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DEFORMATIONS OF ALGEBRAS AND COHOMOLOGY OF
FIXED POINT SETS

Volker Puppe

In [13] it is shown that under certain conditions the
cohomology algebra of the fixed point set of a space
with group action is in an algebraic sense a deformation
of the cohomology algebra of the space itself. Here we
attempt to prove a converse of the above statement, i.e.
we try to realize geometrically a given algebraic defor-
mation of a (commutative) graded algebras as the cohamology
algebra of the fixed point set of a suitable space with
group action. The first part of this note in a sense
reduces this realization problem in equivariant topology
to a non-equivariant problem while the second part uses
Sullivan's theo*y of minimal models to actually obtain

a converse for S'-actions, where cohomology is taken with
rational coefficients.

1. Reduction to non-equivariant realization problems.
We recall some more or less standard notation (s. e.g.

(2], [4]):

Let X be a compact space (a somewhat weaker finiteness
assumption would suffice (s. [4] and the remark (1.3)
G T X x EG"BG
denotes the fibre bundle with fibre X associated to the

universal principal G-bundle G - E

below)) on which a group G acts; then X 3 X

c ™ BG' F denotes the
fixed point set of the G-action on X,and H*(-) Cech
cohomology with coefficients in a field K, The cohomology
algebra H*(BG) is abbreviated by R. As usual in P.A.Smith
theory we allow the following pairs (G,K) = (2 _,2 ), p
prime (actually only the case p=2 is worked out in detail,
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2 PUPPE

the case p odd needs some modifications which are not
given herelor (S!,Q) for the first part of this note. The
second part is restricted to (G,K) = (S!,Q).

Because of its importance for the following we recali
the fundamental Borel et al. - localization theorem which
can be stated as:

Localization Theorem (Borel et al.):

The R-algebra morphism j%: H*(X ) - H*(F() =

H*(F) ® R(= H*(F) @ R) which is induced by the inclusion
K
j: F » X, becomes an isomorphism after localization with

respect to the multiplicative set {t", neN}, where t de-

notes the polynomial generator of R.

Throughout this note we make the assumption that

dimK(Q Hn(x)) is finite. Since a deformation of K-algebras
n

does not change the dimension of the underlying K-vector
space, the following proposition collects a number of

statements which are equivalent to dimK(Q Hn(X)) =
n
dim, (® H(F)) .
n

(1.1) PROPOSITION: The following conditions are equivalent:

(a) dimg (® H (X)) = dim, (® 1 (F))
n n

(b) X is totally nonhomologous to zero in Xs (with respect

to H*(-)), i.e. i*:H*(X;) - H*(X) is surjective.
(c) G (= "1(BG) acts trivially on H*(X) and the Serre

spectral sequence of the fibration X -» X
generates.
(d) G-acts trivially on H*(X) and H*(X;) is a free R-
module (of rank dimy (@ H" (X))
(e) G acts trivially on H*(X) and j&: H*(X;) - H*(F,) =
H*(F) ® R is injective.
K

i BG de-

G

(£) i*: H*(X;) - H*(X) induces an isomorphism
TF: B*(X;) 8 Ko 3 H*(X), where K, is K considered as an
R-module via the augmentation e: R -» K, €(t) = O.
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PUPPE 3

Proof: That a), b) and c) are equivalent is shown in [4],

VII (1.6). If (c) holds, then H*(XG) as an R-module is

isomorphic to the E,-term of the Serre spectral sequence

of the fibre bundle X - X5 = Bgs i.e. H*(XG)

H*(X) © H*(BG) Z H*(X) ® R as R-modules, which gives (d).
If (d) holds, then H*(XG) maps injectively into its

localization H*(X

G)z' It therefore follows immediately
from the localization theorem and the commutative diagram
ig*
H*(XG) ——> H*(F) ® R

~

* = *
H (XG)l———‘rH (F) @ RQ

that jG* is injective, i.e. (e) holds.

If on the other hand (e) is assumed to hold, then
H*(XG) is a R-submodule of the free R-module H*(F) @ R.
Since R is a principal ideal domain, one gets (d).

It follows from the Eilenberg-Moore spectral sequence
(s.e.g. [9], (4.7)) that (d) implies (£f), and clearly (f)
implies (b) since i* factors through i¥, i.e.

i*

i*: H*(X.) —» H*(X.) ® K, = H*(X).
G G R

To abbreviate notation, just for the purpose of this
note, we make the following

(1.2) DEFINITION: A G-space is called h-simple (i.e.
homologically simple) if one (and hence all) of the

properties a)-f) in proposition (1.1) is (are) fulfilled.

Our aim is to realize geometrically a given injective
morphism of graded R-algebras y: B » 4 = A ® R (A graded
K-algebra, A4 "extension" of A to an R-algebra using the
usual multiplication for the tensor product), which be-
comes an isomorphism after localization (with respect to
{t", neN}) by choosing a space F such that H*(F) = A
and successively attaching "free G-cells" to F to obtain
an equivariant relative CW-complex (X,F) in the sense of
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4 PUPPE

[11] (compare [3]) such that the inclusion of the fixed
point set j: F -» X induces the map y: B » 4 (up to iso-
morphism) when H*(-G) is applied, i.e.
j *
~ G ~
. = * * =
Y: B = H*(X;) — H*(F.) ¥ 4.

(1.3) Remark: It is easy to see (imitating the usual proof)
that the localization theorem for singular cohomology
holds for a finite (or even finite dimensional) relative
G-CW-complex (X,F) of the above form, i.e. for a G-space

X which is obtained by attaching finitely many free G-
cells (resp. free G-cells of bounded dimension) to a

given space F on which G acts trivially.

We therefore investigate the situation which is induced

in cohomology by attaching free G-cells GxD" to a given

G-space along the boundary stn-1

['H Sn_1 -» X a given (non-equivariant) map. There is a

n-1

. Let X be a G-space and

unique G-map a: GxS - X defined by a(g,s) = go(s),

such that 31{1}xsn_1 = o. We obtain a G-space Y containing

X, X 3 Y, by attaching GxD™ via 3 to X, i.e. Y: =X U (Gan).

o
It follows that YG = XG y (Gan)G o~ XG U D" because of
og ioa

the following commutative diagram:
Snfl————a GxSn_l————gé——a X

& - li

n-1 %%
(GxS )G _— XG (the unnamed maps being

. canonical inclusions).

Clearly Y and X have the same fixed point set.

To calculate H*(Y.,) we have the long exact sequence:

G *

ol - q io) * o~ —
v BT SRy S Ry Gl gk oL
We assume for the following that (G,K) = (S!,Q) or (Z,,%.).
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PUPPE 5

(1.4) PROPOSITION: If X is an h-simple G-space and

a: s771 o x a given map, then Y: = X U Gxp" is h-simple
a

if and only if o*: H*(X) - a* (s77 1) is surjective.

Proof: By assumption, (1.1) (b) and (1.1) (e)
i*: H*(XG) - H*(X) is surjective, jG: H*(XG) - H*(FG) in-
jective and G acts trivially on H*(X). Hence o* surjective &
(ia) * surjective « qa injective & (qj)a injective @ Y
h-simple (by (1.1) (e) and the fact that G acts trivially
on H*(Y) if and only if o* is surjectivel

As an immediate consequence of this and of the locali-
zation theorem one has:
(1.5) COROLLARY: If X is an h-simple G-space and a: s?x
a map such that a*: H*(X) - H*(Sn—1) is surjective, then:

(a) Y: =X U Gxp" is an h-simple G-space.
a
(b) gi: H*(Y;) - H*(X;) is an embedding of R-algebras which

becomes an isomorphism after localization.
: * _
(c) dlmK(H (XG)/H*(YG)) 1.

(d) gq*: B(Y) » BX(X) is surjective for k # n-1, and in-

jective for k # n+1 (resp. k#n) if G = S! (resp. G = %,).
In addition dimK(ker g¥*) = dimK(coker g*) = 1.

Proof: Only part (d) is left to be proved. But (d) follows
immediately from the Mayer-Vietoris sequence

co oo BV Gxs™ Y o ¥R (y) - B (x) 8K (GxDP) - FX(Gxs™T) - ..

(1.6) COROLLARY: Let B ¥ 4 be an embedding of graded R-
algebras with Yy an isomorphism and dimK(A/B) = 1. (Such a

map will be called an elementary embedding of R-algebras

for the purpose of this note.) If there exist an h-simple

~ n"1

G-space X such that H*(XG) = A and a map a: S -+ X such

that o*: H*(X) T4 @ Ky » 4, T #(s™ ') coincides with the
R
induced by the projection m: 4 - A/B'

map m: A ® Ko » 4
R /B

then there exists an h-simple G-space Y and an inclusion
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6 PUPPE

x93 Y, namely X <« X U GxD™ = Y such that q realizes v,
o

i.e. qa = y(up to isomorphism).

Proof: The above calculations show that ag: H*(XG)»H*(XG)

i %
is just the kernel of a*oi*: H*(X) =5 H*(X) =
* o =
H*(XG) ® Ko-ge H*(Sn 1), whereas Y: B » A is the kernel
R
of m: 4 - A/B which allows the factorization
T
-

m: A A g KO A/B , since for degree reasons A/B is a

trivial R-module (i.e.: R+-(A/B) = 0, where R+ are the
elements of R which have degree > 0.)

(1.7) Examples: a) The case n=1 needs a little extra
attention. One could of course avoid complications by

assuming all spaces and algebras to be connected. But this
is not adequate since clearly connected G-spaces may have
non-connected fixed point sets. Since the cohomology
algebra of a topological space has a canonical splitting
into a product of connected algebras (namely the cohomology
algebras of the components) we assume (on the algebraic
side) that all graded algebras considered here are products
of connected graded algebras. A morphism between such alge-
bras respects the splitting in the following sense:

s r s
Y: B= X B. =+ A= X Ai decomposes into y = X Y.
j=1 3 i=1 j=1
Yst B.= X A,, with {I.,j=1,...,s} a suitable partition
J I jer, * J
J

of the set {1,...,r} into disjoint subsets. (In general

Ij=¢ may occur for some indices j in which case ¥ Ai:=0.)
ieg
If such a morphism y: B-»4 is an embedding of R-algebras
with A/B:'ﬁ(s") and 4 = H*(X;) for an h-simple G-space X,
then 7: 4 © KO»A/B can always be realized by a map a: S%-X.
R
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PUPPE 7

b) Let y: B » 4 be given with A:;H*(XG), X an h-simple G-
space. Assume in addition: X simply connected finite CW-

complex, H(X) = O for O<k<n, n>2 and 4,5 = H*(s™) . Then

H*(X) - H*(s™)

e

by the Hurewicz theorem T: 4 ® K,
R

can be realized by a map o: st - X, and by (1.6)

X > X g Gan+1 = Y realizes Y. It follows from the Mayer-
o

Vietoris sequence in cohomology that Hk(Y) = 0 for O<k<n

and dimg H'(Y) = dimg (H"(X))-1.

Clearly Y is also simply connected.

(1.8) PROPOSITION: Let Y: B-4 be an embedding of R-algebras,

where A and B are products of connected algebras.

If dimK(A/B) = r<e and y,: By * A, is an isomorphism then

Y can be decomposed into a finite sequence of elementary
embeddings (s.(1.6)), Y = Y, *...* Y. , such that |§i|§|§j|
for i<j, where ai denotes the generator of coker Y-

Proof: Let Q := A/B‘ Choose a basis {q1,...,qr} of Q as a
K-vector space such that Iqilglqjl for i<j, (| | denotes
the degree of an element). Define Ci:=ker mi1: 4 5 Q Py Q1,

where p;: Q Py Q, is the projection of Q onto the 1-dimen-
sional (graded) K-vectorspace Q; generated by qi,

p1(q1) = g1, p1(a;) = 0, i#1. If |q1]>0 then Q; can be
given the trivial R-algebra structure (without unit), and
for degree reasons pi;: 4 - Q; is a morphism of R-algebras.
It follows that yi: Ci1 » A is an elementary embedding.

If |g1| = O the assumed splitting of Yy (compare (1.7)a))
gives the desired result also. By construction B - (Cj is
an embedding of R-algebras which fulfils the hypothesis

of the proposition except that dimK(Cl/B) = r-1. The proof
is finished by induction.

Clearly the above decomposition of Yy is not uniquely

determined, but the corollary (1.11) of the following
proposition makes up for this to some extent.
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8 PUPPE

(1.9) PROPOSITION: Let X be a G-CW-complex (of finite type
in case K = Z,) which is obtained from its fixed point set

F by attaching free G-cells of dimension > O. Assume
that X is h-simple and all components of X and F are sim-
ply connected. Then there exists a G-CW-complex Y with

the same properties but such that all equivariant rela-

tive n-skeletons (Y,F)n are h-simple,and there exists a

G-map f: (Y,F) - (X,F) such that f[F = id,and f.: Y, > X;

(and hence f: Y » X, too) is a K-homotopy equivalence.

Proof: Roughly the proof consists of omitting those
equivariant n-cells which do not contribute to the (co)-
homology of X, i.e. generate elements in the (co)-homology
of the n-skeleton which do not survive in X, together with
the (n+1)-cells which kill these additional elements.

Since X is h-simple each component of X is a G-CW-
complex itself and we therefore can assume without restriction
that X is connected. Put (Y,F)° := (X,F)° = F, (Y,F)! :=
a minimal connected sub-G-CW-complex of (X,F)! (containing
F) and (Y,F)* = (Y,F)' U GxD? where the a : S' » (Y,F)’

%y

form a "basis" of the (non-abelian) free group m; ((Y,F)?!)
(which actually is trivial in case G = S!'). Since the com-
position s! -» (Y,F)! -» X is nullhomotopic by assumption
one can extend the inclusion (Y,F)! - (X,F)? to a G-map f2:
(Y,F)2 » (X,F)? such that (fé)*: Hi((Y,F)é) > Hi((X,F)é)
is isomorphic for i = 0,1, and injective for i = 2. The
equivariant skeletons (Y,F)i, i=0,1,2 are h-simple and
(Y,F)2 is simply connected. Assume now by induction hy-
pothesis that one has already constructed the equivariant
n-skeleton (Y,F)n and a G-map £, (Y,F)n - (X,F)n such
that (Y,F)n islh-simple and simply connected, and
(fg),: Hi((Y,F)g) - Hi((X,F)g) is isomorphic for i<n and
injective for i=n (n>2). Let (x,F)n+1 be obtai?ed from
n+

(X,F)™ by attaching a disjoint union L GxD,,
VEV

Sz - (X,F)n (extended to G-maps

of free

G-cells along the maps s

126



PUPPE 9

Ev: ste - (X,F)n). Choose a subset V' cV such that the

composition
H ( Ll s“) O (™ - E (D
’ - ’
Mvev n n S/ (£2) 4 (B (¥, F) D))

is an isomorphism, which is possible because the following
composition is surjective

n+1
G )

1

B (FQ) 5 H ((Y,F)g) - H ((X,F)3) - H ((X,F) H_(X) -

Define (X,M)™ := (x,F)" U ( L GXD$+1); then the compo-
a, VEV'

sition Hi((Y,F)g) » H, ((X,F)3) - Hi((k’,‘f')g) is isomoiphic
for i<n, in Eact for all i,since H, (F() S5 Hi((Y,F)g) 3
Hi((X,F)g) e~ Hi((XTF)g) for i>n because (X,F)n and (Y,F)n
are relative equivariant n-skeletons. It follows from the
(generalized) Whitehead theorem that Trn((Y,F)g) - nn((i‘,"f)g)
and nn((Y,F)n) - nn((ijf)n) are isomorphic modulo torsion
in case (G,K) = (S!,Q) (resp. g-torsion, g prime to 2, in
case (G,K) = (Z,,Z2,). Here we use the "finite type" as-
sumption to conclude that nn((iff)n,(Y,F)n) is g-torsion
from the fact that its 2-completion is zero.) We therefore

can find maps Bv: SS - (Y,F)n such that Yavmvexyfnﬁv:

Sg - (XTF)n, where vy: (X,F)n - (27?)“ is the canonical in-
clusion and m,: Sg - Sg is a map of degree m, € 2z, m, 0
in case (G,K) = (S!,Q) (resp. m +0 and prime to 2, i.e.

m, odd, in case (G,K) = (Z2, Z;)), i.e. m, is a K-homotopy
equivalence. Defining (Y,F)n+1 = (Y,F)0 U ( U GxD3+1),

(B,) vev"
where V" « (VN\V') is a subset such that the composition
(o )* Y % e —_—
B (U s)) —S 8 (XN —SE (GH"Y » 1 (EGHY)
vev"

is injective and im(Hn( L s{)‘) - Hn((x,F)g)) =

vev"
im(H « | s™) - H ((X,F)n>, one gets a G-map ghtl,
n Vv n G
VEV
n+1

(Y, F) -> (X,F)n+1 which extends £ such that

n+1 n+1 n+1
(£g Dt Hy((L,F)1GT') = H ((X,F)g

and injective for i = n+1.

) is isomorphic for i<n
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One finally gets a G-map of simply connected, h-simple
G-spaces f: Y » X such that (£5) »t Hy (Y5) - Hy(X5) is an
isomorphism for all i, hence fG and £ are K-homotopy
equivalences.

(1.10) Remark: The assumptions in (1.9) can be weakened.

a) The condition on the dimension of attached cells to be
greater than zero is not really necessary. One can replace
a connected G-CW-complex with non-empty fixed point set by
a G-homotopy equivalent one which has no free G-cells of
dimension zero.

b) If G = Z, then any G-action is semifree and any G-CW-
complex (X,F) can be obtained by attaching free G-cells to
the fixed point set F. For G = S! this is not the case.
But if X has only finitely many orbit types (e.g. (X,F) fi-
nite) then one can choose a finite cyclic subgroup H con-
taining all finite isotropy groups which occur in X. The
group G/I-l = s! then acts semifreely on X/H with fixed point
set F,and the projection (X,F) - (X/H'F) induces an iso-
morphism H, (X;) - H*((X/H)G)'

c) Certainly the assumption on the vanishing of fundamental
groups can be weakened but we will not go into this here.

(1.11) COROLLARY: If y: B » A can be realized by a G-CW-
complex (X,F) which fulfils the assumption of (1.9), then

any decomposition y = Yr teeet Yy of vy which fulfils the

dimension condition in (1.8) can be realized.

Proof: By (1.9) one can replace (X,F) by a G-CW-complex
(Y,F) such that all equivariant skeletons of (Y,F) are h-
simple. The inclusions of the equivariant skeletons induce
a decomposition of y such that the given one is a refine-
ment of this "skeletal" decomposition. After rearranging
the attaching maps without changing the equivariant K-
homotopy type one can realize the refinement by attaching
the free G-cells one at a time in an order which corre-
sponds to the given decomposition.
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Similar to the proof of (1.9) one can show the follow-
ing

(1.12) Remark: If X is a simply connected CW-complex (of

finite type in case K=Zp) such that dimK(Q Hi(X))<m then
i

there exists a finite, simply connected CW-complex Y and

a map £f: Y » X which is a K-homotopy equivalence.

Proof: Without restriction we can assume that X is connect-
ed and X° = X! ={x}. Put Y° = X° and ¥! = X!. Assume by

induction hypothesis (which is fulfilled for n = 0,1) that
Y is simply connected and finite, and £7: ¥ » x™ has been
constructed such that fﬁ. Hy (™) - Hy x") is isomorphic for

i<n and the comp051t10n H (Y ) - H (X ) - H (X) is an iso-

+1

morphism. Let %" be obtalned from ) by attachlng

U Dn+1 along a: Sg » x". Choose a subset V'cV such that

VEV v

(o ) 4
Hn( L SS) -—3L~)Hn(x) is injective and im(Hn( L Ss) -
VEV' VEV'
n — n : ¥n __
H (X )) = 1m(Hn( L s,) - Hn(x)). Define X :=
VEV
n n+1 g
XU ( U Dv ), then the composition
%y vev'

Hi(Yn) - Hi(xn) - H.(in) is isomorphic for all i. We there-

fore can find maps 8 Sg -» ¥" such that
~ n l n . on n
Yy am, = yB,: S, = X", m : S = S/ as in the proof of
(1.9). Defining y“+1 =y u (U o™y, where v ¢ (vwv')
Bv VEV"

is a finite subset such that the composition
-1

n+1 A ;
H ( L]" st )-——9 Hn+1(x ) - Hn+1(x) is an isomorphism
VEV
(9 being the boundary operator in the long exact sequence
»H L™ 3 U s 3 u (X -+ ...) one gets a
= vG(V\V )
map fn+1 Y 1 - Xn 1 which extends £% such that
f2+1: Hi(Yn+1) - H.(Xn+1) is isomorphic for i<n and the
o n+1 n+1 . :

composition Hn+1(Y - n+1(x ) ~» Hn+1(x) is an iso-

129



12 PUPPE

morphism. Since dimK(G Hi(X))<m there exists a (big enough)
integer m such that for Y = Y" and £ = f® one has

£y: H;(Y) » H;(X) is isomorphic for all i. Hence f: Y - X
is a K-homotopy equivalence.

(1.13) Remark: The preceding results reduce the problem of

realizing a given embedding y: B - A by a relative G-CW-
complex (X,F), where X and each component of the fixed
point set F is simply connected, to the problem of realizing
certain morphisms in cohomology as induced by elements of
homotopy grcups.

(1.14) Remark: Given a space F. There exists an h-simple

G-space X with fixed point set F such that the cup-product
structure in H*(X) is trivial. This corresponds to the
fact, that any algebra can be obtain by deforming the al-
gebra which has trivial product structure (s.e.g.[5], 2.2).
If S? is equipped with the (orthogonal) G-action which
keeps the poles fixed acting freely on the equator, then

X can be defined as the smash product X = FAS? with the
"diagonal” action. Since X is a suspension the cup-product
structure is trivial. (In the simply connected case one
could also apply (1.7) several times to obtain such a
space X.)

Theé connection between embeddings of R-algebras and de-
formation of K-algebras is given by the following two prop-
ositions:

(1.15) PROPOSITION: If y: B » A = A®KR is an embedding of
R-algebras such that y, is an isomorphism, then A is a

deformation of the K-algebra B = B @ K, in the sense of
R
Gerstenhaber (s. [6], compare [13]).

Proof: Since Tk B, » A, is an isomorphism one has

L

2 ® K, AQ ® K; = 4 ® K;, where K;is K con-
RE R2 R

=

B ® Ky, =B
R
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sidered as an R-(resp. RR-)algebra via

n: R = K[t] » K,n(t) = 1 (compare [12]). As an R-module B
is isomorphic to B@R since it is a (free) submodule of the
free R-module A®R and rankR B = rankK B. Hence B being
isomorphic to B®R with "twisted" multiplication can be
considered a one-parameter family of deformations of the
algebra B which,evaluated at t=1,gives the algebra A
(compare [13]).

To get some kind of a converse of (1.12) in our situa-
tion one has to use the additional structure which comes
from filtrations and gradings of the algebras involved. If
X is an h-simple G-space then B = H*(XG) has a finite
filtration O € Fy(B) c...c Fk(B) c Fk+1(B) c... by (graded)
R-modules such that the cup-product maps Fi(B) ® Fj(B) to
Fi+j(B) and the associated graded, in fact bi-graded, R-
algebra is isomorphic to B®R (with R-algebra structure
given by the usual tensor product) as a bi-graded algebra.
Tensoring with the R-module K; gives an induced filtration

O € Fo(A) €... Fi_4(RA) = F)(B) of A =B @®K, ,
R
Fk(A) = im(Fk(B) ® K;y » B ® K;). Since Fk(B)/F (B) is
R R k-1
a free R-module (& F(B) Z BGR),

i /Fy_1(B)

F (B) ® Ky, » F,. (B) @ K; 1is again an inclusion and one
k-1 R k R

n

has & F = (B@R) ® K,
k R
On the other hand A = H*(F) has a grading as the cohomology

ﬁA)/Fk—1(A) B as graded algebras.

algebra of the fixed point set F of X. If we denote the
elements of A of filtration k and degree r by Fi(A) we have
the properties:

r+s

(i) Fi(A) ® F?(A) > Fiisa) (cup-product)

(ii) Fi(A) =0 if k<r,

where (i) follows from the multiplicative properties of the
filtration F,(B) (and the cup-product) and (ii) from the
fact that B = H*(XG) -+ A = H¥(F) @ R is filtration pre-
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serving where the filtration of 4 is given by
k
Fy (4) = ( ® Hi(F)) ® R, which implies (by tensoring with
i=o
the R-module K,) that F, (A) is contained in @ HY (F) .
=0
We therefore get that the embedding H*(XG) -+ H*(F) @ R
not only implies that H*(F) is a deformation of H*(X) but
also gives a filtration on H*(F) which fulfils (i) and (ii)
above such that the associated graded algebra is isomorphic
to H*(X).
If B = (B*[t],gt) is a one-parameter family of deforma-
tions of the graded commutative algebra B* one can define

K
a filtration on B by F, (B) = ( ® Bk>[t] which fulfils
i=o

g
F.(B) ® F.(B)—J$EH .(B). If A = By = B ® K; we therefore
i 3: i+j R
get an induced filtration Fy(A) © ... Fk_1(A) c Fk(A)C...

on A from which one can recover the grading of B since by

S B as

the same argument as above we get : Fk(A)/Fk_1(A)

graded algebras. But since K; is not a graded R-module

(n: K[t]=R=- K,n(t)=1 does not preserve the degree) the
algebra A does not inherit a grading from the graded (by
total degree) algebra B = (B*[t],gt). (In case G = S! one
gets an induced Z,-grading on A since t has degree 2.)

To get a converse of (1.12) we therefore assume that A can
be equipped with a grading which is compatible with the
filtration in the sense that (i) and (ii) above are ful-
filled.

(1.16) PROPOSITION: Under the above assumptions there ex-
ists an embedding of graded R-algebras vy: B>4=A@®R

such that Yy is an isomorphism and B ® K, = B as graded

R
algebras.
Proof: a) case G = Z,: Define B = {I aitl, a, € Fg_i(A)}g
i
A ® R (compare [71,§ 3). Then B = @& B" is a graded sub-
n
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algebra of 4 = A®R. Since for each a€A there exists a
power t% of t such that a-t® € F* one gets that Yq is an

isomorphism. It remains to show that e Ko = B. But
R

B ® Ky B/toB o Fk(A)/F (2) = B. For a fixed degree
R k k-1

n n-i ~ n

one has B S e F (a) = = B".
/t 3" 1 i=o ™ /Fn > (a)
n-1
" ; - Y
b) case G = S': Define 3" = {g aitl, a; € Fg 2i} c A®R.
i

The rest is analogous to the first case.

2. The case (G,K) = (S!,Q). We now use Sullivan's theory
of minimal models (s. [14] or [10]) to handle the non-
equivariant realization problem of part 1 in certain cases.

Our main result is:

(2.1) Theorem: If y: B -» A is an embedding of R-algebras

as in (1.8) and A4 = A®R, where A is a finitely generated
K-algebra, then y can be realized by a relative G-CW-com-
plex (X,F).

This result is an immediate consequence of (1.8) and
the following

(2.2) LEMMA: If y: B » A is an elementary embedding of R-
algebras and X a h-simple formal G-space which realizes 4,

i.e. H*(XG) = 4 and there exists a homotopy gggivalence of
differential graded algebras (d.g.a.'s) M(XG) —zﬂyH*(XG),
where the free R-algebra M(X;) is the minimal model of Xgr
then y can be realized by attaching a G-cell to X, such

that the resulting G-space Y := X U Gxp" is again formal.

(Since we have to allow non connected spaces the minimal
model of such a space is understood to be the cartesian
product of the minimal models of the connected components.)

Proof: By the theorem of Grivel (s.[8] or [10] (20.3))

M(X) := M(XG) ® Ko is the minimal model for X and hx in-
R G
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duces a homotopy equivalence of d.g.a's hx: M(X) -» H*(X).

1. case: degree (of the generator) of A/B = 0. We then al-

ready know from (1.7)a) that m: 4 ® K, - A/B can be real-
R

ized by a map o: S° » X. It remains to show that the re-

sulting G-space Y: = X U GxD' (resp. Y;) is formal. But X,
a

is obtained from XG by connecting two different components

by a line, which (up to homotopy) means that one takes the
wedge of these two components leaving alone the others. We

therefore get that Y, is again formal (s.e.g. [10](15.14)).

G

2. case: degree of A4, >0. Without restriction we then

/B
can assume that X is connected. The morphism hx: M(X)-H* (X)

i b M i~ H* i~
induces a map hx. M(X)/(M(X))Z - H (Xv(H*(x))z of the
indecomposables.

Hx (Sn—1 )

~

/B

gives a map M(X) , g xyy2 = B¥ (X)) (e (x))2 #i*x(s""!) which

Hence any algebra map m: 4 @ Ko = H*(X) - 4
R

by Sullivan's theory therefore can be realized by a map
a: s®71 5 x (s. [14]1,(10.1) ). Put Y:= X U GxD™ and there-

o
hy
%
fore Y, = X, U D". Then K = ker (M(XG) . H*(XG)l—)
ieq
* -
H*(X)—g—)H*(Sn 1)) is a model for YG (s.[15] § 2) and hX
. G
induces a homotopy equivalence of d.g.a.'s kY : K»H*(YG).
G

One therefore gets a homotopy equivalence of d.g.a.'s

h, : M(Y.) -» H*(Y.), where M(Y,) is the minimal model of Y
YG G G G

By (1.5) Y is h-simple and q: Y -» X realizes Y.

G*

The proof of (2.1) now consists of an iterated appli-
cation of (2.2) using the decomposition of y: B - A4 into
elementary embeddings (s.(1.8)) starting with a formal
space F which realizes A = H*(F).

(2.3) Remark: If A in (2.1) is simply connected (and
dimK(A)<w) then by (1.12) one can realize A by a formal
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space F which is a finite CW-complex.

(2.4) COROLLARY: Any deformation of a finite dimensional

connected commutative graded K-algebra B, which fulfils

the assumption of (1.16), can be geometrically realized

~

by an h-simple G-space X, with H*(X) = B.

(2.5) Remark: The above corollary does not imply that any
deformation of H*(X) for a given space X can be realized

by an G-action on X. (s. e.g. [1], Example 3 for a coun-

terexample)
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