver has no
periodic component; accordingly, the vertices of T are the
T-orbits of T , the edges are the o-orbits). We assume that
the minimum of «k on PO is 0 , which is permissible, and
we endow T with a grading g such that g(pT] = k(p) for
each projective p € FO . With the notations of [4],6.2, the
map PD > (OT)O , x » (k(x),x") then extends to a full em-
bedding of T into QT ’ wg identify T with its image and
extend dP to a function d : (QT]O + N by setting d(y)
=0 if y € (QT)D\FD . Then it is clear by induction on
k(x) that d(x) 1is the sum of the components of the dimen-

sion-vector d(x) of [4]),6.4 for each x € (QT)D . As a
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consequence, ' is identified with RT and we can apply
(4], prop.6.4.

3.4 PROPOSITION. For each t € N, Rt is the Auslander-

Reiten guiver of a simply connected algebra. For each ver-

tex x of R, , we have

t
dt(x] = gdimkk(Rt)(p,x)

where the sum is taken over all projective vertices p
of R

t

Proof. By induction on t . For t =0, Rt coin-
cides with RP and we can refer to 3.1. So we may assume
that our statement is true for all integers which are

strictly smaller than some t > 0 . It suffices to prove

() d (x te) = d (c7he)
t
for all c € Dt (3.3); indeed, (*) implies dt(x] = th(x)
by induction on x(x) ; as dt satisfies the conditions of

lemma 3.3iii , Rt is representable and dt is the dimen-

sion function (see the proof of the lemma).

If «k(c) ¢ t-1 , the equality (*) follows from the
- - -1
induction hypothesis: d, (1 10] =d, ,(1 lc) = d (t "c) =
-1 t t-1 Rt-1
th(T c) . Assume that «(c) = t-1 and notice that (*) is
equivalent to dt(c) =1+ Zdt(y) , where y ranges over

all successors of ¢ in NP (or in Rt-l)' As c lies in

Dt , it must be injective in Rt-l .+ Using lemma 3.3ii , we
1 +

infer that d_(c) = d (c) = Id (y) = 1 + 2d, (y)
t R¢-1 yRg-1 Y yty

3.5 For each t € N , let At be the full subcategory of

the mesh-category k(Rt) whose objects are the projective

vertices of Rt , and let Mt be the isomorphism from

k(Rt] onto the category ind At of indecomposable At-

modules, given by Mt(x] = k(Rt)(?,x)IAt
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LEMMA. Let c¢ be a point of 7, , where
t = k(c)+2m,+1 , and let M, (j) be isomorphic to the injec-
tive envelope of Mt(c')/rad Mt[c*) . Then j = d* , where

Proof. We adapt the proof of proposition 1.2: Now Rt

plays the role of ZAC , and the full subquiver R% obtai-

ned by deleting the projective injective vertices of Rt re-

places ZA . Notice that for any two vertices x and y of

R% . k(R%)(x.y] is identified with k(zA)(x,y) , if X < X,y

and «k(x),k(y) < t+1

Let Mt(s) be isomorphic to Mt(c*]/rad Mt(c‘) . We

have r'll < v;ls : Otherwise we could find a non-zero mor-

phism in k(zZA) , and hence in k(Rt] , from some x on X

to s , and thus c¢c* =< K , a contradiction. We refer to 1.2

for the proof of T-lc = v;ls

Since K(vAs) = K(S)+mA—l = K(c)+2mA < t-1 , there ii
a path v : s » VS in Ré with non-zero residue class v
in k(Ré] . We can find a morphism ¢ : Mt(vAs) + Mt(j)
such that ¢Mt(v] # 0 , where v 1is the image of v in
k(Rt) , and we can even assume that ¢ = Mt(u) for some
path u : vys > Jj in R, . Suppose V;s ¢ Dt or else
J# (vAsJ‘ , The injection Mt(uv) does not factor through
an injective other than Mt(j] , so that the head x of the
first arrow o : v,s » x in u lies in (NP)O . Since

A

k(x) <=t , x belongs to R% and is not injective. Since

av € k[Rt)(s,x) does not factor through an injective, the
image av of av in k(Ré](s,x) = k(zA) (s,x) 1is not zero,

which is impossible (1.1).

3.6 LEMMA. If k(Rt)(x.y) # 0, then «k(y) s k(x)+2m

A

Proof. Let u : x » y be a non-zero morphism in
k[Rt] . Then there is a projective vertex p and a mor-

phism p : p + x such that up # 0 . Let Mt[j) be the
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injective envelope of the simple top Mt(s) of Mt(p) ;
Since wup 1is not zero, there is a morphism T : y =+ j
such that Tup # 0 . Therefore, it suffices to prove that

k(j) < k(p)+2m In fact we shall prove that

k(s) = K[p)+mAA and «(j) =< K(s]+mA .
Let us prove the first inequality, the second being
proved similarly. First we notice that, for any two verti-
ces u,v of R% , the space k(R%)(u,v) is identified
with the quotient of k(zZA)(u,v) by the morphisms which
factor through a vertex of ZA 1lying outside Rt ([4],2.5).
Therefore, if p belongs to P C (R;:]0 , s 1is a vertex of
ZA such that k(ZA)(p,s) # 0 ; as a consequence we obtain
k(s) < K(p)+mA—l . On the contrary, if p = c* , the rela-

tion k[ZA)(T-lC,S) # 0 yields «(s) = K(t_lc)+mA-1

= K(c*)+mA

3.7 Now we are ready to prove proposition 3.2. Lemma 3.5

“Ma It remains to be

implies that ©?_ is stable under =
shown that ZAC is a representable translation-quiver for
C = TmAva . For any t , Rt is a full subtranslation-qui-
ver of ZAC , which contains all vertices x of IAC sat-
isfying 2 < x and x(x) <t . If a vertex x of Rt is
projective with x % 3 or injective with k(x) s t-1 , then

x 1is projective and injective in ZAC

Our proof consists in checking that ZAC satisfies
the conditions stated in [4],2.8. Using the automorphism
Nme o or 24

within Rt for a convenient choice of t € N . As an exam-

T c’ N € N , we are reduced to a verification
ple, we show that each y in ZAC satisfies the inequali-
ty gdimkk(ZAC](x,y) { o , where x ranges over all ver-
tices of ZA, . For a given x , we have k(ZAC)(x,y]
“k(z8,) ("M, 7 MMy KR ("M, c NMayy ie Nyt € m

are chosen in such a way that t = K(x)+2NmA = my
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and t =2 K(y)+2NmA zZm, . We infer that «k(y)-k(x)
K(T_Nm°y)-K(T_Nm‘x) < 2m, whenever k(ZAC)(x.y) # 0
(3.86)

4. Proof of the main result

4.1 LEMMA. a) A configuration C of 2A 1is uniquely de-

termined by the map DC from KD (s (ZA)D to N given by

Dc(d) = Zdimkk(ZAc](p.d) ;

where p runs over the projective vertices of ZAC

b) A K-Eattern P is uniquely determined by the map

Dp from Ko < (NP)_ to N given by
Dp(d) = Zdim k(Rp)(p,d) ,

where p runs over the points of P .

Proof. a) Let dC be the function assigning to an
x € (ZA]O the value

do(x) = Zdim k(ZA,)(p,x) = dimM(x)

where p ranges over the projective vertices of ZA and

where M 1is defined as in 1.2. Clearly, C is uniqugly de-
termined by dC , since a vertex ¢ of zA 1lies in C if
and only if dC(c) > Edc(y] , where y belongs to ¢,
computed in ZA . But dc in turn is given by DC , its
restriction to 2 : In order to compute dc(x) for some
vertex x 2 t_IK we use induction on «k(x) and the

formulas
4 G0 - -dC(Tx] + ch(y) if dc(rx)< Edc(y)
¢ dc(rx] otherwise

where y lies in x € (ZA)D . The construction in case
x < 1R is dual.
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b) Let &p be the function assigning to an x € (ZAJD

the value

Zdimkk(RP)(p,x) if x € [RP)0
Gp(x) =

0 otherwise A

where p ranges over P . Then P 1is uniquely determined
by GP . On the other hand, we can compute GP(x) for any
P to Ko

X € (ZA)O if we know DP , the restriction of §
If x = TK we use induction on =-k(x) and the formulas

) -1 . -1
5 i) = {' Gp(t x) + ZGP(y) if 0 < GP(T x) < Zép(y)
P 0 otherwise ’

where y 1lies in x" (ZA]O . The construction in case
X 2 1'13 is dual. The following proposition provides an

alternate proof.

4.2 Let D be a map from Ko to N and set
MD - THom (kD(t¢),kD(h¢)]
) k
where ¢ runs through the arrows of K , has tail t¢ and
head h¢ . The group &P = igz GL(D(i),k) operates on Mo
o

in such a way that the G -orbits correspond to the isomor-

phism classes of left kA-modules of dimension-type D .
Since the quiver-algebra Kk is representation-finite,

there is a module XD € MD whose GD-orbit is open in MD

>+

PROPOSITION. Given a map D : Ko + N , there i

w

lﬂ.

w

i-

v |o

pattern P such that D = D, if and only if X° i

rect sum of n non-isomorphic indecomposables, where n is

the cardinality of Ko . Then P is uniquely determined.

Proof. Using the bijection between K-patterns and iso-
morphism classes of square-free tilting modules over k& 0
we see that DO = DP for some K-pattern P if and only if
there is such a tilting module T of dimension-type D

Since the module XD € MD is characterized by the property
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extiz(x%,x7) = 0 (D. Voigt; see [61,[1aD), T = x° is the
anly candidate, and XD actually is a square-free tilting
module if and only if it is the direct sum of n non-iso-
morphic indecomposables ([9],4.5;[3],2.1). Hence there is
at most one square-free tilting module of dimension-type

D , up to isomorphism, which shows that P 1is uniquely

determined.

4.3 In view of 4.2, it suffices to prove the two follow-

ing claims, in order to establish our main result:

a) For each configuration C of ZA , we have DC

= DP , where P = Pc is the K-pattern associated with

the K—section-algebra A = AC (2.1 and 3.1).

b) For each K—pattern P , we have DP = DC , where

C = CP is the configuration of ZA assigned to P (3.2).

Proof. We use the notations A , M and R, , M

t t
introduced in 1.2,3.3 and 3.5.

a) For each d € Ko , Dp(d) is the dimension of the
A-module €(d) = M(d) , which is by construction the di-
rect sum @k(ZAC)(p,d] , where p ranges over the projec-
tive vertices of ZAC satisfying Mk < p =< % . since
the other projective vertices admit only trivial morphisms

into d , the dimension of M(d) coincides with Dc(d)

b) Choose t =2 3mA . Let p € P, and let Mt(q)
be the injective envelope of the top of Mt(p) . By 3.6,
we have X< q < 1 ™3 . since k(g) <= t-1 , g 1is pro-
jective and injective in Rt as well as in ZAC . On the
other hand, all projective injective vertices q in Rt
with ? < g < 1 ™2 arise in this way from points of P .
Using [4],2.8, first for Rt and then for ZAC 5
obtain Dp(d) = Zdimkk(RP)(p,d) = Zdimkk(Rt](p.d]
= Zdimkk(Rt)(d.q) = Edimkk(ZAc)(d.q) = Zdimkk(lhc)[p',d)

Dc(d) , where p ranges over P , g over the injective

we
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vertices of Rt with X < q < r'"kK , and p' over the

projective vertices of ZAC with ™% = p' =< s , or

equivalently over all projective vertices.

54 Description of the standard representation-finite

selfinjective algebras by quivers and relations

5.1 PROPOSITION. Let A be a locally representation-fi-

nite category with quiver Q , and assume the Auslander-

Reiten gquiver T of A 1is simply connected. Then A is

isomorphic to kQ/I for some ideal I in the gquiver-cate-
gory kQ such that, for any two objects x and y of
A, either 1I(x,y) 1is spanned by the differences of paths

from x to y or else I(x,y) = kQ(x,y)

Proof. First we show that the results on "Zykellose
Algebren” by Bongartz ([2]) hold in our situation, i.e.
that dimkA(x,y) <1 and that A ¥ kQ/I , where I(x,y)
is spanned by paths and differences of paths for any x
and y . The first assertion is clear, since @ contains
no oriented cycle and since A is locally representation-

finite.

We find a suitable ideal I by the following proce-
dure. Choose some X5 € FD , and let k : T » ZA2 be the
morphism of translation-quivers with K(xo) = 0 ([4],1.6).
Viewing A as a full subcategory of k(I') , we assign the
integer «(y) to each object y of A . For mé€ N, let
A be the full subcategory of A whose objects are the y
with -m < k(y) s m . Denote the quiver of Am by Qm . It
suffices to construct for each m an ideal Im c kmm
which is generated by paths and differences of paths in
such a way that A 3 ka/Im and I, = I n kQq -, « We
extend Im to an ideal in k@ by setting Im(x,y]
= kQ(x,y) if x or y does not belong to Qm . Then

I = ﬂIm has the desired property.
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The case m = 0 being trivial, we assume we already
found Ip for all p¢ m . Notice that any object y of
Am with k(y) = m or «(y) = -m 1is a sink or a source
in Qm , respectively. Since Q 1is locally finite, there
are at most countably many such y . Hence we can use an
inductive procedure reducing the problem to the following

(or its dual):

CLAIM. Let A be a locally representation-finite
category whose quiver @ contains no oriented cycle, and
suppose there is a sink y in @ . Assume the full sub-
category A' containing all objects of A but y is
isomorphic to kQ'/I' , where Q' is the quiver of A’
and I' 1is generated by paths and differences of paths.
Then A 3 kQ/I , where I has the same property and
INkQ' = I’ .

By [2], the claim is true if we replace A by the
full subcategory Ay whose objects are the x with
Alx,y) # 0 , since Ay is finite. Then it is easy to see
for A , too.

The end of the proof of our proposition is based on
an idea of Bongartz. It remains to be seen that, if some
path v from x to y 1lies in I(x,y) , then they all
do. If not, we choose a v whose residue class v in A
is zero and such that there is a path w starting and
stopping at the same vertices as v with w # 0 . Let A’
be the full subcategory of A whose objects are the X
Xps wee aX through which v passes. We can assume n

minimal. Then the quiver of A' has the form

“es . PR pp— V]

X, —>
Xo/

We choose the following A’-modules:
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1
1. k—0 ... 0O«—k_1 k¢—k<«—0 ... O
= = / \

Vo kk: i k’ Vl 0« 0

0 ... kk ... 0 0 ... 0 kK

v, = « Ny =

i 0 0 'n-2 O« 0

We obtain an oriented cycle V0 - V1 L AT Vn-2

> VO of non-zero non-invertible morphisms. Since the
left-adjoint functor L to the restriction
R : modA -+ modA' is fully faithful, applying L yields

an oriented cycle in T , which is impossible.

5.2 Let C be a configuration on 2A , and let A be
the full sub-category of projective objects of k(ZAc) .
The Auslander-Reiten quiver of A 1is isomorphic to ZAC ’
which is simply connected. Therefore, we can identify A
with KkQ/I , where Q is the quiver of A and I an
ideal as in 5.1. Let A be the full sub-category of A
defined in 2.1. We identify A with kK/J , where K is
a full subquiver of @ and J = INkK . A path v : y + x
of K will be called complete if it does not belong to

J , whereas yv and vB do for each arrow Yy of K

with tail x and each B with head y .

We want to recover Q@ and I from K and J . De-
fine a quiver 2ZK by completing the disjoint union 2 x K
of copies m x K of K with arrows (m,x) + (m+l,y) for
all m , whenever there is a complete path y + x in K .
For any two vertices (m,x) and p of 2K , we define
23((m,x),p) to be the subspace of kZK((m,x),p) spanned
by the differences of the paths (m,x) - p 1if there is a
path p =+ (m+l,x) in 2K , or by all paths (m,x) » p

otherwise.

PROPOSITION. A is isomorphic to k2ZK/ZJ .
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Proof. Let Am be the full subcategory of A whose
objects are the projective vertices p of ZAC for which
r'(m'll"%Z < ps T-"ka . The automorphism T " of ZAC
induces an isomorphism M, Am > Am+1 , and hence we can
identify the quiver of Am with m x K . Then Tt " (m,x)
= (m+*1,x) and T ™(moa) = (m*l,2) , where x is a vertex

and o an arrow of K .

The m x K are full subquivers of @ and their un-
ion Z x K contains all vertices of §Q . Let
o : (m,x) » p be an arrow of Q not belonging to Z x K .
By 1.2, there is a path w : p + (m+l1,x) in @ such that
wa does not lie in I . Since the first coordinates of
vertices cannot decrease along paths in Q , we see that
p = (m+tl,y) and w = (m+l,v) for some path v : y > x in
K . We claim that v 1is complete in K : Assume that
wB ¢ I for some arrow B of (m+1l) x K. By 1.2, the associ-
ated morphism WE af A can be extended to a non-zero
morphism wBu : (m,x) + (m+1l,x) , where u is a path in
Q . This implies Bu # 0, hence o = Bu , a contradiction.
Similarly, suppose that yw é I for some arrow Y of
(m+1) x K. By 1.2, rm‘[7ﬁ) can be extended to a non-zero mor-
phism UTm‘(7W) : TmAp + p . This implies UTmA(Vl # 0,
hence o = UTm‘(v) , a contradiction. Conversely, let
v : y+x be a complete path in K . We can extend (m+1l,v)
to a path w = (m+1l,v)a(m,u) : (m,x) = (m+1l,x) , where
u: x *>z 1is a path in K and a : (m,z) + (m+l,y) an
arrow in Q ; by 5.1 w does not lie in I . Since, by 1.2
and 5.1, (m+l,uv)a : (m,z) + (m+l,z) does not lie in I
either, uv cannot belong to J . Therefore, u 1is trivial,
and o : (m,x) =+ (m+l,y) . is an arrow of @ . We conclude

that Q is isomorphic to 7K .

By 1.2 and 5.1, I is uniquely determined by Q ,
since a path (m,x) - p 1lies in I if and only if it can-

not be extended to (m,x) - p + (m+1l,x) .
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Remark. With K and J we associate the "short-
circuited” quiver KSC , which is obtained by adding to K
an arraw X =+ y whenever there is a complete path
v : y+x in K . If we distinguish between the arrows of
KSC already present in K and the new arrows, say by
calling the former solid and the latter broken, we can re-
cover K and J - and therefore Q and I - from KSC .
Clearly, KSC is the residue quiver of Q modulo TmAZ ~

the solid arrows being the images of the arrows in Z x K .

5.3 Let A#k be a connected algebra which is standard, re-
presentation-finite and selfinjective. We want to describe
A by quiver and relations. The Auslander-Reiten quiver FK
of A 1is isomorphic to ZAC/H for some configuration C
of 2ZA and a non-trivial admissible automorphism group I
of ZAC Let A C k(ZAC) , § and I be defined as in
5.2, The fundamental group 1 of FK acts on @ and
stabilizes I . By QH we denote the residue quiver of @
modulo 1 and by I the ideal generated by the image of

Il
I in kQH

PROPOSITION. A is isomorphic to kQp/Ip .

Proof. Let x,y be two vertices of Q . The canoni-
cal projection w : Q = QH induces isomorphisms
_LL ~ ~
genk00x.gy) 3 Kap(mx,my) , HT0x,gy) 3 1p(mx,my)  and
g%nﬁ(x,gy] > (kQH/IH)(ﬂx,ny) . In other words, the induced

functor E : A > an/IH is a covering functor.

On the other hand, the canonical projection
p : ZA
k(p) : k(ZAc) > k(ZAC/HJ between the associated mesh-cate-

gories. By restriction to the projective vertices of ZAC

c” ZAC/H induces a covering functor

and ZAC/H , we obtain a covering functor F : A -+ A

~ , b= ;
The composition kQ - k@/I * A - A maps I onto 0 . So it
induces a functor D : an/III + A such that DE = F . The
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functor D 1is an isomorphism, because it is bijective on

the objects, and E,F are both covering functors.

6. Selfinjective algebras of tree-class An

Our purpose is to present a new access to the configu-
rations C of ZAn and to the basic algebras with Auslan-
der-Reiten quiver (ZAn)c/TnZ . Algebras of this form will

be called Brauer-algebras here.

6.1 Start with a Brauer-quiver Q ([8],1.4), i.e. with a

finite connected quiver satisfying the following condi-

tions: a) each arrow of Q belongs to a (simple, oriented)
cycle; b) each vertex belongs to two cycles exactly; c) two

cycles meet in one vertex at most.

Orient Q by dividing its arrows into an a- and a B-
camp in such a way that two arrows belong to the same camp
if they are parts of the same cycle, to different camps if
they are parts of two neighbouring cycles (fig.6). Denote by
AQ the algebra defined by the quiver @ and the following

relations:

a) oB = Ba =0

b

b) o B for each vertex x of § , where a, (resp.

bx] denotes the length of the a-cycle (resp. B-cycle) run-

ning through x

Clearly, AQ

tion, and its quiver is derived from Q by erasing the

does not depend on the chosen orienta-

loops.

PROPOSITION. The map Q & AQ yields a bijection be-

tween the isoclasses of Brauer-quivers and the isoclasses

of Brauer-algebras.

The proposition is already proved in [8] and [12]. A

new proof is given in 6.3 below.
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6.2 Let S be the oriented tree of fig.4. A pedigree L
is by definition a subtree of S which contains the lowest
vertex 1 . With each such L we associate the algebra AL
defined by the quiver L and all possible relations

aB = 0 . With each vertex x of L we associate the inde-
composable (contravariant) representation Mx of L such
that Mx(y) = k or 0 according as y 1lies between 1 and
x or not; the transition maps of Mx are zeros and iden-
tities. Then we get a section ME - Me *  cew F Me of
the Auslander-Reiten quiver PAL 1by engmerating the"verti-
ces of L from the left to the right as indicated in fig.5
(for the construction of T, we refer to [4],7.2 and
7.5). In fact, it follows ea%ily from [16] or [4],§7 that
the preceding construction yields a bijection between the
pedigrees with n vertices and the isoclasses of Kn—sec-

tion-algebras, where Kn denotes the quiver
l1>2~+...>n

Remark. The Kn-pattern PL associated with the sec-

tion-algebra AL (3.1) can be described as follows: Let us

identify each vertex x of L with the shortest walk from

T to x in L , and write such a walk as a word in B-l

and a . For instance, we identify the vertices €, » €
e,, of fig.5 with the words 8 81 - 87°, T (-the
empty word) and aze-la respectively. We order these words
lexicographically in such a way that B_l< a ; so we have

A < 8-2 < B-lu < a< aB—l . The lexi-
cographic order assigns to each vertex x an ordinal

o(x) € {1, ... ,n} and a vertex (-p(x),o(x)) of ZAn ,

and
in particular 1 ¢ B

where p(x) is the number of letters B_l in the word
identified with x ; in fig.5 for instance, the vertices

€, » € and €,, are mapped onto the vertices (-2,3),
(0,1) and (-1,12) respectively. The pattern PL equals the
set {(-p(x),o0(x)): x € L} ([sl,7.2).
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6.3 Proof of proposition 6.1. Let L be a pedigree with

n vertices, P = PL the associated Kn-pattern and C = CP
the configuration of ZAn assigned to P (3.2). Denote by

A  the Brauer-algebra with Auslander-Reiten quiver
(ZAn)C/Tn2 . According to 5.2, the quiver Lec of A can
be described as follows: Set y = ax if L contains an a-
arrow from x to y , and define an a-orbit with origin

x and terminus y to be a set of vertices

{ x,0x, ... ,a'x = y } such that no a-arrow stops at x or
starts at y . Define B-orbits in a similar way. Then Ls
is obtained from L by adding a "broken” (a- or B-) arrow
y * x for each (a- or B-) orbit of cardinality > 1 with

origin x and terminus vy .

The Brauer-algebra A 1is defined by the quiver LSC
and the relations produced in 5.2 and 5.3. In fact, we can
get a more convenient description of these relations by ad-
ding to LSC a loop at each vertex x such that {x} 1is
an (o- or B-) orbit of cardinality 1 . In this way we
clearly obtain a Brauer-quiver L[ . It is easy to see that
the relations of 5.2 and 5.3 are equivalent to the rela-
tions a) and b) of 6.1. Accordingly, A is identified with

AE .

This shows that each Brauer-algebra A is isomorphic
to some AQ , where the Brauer-quiver @ 1is uniquely de-
termined up to isomorphism by A (obtain Q@ by adding
loops to the quiver of A ). It remains to show that, con-
versely, each AQ is a Brauer-algebra. For this sake, we

orient Q and choose a vertex, which we denote by 1 .
Consider the walks of @ of the form

or

285



34 BRETSCHER et al.

which end with an o- or B-arrow and which do not run twice
through the same vertex. The vertices of Q and the arrows
occuring in the above walks form a pedigree L such that
Q = L. As a consequence, AQ is the Brauer-algebra associ-

ated with the Kn—section-algebra AL .

Remark. Define an arrowed Brauer-quiver to be

an oriented Brauer-quiver together with a distinguished a-
arrow. Attach the arrowed Brauer-quiver (t,en + 1) to each
pedigree L with n vertices. The last part of the above
proof then shows that L can be recovered from (E,en + 1).
So we get a bijection between the pedigrees and the iso-

classes of arrowed Brauer-quivers.

On the other hand, we have a bijection between the

isoclasses of arrowed Brauer-quivers and of arrowed planar

trees. The arrowed planar tree T attached to an arrowed
Brauer-quiver P has the cycles of P as vertices and the
vertices of P as edges; the cyclic order that each cycle
c of P defines on its vertices v , coincides with the
clockwise cyclic order which the immersion of T into the
plane defines on the edges v of T with extremity ¢
([8],1.4). The head of the distinguished arrow of P is an
edge of T , which we distinguish within T by "orienting”

it towards its "o-extremity”.

Composing the bijections L » (f,en + 1) and P e T,
we obtain a bijection L » T between the pedigrees and the

isoclasses of arrowed planar trees: The vertices of T are

the a- and B-orbits of L ; the edges of T are the verti-
ces of L ... Being "self-symmetric”, the bijection L m» T
is different from the bijection first obtained by Harary,
Prins and Tutte [17].

6.4 For the sake of completeness, we end this section
with a description of the configuration C assigned to a

pedigree L (6.3). As C is periodic, it is enough to de-

286



BRETSCHER et al. 35

scribe the vertices (p,q) € C such that 0 < p< n
These are the points (i-1,j-i) and (i-1,n+j-1i) of the

following proposition.

We use the following notations: P = PL is the Kn_
pattern associated with L (6.2), R_ the translation-qui-
ver constructed from P as in 3.3, A_ the full subcate-
gory of the mesh-category k(R ) formed by the projective
vertices, M_(v) the indecomposable A_-module
k(R,)(?,v)|A_ attached to a vertex v of R, ; (obvious-
ly, R, 1is representable by 3.4). The points of L are
labelled as in 6.2 and fig.5.

PROPOSITION. Let e be a vertex of the pedigree

L, (-ple;),ole;)) € A, the associated point of P (6.2)

and M _(c*) the injective envelope of the top T of

Mw(—p(ei),o(si)). Then we have either ¢ = (i-1,j-i) if L

contains a B-arrow from €5 to Ej , or else

c = (i-1,n+j-1) if €; is the origin of the B-orbit of

L with terminus €5

Proof. First assume that L contains an arrow

€ § ej . Then the simple AL-module ke- with support
i

{ei} occurs in the socle of ME (6.2) iff i<h<j .

By lemma 6.5 below, we infer that k(ZAn]((O.h].C)

3 k(NP)((O,h),c) =+ HomA (M _(0,h),M (c)) # 0 iff i< h

w © ©

< j , or equivalently that ¢ = (i-1,j-i) (fig.7a).

({'115'1)

(1-1,4)

fig. 7a fig. 7b

287



36 BRETSCHER et al.

Now assume that € is the terminus and Ej the
origin of a B-orbit of L . In this case, kEi occurs in
the top M /Pad M of M iff j < h s i . According-
ly, we have HomA (H (0,h), TT HomAw(Mm(U,h),T)
> HomA (M .kE ) #0 iff j < h=1i . In particular, we
have ch‘)mA M, (0 i),T) # 0 and therefore T 3 M_(r,s)
with r 2 0 . We infer that k(ZAn)((D,h].(r,s))

3 Kk(NP)((0,h), (r,s)) % Homy (M_(0,h),T) # 0 iff j =< h

< i , or equivalently that (r,s) = (j-1,i-j+1) (fig.7b).
Using the fact that M_(c) is the radical of the projec-
tive-injective A_-module M_(c*) , and that every non-zero
w € k(zA )((r,s),(p,q)) % Homy (T,M_(p,q))

> HomAm(T.Mw[p,q]] can be extended to a non-zero

v € k(ZAn)[(P,s),C) > HomAm(T,Mw(cJ) , we prove as in 1.2

and 3.5 that ¢ = Va (r,s) = (i-1,n+j-1i) (fig.7b).

n
6.5 In the following lemma, A is a locally finite-dimen-
sional category and HomA(M,N) the quotient of HomA(M,N)
by the subspace formed by the morphisms u : M+ N which

factor through an injective A-module.

LEMMA. Let M be a non-injective indecomposable A-

module with socle S and I a projective-injective inde-

composable A-module with socle T # I and radical R

Then, Hom,(S,T) is canonically isomorphic to Hom, (M,R)

Proof. Consider the map f : Hom,(M,R) > Hom,(S,T)
which assigns to each u : M+ R the induced morphism
f(u) : S > T . Since each morphism S » T extends to a
(non-surjective) morphism M + I , the map f 1is surjec-
tive. It remains to show that a morphism u € HomA(M,R)
belongs to F—l(O) , i.e. vanishes on S , iff it factors
through an injective. The condition is sufficient because a
morphism from an injective J to R must vanish on the
socle of J . Conversely, if wu(S) = 0, let v : E~+ I be

an extension of p to the injective envelope E of M
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Since Vv vanishes on the socle S of E , its restriction
to any non-trivial direct summand of E 1is non-injective.
As a consequence, Vv cannot be surjective; hence v factors
through R .

6.6 Remark. In [12],3.4 Riedtmann assigns to each confi-
guration C of ZAn a Brauer-quiver Qc having Q/T as
set of vertices. We can interpret the description of the
configurations C of 6.4 by saying that the arrowed
Brauer-quiver (Qc,gn(aélﬂl g gn(U)] is isomorphic to

(T,e 2 T) .
n

7. Selfinjective algebras of tree-class Dn », n 24

Our purpose is to classify up to isomorphism the con-
figurations C of ZDn or, equivalently, the basic alge-
bras with Auslander-Reiten quiver (ZDn)C,/‘r(zn-a)Z . If

n 25, we call such an algebra two- or three-cornered ac-

cording as € contains two or three high vertices modulo

TZn-3 (1.3). If n = 4 , we agree to call it two-cornered.

741 Description of the two-cornered algebras. Let P be

an arrowed Brauer-quiver with n-2 vertices and distin-
guished arrow x % y (fig.8). Let a, (resp. bz) be the
length of the a-cycle AZ (resp. the B-cycle BZ) of P run-
ning through the vertex z . We denote by P™"  the quiver

obtained from P by replacing x $ y by

X ;11////’.\\\\;13‘ y

(see fig.9). We denote by D

P the algebra defined by pt*

and the following relations:

= = = - - - - a
a) 0 = aB - Ba 718 BYZ 618 862 Gla X Y,
- ax -1
= Yla 62
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b) o = Bbz for each vertex z of P lying outside Ax

c) YooYy = 6261

al az _ b,
d) a Y Y0 B

for each vertex =z of Ax ; here we
denote by g (resp. by a;) the length of the a-path

of P'7 from z to «x (resp. from y to 2z).

Of course, the ordinary quiver of DP is derived

from pP7 by deleting the loops.

PROPOSITION. The map P+ Dp yields a bijection be-

tween the isoclasses of arrowed Brauer-quivers having at

least 2 vertices and the isoclasses of two-cornered alge-

. = . 1 2n-4
bras. Accordingly, there are Coel ® 71 ( n-2

of two-cornered algebras of tree-class Dn .

) iscclasses

The proof of the proposition is given in 7.4 below.

7.2 Description of the three-cornered algebras. Consider

a looped Brauer-quiver P , i.e. an oriented Brauer-quiver
with a distinguished B-loop. By P" we denote the quiver
derived from P by splitfing the distinguished vertex x
of P into an a-sink x and an a-source x : the arrow
a-lx $ x (resp. x $ ax) of P is replaced by an arrow

o tx & X (resp. x* % ax) if o« x # x #ax ; if P has
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only one vertex, the a-loop a C;x is replaced by an arrow

x" % X ; in all cases, the distinguished loop B x is

replaced by an arrow x - x+ , which we denote by Yy (see

fig.10).
Now let P1 - P2 » P3 be three looped Brauer-quivers
with distinguished vertices Xq s Xo s Xgow By P1P2P3 we

+

denote the quiver derived from P1 , P, and P; by identi-

+HN) +

3 + - - + . - - .
fying x with Xq s Xg with Xy o0 %g with X5 (fig.10).

2
By D(P1P2P3] we denote the algebra defined by the quiver

P1P2P3 and the following relations:

a) 0 = aiBi = Biai = 050 = 00, = 050y i=1,2,3

b) a?z = B?‘ for each i and each vertex z of Pi lying
outside the a-cycle Zi of Pi which contains X; o

%

= 5% = o2 = g2
©)  YaYy T At s Y)Yg T A%, YoYy < 0y
a

N a* _ . b: -
d) a; v;o; =B for each i if z € Zi\{xi} ;

here we denote by a (resp. by a’) the length of the

o-path of P; from z to x; (resp. from x; to z).

Of course, the ordinary quiver of D(P1P2P3] is de-

rived from P1P2P3 by deleting the loops, and the arrow

oy if Pi has only one vertex.
In the following proposition, |Q| denotes the number

of vertices of a quiver Q .

PROPOSITION. Each algebra D(P1P2P3) such that

P +|P,l +|Pj| 25 1is three-cornered. Conversely, each

three-cornered algebra is isomorphic to some D[P1P2P3] ’

where the looped Brauer-gquivers P1 5 P2 » P3 are uniquely

determined up to isomorphism and to a cyclic permutation.

The proof is given in 7.5 below.

.3  Let 6n be the quiver 1 + 2 + ... =+ n-Z:;n;I and

7
Kn—l be the full subquiver of 5n whose vertices are
1,2,...,n-1 . The inclusion Kn-l + ﬁn extends to a trans-
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lation-quiver morphism ZAn_1 > ZDn , which allows us to
identify ZAn_1 with a full sub-translation-quiver of
ZDn . A vertex of ZDn is represented by two coordinates as
indicated in fig.l. '

With each Kn_l-pattern P we associate the subset
+ +

P = PU {(0,m} of (20) . As (0,n) lies in Bn , P
is a 5n-pattern.
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LEMMA. Each configuration C of 2D is isomorphic

to some CP+ (3.2).

Proof. By 1.6, C contains high vertices. Using an
automorphism of ZDn if necessary, we are therefore re-
duced to the case where (-1,n) € C . Then the dimension-
function D¢ (4.1) satisfies Dc(n) = Dc(n-2)+1 , and the
pattern PC (4.3) must contain (0,n) . The vertices of PC
other than (0,n) form an Kn_l-pattern P such that

+

P = PC .

7.4 Proof of proposition 7.1. Let C be a configuration

of 2D containing (-1,n-1) and (-1,n) . According to
7.3, we have C = CP+ , where P 1is an Kn_1~pattern con-
taining n-1 . The set P~ = P\{n-1} is an Kn_z-pattern,
whose section-algebra is identified with AL for some ped-
igree L (6.1; see fig.ll). If a 1is the terminus of the
a-orbit of 1 in L , the quiver K of the section-alge-
bra AP+ is obtained by adding two arrows a =+ n-1 and
a+n to L (in fig.ll1 K 1is the quiver formed by the
full arrows of KSC]. The two-cornered algebra with Auslan-

der-Reiten quiver (zun)c/T(Zn-B)z

is defined by the quiv-
er KSC (fig.1l1l) and the relations described in 5.2 and
5.3. Clearly, this implies that it is identified with DP
(7.1), where P = (L,a » 1) 1is the arrowed Brauer-guiver

associated with L (6.2).

Since L can be any pedigree having at least two
vertices, P 1is an arbitrary arrowed Brauer-quiver with at
least two vertices. Therefore, the map PP—#DP induces a
surjection on the isoclasses, and it remains for us to show
that DP determines P up to isomorphism. We leave it to
the reader to ascertain that the quiver KSC of DP de-
termines L (and hence P) up to an isomorphism (in fact,
even the subquiver L of KSC can be recovered from Ks

if n 2 5).
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75 Proof of proposition 7.2. Let C be a configuration
of 2D such that (-1,n-1) ¢ C and (-1,n) € C . Ac-

cording to 7.3, we have C = CP+ , where P is an A

pattern such that n-1 ¢ P . The section-algebra APn if P
(3.1) is identified with AL for some pedigree L (6.1),
whose vertices we identify with the points of P (fig.12).
Then the terminus of the a-orbit of 1 in L is identi-
fied with a vertex (0,a) ¥ a # n-1 of Kn-l . We denote
by L3 the pedigree formed by the vertices (p,q) € P ¥ L
such that q =< a .

Since a< n-1, the vertex (-1,a+l) ¥ t(a+l) also
belongs to P . We denote by Lé the full subquiver of L
formed by t(a+l) and the "paternal ancestors” of t(a+l)
in L (see fig.l12). Then there is a unique embedding of Lé
into S (fig.4) which maps t(a+l) onto 1 , a-arrows onto

B-arrows and B-arrows onto a-arrows. We denote by L2 the
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image of this embedding, which is a pedigree.

Let us finally examine the quiver Li of the full
subcategory of k(Rp+)(3.1) formed by the points of P 1y-
ing outside L5 and Lé « LF Li is reduced to the vertex
n , we denote by L1 the pedigree reduced to the lowest
vertex 1 of S . Otherwise, the a-orbit of t(a+l) in L
has the form {t(a+l),t(b),...,1(c)} , where a+l< b =< ...
< c , and the vertices of Li are the points x = (p,q)
of P° such that b = q (fig.12). Such a point x satis-
fies k(RP+](x,n) #0 if p = -1 or x = n . Accordingly, we
obtain Li by adding one arrow TcC $ n to the subtree of
L formed by the vertices (p,g) € P such that b = g
< n-1 . Moreover, there is a unique embedding of Li into
S which maps b onto 1 , each B-arrow onto a B-arrow, §
and each o-arrow onto an a-arrow. We denote by Ll the

image of this embedding.

The pedigrees L3 » L2 and L give rise to Brauer-

1
quivers L3 » L2 and L1 (6.1), in which we distinguish the
B-loops with extremities a, t(a+l) 31 and n € L' 3L

1 1
respectively. In this way we produce three looped Brauer-

quivers P1 » P2 ’ P3 and an algebra D(P1P2P3]. It fol-

lows easily from 5.2 and 5.3 that D(P1P2P3) is isomorphic

to the three-cornered algebra with Auslander-Reiten quiver

(201 4/t
nC

cuiting” the quiver K of AP+ ; see fig.13).

(construct the quiver KSC by "short-cir-

So each three-cornered algebra is isomorphic to some

D(P1P2P3] . Since the pedigrees L1 ’ L2 ; L3 occuring in

the above argumentation are subjected to the only restric-
tion |L1| + |L2| + |L3| 2 5, we infer that, conversely,

each .D(P,P,P;) is three-cornered if lPﬂ + |P2| + |P3|

2 5 . The algebra D(P1P2P3] determines F‘1 ’ P2 ’ P3 up

to isomorphism and to a cyclic permutation, because we can

recover L1 , L2 » L3 up to a cyclic permutation from the
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fig. 12 \ﬂ"/”“
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quiver Q of D[P1P2P3) (show that we can recover the tri-
angle T formed by Yl v Yy s Yg ok Let Q\D be the quiver
obtained from @ by deleting the arrows - but not the ver-
tices - of some triangle D ; if Q\D 1is connected for some
D, then D =T ; otherwise, T 1is the only triangle D
such that Q\D has two connected components, out of which

one is reduced to a point).

Remark. The number of looped Brauer-quivers with n
vertices is c_ = L 2n—2) (if n>1 , delete the distin-
n n n-1
guished B-loop and unite the contiguous a-arrows so as to
obtain an arrowed Brauer-quiver with n-1 vertices). It
follows by classical arguments that the number of isoclas-

ses of three-cornered algebras with n 2 5 -equals
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sC

%(E -t ) + ZE if n = 3r and %(E ) if n 1is not

n n-1 3 r n n-1
divisible by 3 . As a consequence, we get that the number of
3n-4 (2n-3) _ 3n-4 —

— = == g

configurations of ZDn n n-2 ) -

7.6 Configurations on ZD4 . Fig.1l4 shows representa-

tives of the two isoclasses of configurations on 204

SVAVAVAVAVAYA
4 VA VA VAVAWAN

NN N NN AN

/.
WAV ANAW AW AW,
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8. Selfinjective algebras of tree-class En , n=26,7,8

The following lists provide a complete classification
of the configurations of ZEn . The numerical data contained
in these lists require a short explanation. To save room, we
set t = 10+t and ¢t = 20+t for all t e N .

We order the vertices (y,x) of ZEn lexicographi-
cally reading them from the right to the left. So we have
(y,x)< (y',x') either if x < x' or else if x = x' and
y<y' . Since each configuration C of ZEn is periodic,
it is sufficient to list the vertices (y,x) € C such that

0sy<m . Accordingly, C 1is characterized by an in-

E
creasing sgquence of configuration-points (yl.xl), So0o

(yn,xn] , which we present as a matrix

X

1 X2 =t X

Yy Yy see ¥,
For instance, the first listed configuration of ZEB con-
tains the vertices (0,1) < (1,1) ¢ (2,1) < (3,1) < (4,1)

< (14,6) < (28,7) < (14,8) . If we interpret a representing
matrix as a word whose letters are columns consisting of two
numbers, we obtain a lexicographic order on the set of all
configurations. The configurations are listed according to

that order.

In the cases n =6 and n =7 , the 2 x n - matrix
representing a configuration C is formed by the first two
rows of the listed 5 x n - matrix. The three last rows pro-
vide us with the following additional information: Let
[xi Yy %4 ti ui]T be the i-th column of the listed matrix.
Then z, equals Dc(i] (4.1), and Mt(-ui,ti] is the pro-
jective cover of the socle of Mt(yi,xi)* if t 1is large
enough. Here, Mt denotes the functor associated with the

pattern P = PC (3.5 and 4.3).
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By reflection along the vertical line through (0,1)
and (-1,3) , each configuration C gives rise to an op-

posite configuration c°P . We call two configurations C

and D equivalent if 0 is isomorphic to C or to
c%P , and we only list the smallest configuration of each

equivalence class. Of course, lists of isomorphism classes
of configurations would be larger, since there are 22, 143

and 598 isoclasses for n = 6,7,8 respectively.

Let us explain briefly how we established the list in
case n = 8 . Assume that we know the configurations of
ZE7 . Given such a configuration C , we first compute the
associated dimension-function d = dC : (E7)0 - N (4.1).
Setting d’'(1) = d(1)+1 and d'(i) = d(i-1]) for i = 2,
...,8 , we clearly define the dimension-function of a con-
figuration €' of 2ZE_, . The map C w» C' yields a bijec-

8

tion between the configurations of ZE and those configu-

rations of ZE8 which contain (0,1) ? Now it is easy to
prove (or to verify in the list of combinatorial configura-
tions established by Jenni-Riedtmann) that each configura-
tion of ZEB contains some vertex (x,1) , x € Z . Our
construction therefore provides us with representatives of
all isoclasses. In particular, it furnishes all the listed

configurations.
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