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CRITERIA FOR EBERLEIN COMPACTNESS
IN SPACES OF CONTINUOUS FUNCTIONS

Dietrich Helmer

Criteria for pointwise relative Eberlein compactness in
spaces of continuous maps and in spaces of linear opera-
gors are given in terms of countable compactness, Stone-

ech extendability, and interchangeability of double
limits.

Since their introduction by Amir and Lindenstrauss
[1]1, the Eberlein compacta (E-compacta for short), i.e.,
those compact spaces that are homeomorphic with weakly

compact sets in Banach spaces, have been investigated
thoroughly, not only for their importance in Banach space
theory and, in the convex case, for the features of their
extremal structure, but also because of their remarkable
topological properties that resemble those of (compact)
metrizable spaces to some extent and of which we mention
the following: Every E-compactum is closure-seqguential,
i.e., for each of its subsets the closure and the sequen-
tial closure are identical [20;p.313]; consequently,
E-compacta are hereditarily sequential and sequentially

compact. In every E-compactum K, there is a dense metri-

zable Gg-subspace; this can be deduced from a theorem of

Namioka [23;4.2] and, in turn, implies the following very
0025-2611/81/0035/0027/$05.00
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2 HELMER

useful metrizability criterion that had been obtained
earlier by Rosenthal [27;p.230] by different means: K 1is
metrizable if it satisfies the countable chain condition

(cec), i.e., if every family of pairwise disjoint non-
empty open subsets of K 1is countable. These properties
can be attributed to the fact that E-compacta admit home-
omorphic representations, not just - as do all compacta -
as pointwise compact sets of continuous, say real-valued,
maps, but as compact sets of special continuous maps on
special spaces. The main purpose of this paper is, conver-
sely, to exhibit sufficient conditions on a given set of
‘continuous maps guaranteeing its (relative) E-compactness
with respect to the topology of pointwise convergence.
These conditions will be mainly in terms of relative coun-
table compactness, Stone-éech extendability, and double
limits, which have, in one form or another, been used in
[2,4,6,8,10,14,24,25,28,29] and, certainly, elsewhere.
Extensive use will be made of sequential arguments. By
some of the results, theorems of Grothendieck [14) and
Pryce [24] are sharpened and generalized. In particular,
we will give some criteria for E-compactness of sets of
linear operators in their weak or strong operator topolo-
gies. Special attention will be paid to the metrizability
problem for compact éets of maps as far as it can be sol-
ved via E-compactness.

For a general discussion of E-compacta - in particu-
lar, their permanence properties, which we will utilize
freely - the reader is referred to [21] and [32].

First, we fix some standing hypotheses and notation:
Throughout, X,Y,Z are topological spaces (all spaces
are assumed to be Hausdorff), Z regular, and f: XxY — Z
is a separately continuous map. For xe&X the map
yH— £f(x,y): Y — 2 is denoted by x*. Sets of maps, such
as B* = {x*|xeB} for BgX, are always considered en-
dowed with the topology of pointwise convergence, unless
said otherwise. E,F,H are locally convex vector spaces,
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HELMER 3

with F, submetrizable. Here F, denotes F with the fi-

nest locally convex vector topology that is compatible
with the natural duality {F,F'D and agrees with the to-
pology of F on compact subsets of F. And we recall
that a space is (separably) submetrizable if it admits a

continuous injection into some (separable) metrizable
space. E¢ (Ey) stands for E in its weak (Mackey) to-
pology. (Note that F need not be submetrizable when F,
is. Such is the case, e.g., for €'([M)e and (ﬂlr); if
card [' > card R.) Clearly, submetrizability of F, is
tantamount to O ©being a Gg-point in Fr - Furthermore,
F, denotes F with some coarser locally convex vector
topology that is finer than the weak topology. &ZL(E,H)
is the space of all continuous linear maps E — H

(with the topology of pointwise convergence, as we agreed;
that is, the strong operator topology); and GC(E,H)W
stands for o&£(E,H) equipped with the weak operator to-
pology. The scalar field K is R or &. Write C(X)
instead of C(X,IK) and X for [0,7]. For A<SE the
closed convex circled hull of A is denoted by conv ci A.
Recall that B&X is relatively (countably) compact in

X if every net (sequence) in B clusters in X; and B
is relatively (strongly) sequentially compact in X if
every sequence in B has a subsequence that converges

(has compact metrizable closure) in X. As usual, 'rela-
tive' is omitted when B = X. We will call X nearly
countably compact if it has a dense subset each sequence
of which clusters in X. 'Relatively sequentially compact'
is shortened to RS-compact, 'nearly countably compact'

to NC-compact, etc.

1. Countable compactness versus Eberlein compactness

Throughout this section, we assume that Y, is a
sequence of RC-compact sets of Y whose union is dense.
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4 HELMER

LEMMA 1.1. Let S be a regular space, g: S — T a con-

tinuous injection into a closure-sequential space, and B
an RC-compact set in S. Then B is identical with the
sequential closure B° and is mapped under g homeomor-

phically onto a closed subspace of T. *)

Proof: In order to prove that the inverse h of B — g(B)
is continuous, it suffices to show sequential continuity

of h on each subspace g(B)u{t} with teg(B). Veri-
fying this as well as the rest of the assertion is not
difficult.

THEOREM 1.2. Let HKeC(Y,F.) be NC-compact and
¢ (Y,) precompact in F for ¢e® and meN. Then
¥ is E-compact.

Proof: First, assume that Y is NC-compact and L a su-
premum norm bounded RC-compact subset of C(Y). Then L
is R-compact in C(Y) [14;p.172]. (Actually, Grothen-
dieck assumes Y to be C-compact; when inspecting his
proof, however, one notices that NC-compactness of Y
suffices.) Due to the fact that C(Y) is completely regu-
lar, T 1is compact in C(Y). Since the point evaluation
map m: Y — C(I) is continuous, vtﬁzz_ is NC-compact
in C(I); whence, by the samg_fgken, %(Y) 1is compact.
Point evaluation ¥: I —» C(Q(Y)) is a continuous injec-
tion. Thus, 'v(f) being weakly compact in the Banach
space (c(qL(_Y)'),I h) [14;p.182], it follows that L
is E-compact. - Consider now the general case: There
exists a sequence U, of closed convex circled O-neigh-
borhoods of F, with Upeq SUn and /MKU, = {0}. Then
the polars Un are compact in the weak*-dual F¢ , and
\U. Un is dense in Fy . Let «: K —IK be a continu-
ous bounded injection. Fix n,meWN . Let -.peCQ. The ca-
nonical map \P(fu) —TT. c(Ug) takes, by what has been
said above, its values in some space L ='T1} L , with

*) The referee has pointed out that essentially the same
lemma had been obtained by De Wilde in [53;1.7]
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all L; E-compact; as then L 1is E-compact [21;p.248],
(Y,,) is compact in Fe in view of 1.1. Since Y(?:)
is still precompact in F [20;p.240,p.245], it is compact
in F [20;p.385), hence is a subspace of F,. By equicon-
tinuity of US SC(F,), evaluation UR x @(¥n) — IK is
continuous, which implies that Pnp.: (v,57) b= alv(p(y))):
Us x Y. —> K is continuous. As a consequence, P F fam
maps &K continuously into C(US xV.). But UZx Y. is
NC-compact, and so the closure Kym of {n(‘ml?eg('} in
(U2 % Y,) 1is E-compact. Via ¢ — ('f.“ Yem,mra NE 2 774
is now mapped continuously and injectively into K =
T_EM‘ Kam . Therefore, E-compactness of & follows from
the fact that K is E-compact and from 1.1.

COROLLARY 1.3. & is E-compact in C(Y,F), provided
X is RC-compact in C(Y,F).

COROLLARY 1.4. If X 1is NC-compact and Z submetri-
zable, then X* is E-compact.

Proof. Z admits a continuous injection into some Hilbert
space H. If o denotes the induced continuous injection
c(Y,z) —» Cc(Y,H), then u(X*) 1is E-compact according to
1.2. Now use 1.1.

COROLILARY 1.5. Let X be NC-compact, Z a Banach space,
f bounded, and a [K-valued Borel measure on Y. Then
X —> f £ (x,y) d/o.(y) : X —> Z is continuous.

Proof. Every x* is Iu-measurable [9;p.148] because it
takes its values in the separable subspace J_,x*(Y,) of
Z. Since J+ is bounded [9;p.127], X* consists of Jo-in-
tegrable maps. By Lebesgue's Theorem and the fact that
X* 1is sequential, x* > fx“ d)u. is continuous on X*.

PROPOSITION 1.6. Let K be an E-compact set in H for
which conv K 1is sequentially complete or Mackey complete.
Then conv ci K 1is E-compact.

Proof. The case of complex scalars is readily reduced to
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that of real scalars. So let K = R . First, suppose
that conv K is complete in Hg. Since the completion G
of H, is Mackey [20;p.262], the closed convex circled
hull C of K in G is weakly compact [20;p.325]. Thus,
the restriction map from G into the Banach space C(K)
is continuous, whence the adjoint g: C(K)gy — (Gg)g is
continuous. Since continuous images of E-compacta are
E-compact [3] and the norm unit ball U of C(K)' is
weak*-E-compact [21;p.249], C is E-compact, being the
image of U under &g, where &: (G&)e — Ge 1is the
canonical map. Thus, conv K is E-compact in He. As now
conv K is precompact in H, it is E-compact in H [20;
p.385]. - On the other hand, suppose that conv K is
sequentially complete in H. Let then L be the closed
convex hull of K in the completion f. Being complete
in (#), [20;p.270], L is E-compact. But &omv K = L
by sequential closedness of conv K in L. - So in
either case, conv K is E-compact. By [9;p.415], there
is a continuous surjection Ixconv K x conv (-K) —
conv (Kv(-K)). The latter set, however, is nothing but
conv ci K.

COROLLARY 1.7. Hypotheses of 1.2. Moreover, let & be
a set of RC-compact sets of Y so that all ¥(S), with
Se £, are bounded in F and amap Y — R is continu-
ous when continuous on members of ¥ . Let comv K (y)

be Mackey complete or sequentially complete in F, for
ye Y. Then conv ci X  is E-compact in C(Y,F,) and
consists of separably valued maps.

Proof. According to 1.6, 1.2, and Tychonoff's Theorem,
conv cI H is E-compact in FJ . It must be shown that
conv ci K €C(Y,F.). In view of our hypotheses on &,

we may assume to this end that Y is NC-compact and that
K(Y) is bounded in F. Let ¢ e conv ci K. Fix beY,
and let U be any closed convex circled O-neighborhood
in Fe . The canonical map [*: C(Y,Fo) — C(U®*%xY) being
continuous, [" (¥ ) 1is compact in C(U®x Y), hence weakly
compact with respect to the H le-topology (c¢f. proof 1.2).
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Consequently [ 20;p.325], conv ci ['(X) is compact in
c(U®°x Y). It follows that (v,y) Hv(?(y)): UxY = K
is continuous. Hence there exists a neighborhood N of

b such that lv(;p(y))-v(«p(b))l$’l for all (v,y)e U*x N;
that is, gp(y)-up(b)e U. - Given e conv ci K, choose
a sequence (py in conv ci X converging to - Since
K consists of separably valued maps, every Pm has its
image in some separable subspace S, of Fe . Thus, P ta-
kes its values in the separable space U, S. .

We now point out a few situations in operator theory
where 1.2 becomes applicable:

THEOREM 1.8. Suppose E 1is a Banach space C(S), with
S E-compact, and F is, in addition, complete and weakly
sequentially complete (e.g., F of type L*'(m)). Let
F<sL(E,F,) with &R(y) RC-compact in F, for yeE.
Then conv ci K is E-compact in &(E,F,).

Proof: Since F is Mackey complete, conv ci #(y) is
compact in F, for every yeE [20;p.314,p.325]. Thus,
conv ci X is compact in FX . However, due to the bar-
relledness of E, conv ci & € L (E,F,). It follows from
[15;Th.6, Th.1] that every T e <L (E,F) transforms weakly
compact subsets of E into S-compact subsets of F. And
by [21;p.249], there exists a total weakly compact set Y
in E. Then restriction §: conv ci X —> C(Y,F,) is
continuous and injective. But g (conv ci K ) is E-com-
pact according to 1.2.

COROLLARY 1.9. Let E be as in 1.8, F a reflexive
Fréchet space, and K <L (E,F) pointwise bounded. Then
conv ci K is E-compact in J.(E,F)w :

THEOREM 1.10. Suppose E has a sequence of weakly

RC-compact sets whose union is total. Let @ <& (E,H)

be RC-compact.

(1) @& is E-compact if H. admits a continuous linear
injection into some L"(,a), with m e-finite.
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(2) If H. is submetrizable and all TeS are separa-
bly valued, 9K is RSS-compact in &Z(E,H).

Proof. (1): Via 1.1, one reduces to the case where E
contains a total weakly RC-compact subset Y and H =
1(w)e . In L*(m), there exists a total weakly compact
subset V [21 ;p.240]. It now suffices to show that,
given Te e"C(E,L"(,L).—), the map ((f,y) - jf‘l‘y dm
VxY — K is continuous, where Y denotes the weak
closure (cf. proof 1.2). Since VxT(Y) is E-compact, it
is good enough to this end to have (¢, ¢) i—-)jxpy/dlu. :
VxT(Y) — K sequentially continuous. However, if
(‘f\"f"”) _ (‘(:,‘() in VxT(Y¥), then f«f‘ lp‘d,n. — J‘\{?d/a.
indeed [15;p.138,p.139].

(2): It must be shown that @& is compact metrizable in
£L(E,H) if 9% is, in addition, countable. In this si-
tuation, we may assume that Hey is separable. A union of
countably many compact sets being dense in Hg , a se-
quence is actually dense in Hg . Thus, He is submetri-
zabley and so 1.1 and 1.4 now do the rest.

PROPOSITION 1.11. Let (5,2 ,w) be a e-finite posi-
tive measure space, F a Banach space, and WL a uni-
formly bounded set of m -measurable maps S —»F each
sequence h, of which has a subsequence hgy, such that
limy hwn,(8) exists in F, for m-slmost all s. Let &
be all operators g > Jgh du with heTl. Then X is
E-compact in & (L' (/A,),F,) and consists of representable
operators.

Proof. Choose a total weakly compact set Y in E = L'(u).
Let 'ai denote the set of all bounded maps h: S — F

for which there exists a sequence h, in MWL with

lim, hw(s) = h(s) in F, J-almost everywhere. Any such
h is -measurable, as can be seen by employing Pettis'
Theorem [9;p.149]; and the operator T,: g k> J en dpm
E—F maps Y onto an RS-compact subset of F [9;
p.510] . Now {‘I‘hlhs ﬁ} is NC-compact in & (E,F,).
Namely, let h, be any sequence in Wl. Then 1limg hy,(s)
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= h(s) inN F, for a suitable subsequence hn, of h, ,
some he T, and p--almost all s. Fix geE. If B is
any Banach space and ve £(F,,B) arbitrary, then

lim, J‘g-vh,k dlu = ,f g-vh dfa. in B by Lebesgue's
Theorem, i.e., lim v(J gh‘kd,q.) = v(J gh d/,.) [9;p.153].
Consequently, T, -—» T, in £ (E,F,). Using essentially
the same argumeng‘é, one obtains that Y is dense in
{Thlhe'ﬁ,z,y. In order to conclude that {Thlhe my s
E-compact, it now suffices to utilize 1.1 and 1.2.

COROLLARY 1.12. Suppose in 1.11 M is even RS-com-
pact in F° and m({s|h(s) #+ k(s)})>0 for hsk in
M°. Then conv ci WL is E-compact in F,’ and consists
of /«.-measurable maps.

Proof. Working with L°, the sequential closure of T in
F.s, instead of 'ﬁi in proof 1.11, one gets E-compactness
of ={r |heWM] in Z(E,F.). Let h,keM® with
T, = T . Then J.Ahd,x = JAkdf* for every A el
with /A(A)‘” , implying that h(s) = k(s) Iu-almost eve-
rywhere in S8 (cf. L[7;p.47]). Thus, h = k. In order to
establish continuity of Th - h: % — W, it is good
enough to verify that, if Th‘—) T, in & with he WL
and h,e W, then hy clusters at h in WL° ; because
%« is hereditarily sequential. But hp, = k in 'ﬁfs
for a suitable subsequence hn, of h, and some keﬁs.
As in proof 1.11, one obtains that Thuo—b T, in %,
whence h = k. Consequently [3], WL° is E-compact,
being the continuous image of K . But then we - ﬁi
Since now conv ci W (s) is compact in F, for every
seS [20;p.325], it follows by means of 1.6 that

conv ci Wl is E-compact in F‘.3 . Thus, every h in

conv ci M is the sequential limit in FS of maps from
conv ci Wl ; whence h: S — F is ,u.-measurable.

s

THEOREM 1.13.  Suppose Z is submetrizable, X the sup-
port of a e-finite positive Borel measure I and K
RS-compact in C(X,Z). Then & is E-compact.
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Proof. We may assume that Z 1is a Hilbert space and then
that & is uniformly bounded (cf. proof 1.4). Let
(Qu)rea be any family of pairwise disjoint non-empty
open subsets of X. If B, 1is a sequence of Borel sets
with U, B, = X and ,u.(B,.,)< ® , then, for reasons of
summability, every An={AeA| nu(BoaQ,)> 0% is coun-
table; consequently, A = U, Aw 1is countable. Thus,

X satisfies CCC. So every x(eC(X,Z) is separably valued,
hence 'u.-measurable. The sequential closure :-{Zs in ZX
is contained in C(X,Z) and is, therefore, E-compact in
view of 1.12.

In the sequel, A denotes a commutative complex
Banach algebra with identity e, fell = 1, j the
Gel'fand transformation of A, and U,V open connected
sets of A. Recall [18;p.115] that g: U —> V is
(L)-analytic if for every ueU there exists an aeA
with the property that, given &3>0, there is some &> 0
such that | g(x)-g(u)-a(x-u)ll € € )ix-ul for xeU with
px-ull €§. Let ILA(U,V) denote the set of all such maps,
given the subspace topology of C(U,A¢).

THEOREM 1.14.

(1) Every RC-compact set of IA(U,V) has E-compact
closure.

(2) Suppose 7 is a homeomorphism onto its image, V is
a ball, and geIA(V,A). If g is bounded on weakly
convergent sequences or if V = A, then composition
h — geh: IA(U,V) — IA(U,A) is continuous on com-
pact sets.

Proof. (1): Fix some ueU and choose a convergent se-

quence u,—>u in U in such a way that all uyg-u are
invertible (e.g., ug = u+ r-k“'e , where r>»0 is so
that {xeA| 1x-ulsr} SU). Every heLA(U,V) admits a
power series expamsion h(x) = 3. 5., an.(x-y)* in every
ball {xeA| Ax-yl<g} that lies in U [18;p.770]. A
straightforward modification of the proof in the classi-
cal case A = @, therefore, yields that any two (L)-ana-
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lytic maps agreeing on {u,|k< N} agree on all of U.
As a consequence, given % < IA(U,V) RC-compact, *x
admits a continuous injection into some product of coun-
tably many E-compacta.

(2): Let K <ILA(U,V) compact. In order to show continu-
ity of h > geh: & —> LA(U,A), it suffices to check se-
quential continuity. So let vy — v weakly in V, and
verify that g(v,) — g(v) in Ae : By hypothesis, V =
{xeA| Nx-wh<rd for suitable weV and O<r<eo. Let
g(x) = 2__:“ a.(x-w)™ be the power series expansion of
g about w in V. It follows from the proof of [18;
3.19.1] that lim sup nanuy" <r-'. Let S denote the
structure space of A. Fix wefS, that is, O cTveld' mul-
tiplicative. Then the complex power series 7p(z) =

S meo T(am)(z-w(w))® converges for every z in D =
{ze @| |z-t(w)| <} because HNwl= 1. Thus, we obtain
pe(vy)) — p(e(v)) in €, since ©T(vy) —w(v) in D;
in other words, v (g(v,)) — ©(g(v)). Consequently,
Z"(S(Vk)) — r(g(v)) pointwise on S. Now, g(v,) is
bounded in A; this is part of the hypothesis if V & A
and follows for V = A from the fact that the power se-
ries representing g converges absolutely. Therefore,
T(S(Vk)) — y(g(v)) weakly in the Banach space C(8).
But Ae — T(A).— is a topological isomorphism as well,
which implies that g(v,) —g(v) in Ae .

REMARKS AND EXAMPLES 1.15. 1 1.2 cannot be im-
proved to yield E-compactness of z if # is only
RC-compact in C(Y,F,): Let F be a non-separable Hilbert
space, F, = Fg¢ , Y the unit ball of F with the weak
topology, and K the restrictions to Y of all projec-
tions on F with finite-dimensional range. X is com-
pact in C(Y,F,), but is not even closure-sequential be-
cause the identity Y — F, belongs to & (cf. proof
1.7).

2. Examples show that neither of the conditions on
&# in 1.7 can be omitted. If they are omitted, every
pointwise limit of maps from conv ci &  is still of
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Baire class 1, i.e., the pointwise limit of a sequence
from C(Y,F.).

2. 1.8 collapses for non-E-compact S: Let F = |K
and & all Dirac measures on S. - The same example de-
monstrates that 1.10 is false for arbitrary E. - For a
discussion of Banach spaces with total weakly compact
sets see [211.

4, If E and K are as in 1.10, X is E-compact
when Hy4 1is separable metrizable. This follows by means
of 1.10.(1) because Hy can then be embedded into L=y

5. In 1.10.(1), ]L“(F) may be replaced by any Ba-
nach space C(S8), S compact, if S 1is the support of a
¢’-finite Borel measure, but not if S 1is arbitrary: Let
G be a compact non-metrizable group, S the unit ball of
1*(G) in its weak topology, and K <& (C(8),C(8)) all
right translation operators. # is homeomorphic with G,
and G satisfies CCC (cf. proof 1.13).

6. For Banach spaces H = C(S), S a compact CCC-
space, 1.10.(2) holds: For then compact sets of He are
separable [27;4.5] (cf. 2.7).

7. 1.10.(2) fails to hold for arbitrary operators:
Let G be as in 5 and K < Z(L*(6),L*(G)) all right
translation operators. Compact groups are known to be dy-
adic; and a dyadic space can be shown to be metrizable if
it is SS-compact.

8. Even if H# in 1.11 consists of compact opera-
tors: if @ is not RS-compact modulo /u-null sets, &
may be E-compact without consisting entirely of represen-
table operators: Let E = L'(L0,7]), F =c, , and W=
{hn}, where h.(t) = (sin 2%wt,...,sin 2™wt, 0,0,...).
Then Th converges in < (E,F) to the operator
g (.7.‘l g(t) sin 2"rt dt )a.,,a,.. » Which is not repre-
sentable [7;p.60].

9. In case F, = F, the uniform boundedness condition
in 1.12 is dispensable: consider the maps
s> (1+ In(s)l) *n(s) instead of WL.

10. 1.13 becomes false if X 1is assumed to just sa-
tisfy CCC or certain of its stronger relatives: Let T
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be compact, S-compact, non-E-compact, X = C(T), and K
all Dirac measures on T. Then X is a (K)-space, i.e.,
every uncountable family of non-empty open sets has an
uncountable subfamily any two members of which meet; na-
mely, u(T is a (K)-space [22], and' X is dense in KT,

11. I do not know whether 1.13 remains true if 52_
is only RC-compact. It can be shown that the answer is
affirmative if X, in addition, has a dense K-analytic
subspace.

12. The boundedness condition imposed on g in
1.14.(2) is essential: Take U = V the open unit ball
in A = (C(D, ! ll,) and g: vi> exp((e-v)~*'). Let hye
LA(U,V) be the constant map with value x; , where x,
is such that x,(0) = 0, x,(s) =0 for s 2 (k-1)"', and
x,(k™*) = 1-k"'. Then hy — 0 in IA(U,V), but
geh, - geO in TIA(U,A). - Composition with g is
generally not continuous on all of IA(U,V); such is the
case, e.g., for U=V = A = £® and g: x > x*: For
every finite set ¢ of complex regular Borel measures on
PN choose some n*eN with Z,.,q, l/al ({n,p}) < n¢“;
and let x¢(n) = ng, for n=mng, and O otherwise.
Then x4-—0 in £% , bdut x$‘—|—)0.

2. Eberlein compactness via Stone—éech extendability
and the double limit condition

Throughout this section, C,D denote dense subsets
of X,Y, respectively. X,Y,Z are assumed to be comple-
tely regular. 7Z° denotes the sequential closure of 2
in pZ. For geC(Y,Z) let g*: AY — $Z be the conti-
nuous extension. Write x* instead of x** when xeX.
If ¥ =¢(Y,2), then K* stands for {g’|ge®].

We will call f Stone-Cech extendable or an Sé—&
if it admits a separately continuous extension BX x pY
—> f8Z; such an extension then is uniquely determined and
is denoted by fp . In this case, ¥ is compact in
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C(pY,$2); in fact, X* = (pX)*. In particular, X* is home-
omorphic with X* via x* > x*. Thus, if &: pX —x*
is the continuous extension of x > x# , then f’(i,i) =
e(X)(§) for (%,§) e pXxpY.

Resuming ideas of Eberlein and Grothendieck, we will
also consider the following conditions:

DILC: There is no sequence (c,,d4,) in CxD such that
lim,1lim,, f(cy,dm) and lim,lim, f(c.,dw) exist
in 2Z, but are different.

DCPC: Every double sequence f(cn,dm), with (c.,d.) €
C xD, has a double cluster point 2z, i.e., for
every neighborhood U of 2z in Z there are
n,<n,<.... and m, <m, <.... such that {m|
f(Cm,rdm) €U} and {nlf(c,‘,d,,‘,‘)GU3 are infinite
for all 1i.

ROC: All sets f(Cx {d}), with deD, are RC-compact
in 2.

LOC: f({ch xD) is RC-compact in Z for every ceC.

We now list some criteria for f +to be Stone—éech
extendable. Xu (Xpu) denotes X with the finest (fi-
nest precompact) uniformity compatible with the topology

of X.

LEMMA 2.1 Under each of the following conditions,

f is an Sé-m:

(1) f satisfies DCPC.

(2) f satisfies DIC; and for every sequence (c,,d.)
in CxD the sets \Unew £f(cuvdm)]m‘~} S and
\Unewif(cn,d)[neN3® are RS-compact in Z.

(3) f 4is continuous and XxY pseudocompact.

(4) X* is a uniformly equicontinuous set of maps
Ypu — zpu .

(5) Y is compact and ¢f: X xY — X uniformly
continuous for  €C(Z,X).

(6) There is a net f* of SC-maps XxY — Z conver-
ging to f wuniformly on countable subsets of CxD

with respect to Zpu .
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(7) There exists Fe c(z,X) such that
(a) for any two disjoint zero-sets N,M of 2

there is some ¢e F with () a ‘f(M) = &
(®) ¢f Egsé-‘m_a_gf%ﬁ pe ¥F.

Proof. (1): Evaluation C!x BY —pZ satisfies DCPC on
c* x D. Therefore [14;p.172], the closure C*! in ﬁZ’Y
is contained in C(pY,pZ). By compactness of L , one
gets X* = C* in C(pY,pZ). But then fp: (%,%) I—
e(X)(F): pXxpY~—>pZ is separately continuous.
(2): It suffices to verify (1). In case Z is metrizable,
C =X¢< 0(Y,2), f evaluation, and f(Cx D) R-compact
in Z, this has been done by Grothendieck [45p.174].
(In this case, the second condition in (2) is automati-
cally satisfied, of course.) By following Grothendieck's
arguments, utilizing a suitably refined diagonal process,
in C and A4,
in D, there are subsequences c¢,, and d..J, respective-
ly, such that lim; lim; f(c...,‘,d..“) and
lim; lim, f(c,._‘,dml) exist in Z; whence it follows by
means of DILC that f(c.,d.) has a double cluster point.
- (For C =X,D =Y, and Z a compact subspace of R,
a combinatorial proof of the existence of fp if DIC
holds has been given by Ptdk [25;p.5731.)
(3): If XxY is pseudocompact, BXxpY =p(XxY) [13].
(4): X* is R-compact in C(pY,pZ) since X# is a uni-
formly equicontinuous set of maps BY-—pZ.
(5): follows from (4) because the uniformity of Zpu is
the finest on Z rendering uniformly continuous all
f<cC(z,X).
(6): Let (cn,d,) be a sequence in CxD and then A =
{calneNY, B ={d,/neN}; let i: A — X and
j: B— Y denote the inclusions. Then g: (E,T)) —
lim, £*y(i*(8),J*(b)): pAxpB —> pZ is a well-defined
separately continuous map. If ('a‘,S) is a cluster point
of (cu,da) in PAxpB, then g(8,5) is a double clus-
ter point of f(c,,dw) in p2z.
(7): 1f 3B daenotes the set of those o e C(pZ,R) for
which ( ¢lz)f has a separately continuous extension

one obtains that, for any sequences c,
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PXxpY — R, then Frc B by means of (b). Moreover, FP
separates points of pZ due to (a). Since B 1is a uni-
formly closed subalgebra of C(PzZ,R) containing the con-
stant maps, it is all of C(PZ,Q_). Now fy : %57
((\pf)’ (i,?))?ec(z,][) is a separately continuous exten-
sion of f taking its values in pz.

We will say that X satisfies the joint continuity

condition (JCC) if, for every separately continuous map
¢ XxY —> Z, with Y compact and Z metrizable, there
is a dense Gg-set G in X so that ¢ is continuous at
all points of Gx Y. By a theorem of Namioka [23;1.2], X
satisfies JCC, e.g., if X 1is a Gy-subspace of some lo-
cally compact space. [For locally compact X a simpler
proof is now available [30]. X can also be shown to sa-
tisfy JCC, e.g., if a) X is Baire and contains a se-
quence of subspaces satisfying JCC and CCC whose union is
dense, or if b) X is closed-hereditarily Baire and
has a dense subspace of countable tightness. (Proofs will
appear elsewhere.)]

PROPOSITION 2.2. Let f be an SC-map satisfying ROC.

Suppose Z admits a continuous injection into an E-com-

pactum and Z° = Z (cf. 2.8). Let & < X*.

(1) & 4is E-compact if *(Y) is a CCC-subspace of Z.

(2) If g(Y) is a CCC-space for ge<k, then ® is
R-compact and RSS-compact in C(Y,Z).

(3) & is compact metrizable, provided K xY
satisfies CCC.

Proof. (1): Let y: $Z — K be a continuous map into an
E-compactum that is injective on 2Z. Then_l": ¢ = ry:
C(pY,pz) — C(pY,K) is homeomorphic on K*, being injec-
tiE on the larger compact space X* . Namely, let R4
ax’_with TP="Y, and let deD. Now, C* is dense
in X* ,whence f(Cx {d}) is dense in X?(d). But

£f(Cx {d}) is R-compact in Z in view of 1.1. Thus, v.((d),
ql(d): Z, hence \r(d) = y(d). - Since SK(Y) is dense
in F#(pY), the latter is a CCC-subspace of BZ. Conse-

quently, F(?(T)(’Y) is a CCC-subspace of K, and as
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such it is metrizable. According to 1.4, l"(;!?) is E-
compact; hence so is .7-? . Let now ye XK* . Then gty
in C(}Y,PZ) for some sequence g, in K . For every
yeY then gn(y) = ¢(y) in fZ, whence ¢(y)eZ be-
cause of Z° = Z. Thus, ¢ l——)(le in,jecti X* continu-
ously into C(Y,Z), which implies that & is homeomor-
phic with &P. :

(2): If & € F is countable, & is E-compact by (1),
hence is metrizable. For every yeY then XP(y)s Z, be-
cause K(y) is RS—compiE:t in Z. Thus, upl—)\le maps
g* continuously onto & .

(3): In view of (1) and the Rosenthal criterion, it is suf-
ficient to show that the closure K& (Y) in PZ satisfies
CCC. So let (Qy)yea Dbe any family of open subsets of
pz for which all Qyn K(Y) are non-empty and pairwise
disjoint.For every XA choose some hAeC(}Z) with

£+ b (K {03)a K(Y) €Qy . Then ky : (pF) >
h,‘(-f(ﬁ)): e x pY : K 1is separately continuous. Due

to the fact that H* satisfies JCC, there exists a dense
subset G, of %P such that k, is continuous at all
points of G,x pY. Because k*(Gxuﬂ.Y) is dense in

h, (R (Y)), there is a non-empty open subset U, x Vy of
FFx pY with O ¢ k,(Uyx V,). The sets ((Ux":’(’)lx) x
(V)‘AY) now being pairwise disjoint and non-empty and

K. xY satisfying CCC, it follows that A 1is countable.

THEOREM 2.3. Let Z and f be as in 2.2. Then
X* is E-compact, provided Y* is separable.

Proof. Consider the maps w: yH— y*: Y —> Y* and

x*: y* > f(x,y): Y* — Z for xeX. Given a sequence
(Xn,¥yw) in X=xY, let (X,§) be a cluster point in

$Xx pY; then f’(ﬁ,i) is a double cluster point in pZ

of x2*(32). Thus, evaluation X"x}Y‘ —> pZ satisfies
DCPC on X** x Y*, where X* ={x°*|xeX}. As a consequence
(cf. proof 2.1.(1)), X°*P has compact closure in
C(pY*,pZ). Therefore, Y- ¢} establishes a homeomor-
phism between X°* and X* . Looking back to proof 2.2.(1),
we see that X®* is RS-compact in X* . Hence X° is RS-
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compact in its closure X in C(Y*,Z). Since # admits
a continuous injection into the E-compactum KN, it is
E-compact by virtue of 1.1. Observe now that W 1is home-
omorphic with X* .

COROLILARY 2.4. Suppose Z is E-compact, Y* separable,

and f satisfies DIC. Then X* 1is E-compact.

THEOREM 2.5. Suppose Z is submetrizable, Z° = Z,

and one of the following equivalent conditions holds:

(1) f is an Sé-map satisfying LOC and ROC.

(2) f satisfies DCPC.

(3) f admits & separately continuous extension
PXxpY — Z.

Then X* and Y* are E-compact.

Proof. (3) = (2) = (1) is clear. Suppose that (1) holds.
Let T Z —> M be a continuous injection, with M metri-
zable. We may assume that M is a subspace of the unit
sphere S of some Hilbert space H. As is well-known,

the topologies of H and He coincide on S. The unit
ball K of H as a subspace of H, is, therefore, an
E-compactum containing M as a subspace. For every ceC
then f({c} xY) is R-compact in Z, hence separable. Let
¢, be a sequence in C. By proof 2.2.(1), some subse-
quence c,‘t of c,;' converges in C(}Y,pz), say to P -
For every ?e}Y the sequence c.,.’k(Sr) in Z converges
to ¢(§) in P2z, whence  (§)<2Z. Consequently, ct is
RS-compact in C(}Y,Z). By virtue of 1.4, the closure &
of CP in C(}Y,Z) is an E-compactum. It follows that
X* is E-compact, since > le: K —c(Y,2) is a con-
tinuous injection mapping C® onto C*. For reasons of
symmetry, Y* is E-compact as well. Finally, in order to
verify (3), it suffices to show that f’(}Xx }Y) < Z.
This, howevér, is a consequence of the fact that ¢t is
dense in - X* and R-compact in C(}Y,Z).

COROLLARY 2.6. If Z is compact metrizable and f
satisfies DIC, then X* and Y* are E-compact.
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COROLLARY 2.7. Hypotheses of 2.5. If X or Y satis-
fies CCC, then X* and Y* are metrizable, f(XxY) is
separable, and f 1is Baire measurable.

Proof: Suppose that X satisfies CCC. Then so does X* ;
whence X* is metrizable in view of 2.5. Now Y* is in
a canonical way homeomorphic with a certain subspace Y**
of C(X*,Z); but the latter is R-compact in C(X*,Z) by
2.5 since evaluation Y**x X* —» Z satisfies DCPC. This
implies that Y** 1is separable; whence Y*® is separable
and, consequently, metrizable as well. Separability of
f(XxY) is now immediate from the fact that X* and Y*
are separable and that f*: (x*,y*) = f(x,y): X*xY*— 2
is separately continuous. - Baire measurability of f
means that, for any Baire set B of Z (i.e., member of
the e-algebra generated by the zero-sets of Z), f£~%(B)
is a Baire set of XxY. It therefore suffices that ¢f
be of Baire class 1 for given yeC(Z,R). According to
[16;p.327], however, the separately continuous map £
is of Baire class 1 because X*x Y* 1is separable metri-
zable.

The condition Z° = Z, which had been part of some
of the preceding results, is actually tantamount to a
weak form of normality of Z:

LEMMA 2.8. Z 1is sequentially closed in BZ, provided
any two disjoint closed sets of Z, one of which is coun-
table discrete, have disjoint neighborhoods in Z. The
converse is generally false.

Proof. Assume that a sequence 2z, in Z with distinct
terms converges to some 2epZ~Z. Then A = {z,,,,[/neN}
and B = {z, |[neN} are disjoint closed discrete sets
in 7, whence ¢(A) = {0} and af(B) = {1} for some ¢pe
c(z,X) [12;314). Thus, O = ?}(2) = 1, a contradiction.
- In order to construct a space Z that is sequentially
closed in pZ, but does not satisfy the condition above,
let D ={0,1}, A =Xu[2,3], and S € DM the set of
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all maps vanishing off countable subsets of A . As is
well-known, some sequence 2z, in DI is without conver-
gent subsequences. Pick a sequence M. in [2,3] with
distinct terms, and extend each 1z, to =z, eD" by defi-
ning z,,(/g_) = 0 and z,‘(,a.) = 1 for ,K*,“-n- Then

Z = Su{z,|neN} is pseudocompact, whence $z =D"
[11;p.187]. If Z would satisfy the normality condition,
it would be C-compact [12;3L5]; but 4z,./neN} is clo-
sed discrete in Z.

COROLLARY 2.9. Suppose Z is metrizable and f satis-
fies DCPC. Then there are first category subsets R,S
of X,Y, respectively, such that f is continuous at all

points of (XNR)xY v Xx(Y\NS).

Proof: Since pX 1is a JCC-space, there exists a dense
Gg-subset G in §X such that fy: pXxjY — Z 1is con-
tinuous at all points of G=xpY. Then R = X\G is a
union of countably many nowhere dense subsets of X. -
Existence of S analogously.

Recall that Y is pseudo-zt1-compact if every lo-
cally finite family of non-empty open subsets of Y is
countable. It is not difficult to show that Y is pseu-
do- X4 -compact, e.g., if it is Lindelcdf, or pseudocom-
pact, or a CCC-space.

COROLIARY 2.10. Let f be an SC-map satisfying ROC,

7 submetrizable, and Z° = Z.

(1) If Y is pseudo-N,-compact, X* is compact
and SS-compact.

(2) X* is closure-sequential if Y is
for all neN .

(3) X* is compact metrizable, provided Y satisfies
JCC and CCC.

(4) ¥* isg E-compact if 2 is separably submetrizable.

)]

Lindeldf

Proof. Let ¢: pZ —» K Dbe a continuous map, with K
an E-compactum and y(Z) metrizable, that is injective
on Z. The conditions in 2.2 pertaining to CCC had actu-
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ally been set up to ensure separability of (K(Y)) eand
of the prg(Y) (ge®R), respectively. Thus, (4) is imme-
diate from 2.2.(1). As for (1), it suffices to show that
£8(Y) is separable for given geX* : Due to the metri-
zability of y-g(Y), there exists a sequence ((U})yea)w
of locally finite families of non-empty open subsets of
pe(¥) such that U, {U%|NeA.Y is a base for the to-
pology of yg(Y) [19;p.127]. Being a continuous image of
Y, then rg(Y) is pseudo-&4-compact as wellsy whence all
A« are countable.

(2): Let K € X* and geX. In view of (1), it is good
enough to get ge & for some countable & € & . Because
X* is compact, there is no loss of generality in assu-
ming Z metrizable. For &-compact Y and Z = K the
desired conclusion ge A is known to be true (cf. [20;
P.312]); and a modification of the standard argument ta-
kes care of the general situation here.

(3): Consider the subspace Y = {§|ye¥} of cC(T*, (2)),
where ¥%(g) =yg(y). Since X* is compact by virtue of
(1), there exists a dense Gs-subset R of Y such that
(y,8) > F(g): YxX* — ¢(2) is continuous at all points
of RxX*. If now € stands for C('}_("',v(z)), equipped
with the topology of uniform convergence with respect to
some compatible metric of T(Z)’ it follows that

Sy ¥: R — & 1is continuous. Being a CCC-subspace
of the metrizable space & , then p(R) is separable in
€ and, therefore, separable in C(X*,5(2)). Consequent-
ly, ¥ is separable. But X* can be injected continuously
into C(?,r(z)) in a canonical fashion.

THEOREM 2.11. Let Y.. be a sequence of subsets of E
whose union is total, V, a sequence of equicontinuous
sets of H' whose union is weak*-total, and K< L(E,H),
RC-compact as well as uniformly bounded on each Y.. . Sup-
pose for n,m and sequences (T;,V¢,¥y:) in K xVyoxYm
limg limg vy (Tyye) = limy limg vo (T;y,) whenever these
limits exist. Then & is E-compact.

Proof: Fix n,m. Then there exists a compact subspace
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Znw Of WK such that the separately continuous K -va-
lued map (T,(v,y)) > v(Ty) on & x (V,xY.) takes

its values in Z,, . According to 2.6, then the set of
all maps (v,y) b v(Ty): V, x Ypu = Zpwm , with Te&,

has E-compact closure Knywm in C(V_.x Ym,Zwm ). The proof
can now be finished like that of 1.2.

COROLLARY 2.12. Let E be a Hilbert space, B a base,
and K < L(E,E) a pointwise bounded set of compact
operators. Suppose for every sequence (T,,V.,b.) in

K xB* with Tuee Twy, Voo Ve, Dp# bwm if nm,
lim, 1lim, {Twbm ,Vm) = O whenever the limits exist.
Then conv ci K is E-compact in Z(E,E) .

REMARKS AND EXAMPLES 2.13. 1. Via 2.1.(7), the pro-
blem of the Sé-extendability of f can be reduced to the
corresponding one for (sufficiently many) associated sca-
lar maps. For such maps a number of criteria has been gi-
ven by Ptdk [25].

2. 2.2.(1) breaks down if Z cannot be injected
into an E-compactum: Take X =Y = Z the Helly space
[19;p.164]1 and f: (x,y) > F(x+y).

3. The hypotheses in 2.2 referring to CCC are essen-
tial: Let X be the group DR, Y = Z the unit ball of
1*(X) in its weak topology, and f translation.

4, In 2.2.(2), & need not be compact if Z cannot
be injected into an E-compactum, even if X =Y = Z is

an SS-compact closure-sequential CCC-space: Take the spa-
ce S of proof 2.8 and f multiplication.

5 If Y is C-compact and Z is as in 2.5, then
(1)-(3) and DIC are also necessary in order that X* be
compact. The same cannot be said of the metrizability and
compactness required of f(XxY) in [14;p.175,Cor.2] :
Let X ©be the circle group. Let YSC(X) consist of a
convergent sequence plus limit point, convergence not be-
ing uniform. Consider 2 ={%(p)|xeXx, \PeY}, where
i(f)(h) = \P(xh), and f: (x,‘() I-—%:“:'(cp). If Z were me=
trizable or compact, the group action XxZ — Z would
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be continuous (cf. [17]), hence Y's topology finer than
the topology of uniform convergence [19;p.2231.

6. If DIC is dropped in 2.4 or 2.6, X* may be com-
pact, separable, and first countable, without being E-com-
pact: Take Z = X, Y = [0,17] discrete, X all non-decrea-
sing maps in C(X,XI), and f evaluation; then X* is
the Helly space.

7. From [31;p.484,Prop.6] it follows that, for every
locally compact Abelian group G, «(G) is sequentially
closed in Ga, where o: G — G® is the canonical map
from G into its Bohr compactification; therefore, (G)
is sequentially closed in ~F-L(G). We will give an exam-
ple showing that, for non-locally compact G, this is no
longer true. Since }G = G* for this G, hereby it is
also shown that Z 1is generally not sequentially closed
in..}z (contrary to what has been claimed in [26]): If
S 1is as in proof 2.8 and G the subgroup of IﬂR gene-
rated by S and the characteristic maps of J-e ,n)
(neN ), then G2 - DR, Also }G - pR [11;p.187]. But
G 1is not sequentially closed in DR  because the map
t > 1: R — D does not belong to G.

8. 2.9 collapses utterly if DIC is violated: There
are countable groups Y of homeomorphisms of I* for
which evaluation X*xY — I* is even sequentially dis-
continuous at all points [17;p.162].

9. Up to homeomorphy, every E-compactum occurs as GQ
in 2.12. In fact, if K is weakly compact in a Banach
space X, there are E,B,% as in 2.12 and an affine ho-
meomorphism o : conv ¢l K — conv ci &. with o(K) =
#: By [21;2.4], it suffices to comsider X = c ().
Let then E = £%*([") and B the usual base. For g €
c, (") define T e&(E,E) by Ty P = 8¢, and let K =
{TglgeK'}. Then &: g > ’I‘g is as desired.
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