

Werk

Titel: Deformations of Algebras and Cohomology of Fixed Point Sets.

Autor: Puppe, Volker

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0030|log11

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

DEFORMATIONS OF ALGEBRAS AND COHOMOLOGY OF FIXED POINT SETS

Volker Puppe

In [13] it is shown that under certain conditions the cohomology algebra of the fixed point set of a space with group action is in an algebraic sense a deformation of the cohomology algebra of the space itself. Here we attempt to prove a converse of the above statement, i.e. we try to realize geometrically a given algebraic deformation of a (commutative) graded algebras as the cohomology algebra of the fixed point set of a suitable space with group action. The first part of this note in a sense reduces this realization problem in equivariant topology to a non-equivariant problem while the second part uses Sullivan's theory of minimal models to actually obtain a converse for S¹-actions, where cohomology is taken with rational coefficients.

Reduction to non-equivariant realization problems.
 We recall some more or less standard notation (s. e.g. [2], [4]):

Let X be a compact space (a somewhat weaker finiteness assumption would suffice (s. [4] and the remark (1.3) below)) on which a group G acts; then X $\stackrel{i}{\rightarrow}$ X_G := X $\underset{G}{\times}$ E_G $\xrightarrow{\rightarrow}$ B_G denotes the fibre bundle with fibre X associated to the universal principal G-bundle G $\xrightarrow{\rightarrow}$ E_G $\xrightarrow{\rightarrow}$ B_G, F denotes the fixed point set of the G-action on X, and H*(-) Čech cohomology with coefficients in a field K. The cohomology algebra H*(B_G) is abbreviated by R. As usual in P.A.Smith theory we allow the following pairs (G,K) = (Z_p,Z_p), p prime (actually only the case p=2 is worked out in detail,

0025-2611/79/0030/0119/\$03.60

the case p odd needs some modifications which are not given here) or (S^1,Q) for the first part of this note. The second part is restricted to $(G,K)=(S^1,Q)$.

Because of its importance for the following we recall the fundamental Borel et al. - localization theorem which can be stated as:

Localization Theorem (Borel et al.):

Throughout this note we make the assumption that $\dim_K(\overset{\bullet}{\oplus} \ H^n(X)) \text{ is finite. Since a deformation of } K\text{-algebras}$ does not change the dimension of the underlying K-vector space, the following proposition collects a number of statements which are equivalent to $\dim_K(\overset{\bullet}{\oplus} \ H^n(X)) = \dim_K(\overset{\bullet}{\oplus} \ H^n(F)).$

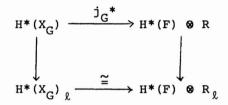
(1.1) PROPOSITION: The following conditions are equivalent:

- (a) $\dim_{\mathbf{K}}(\bigoplus_{n} \mathbf{H}^{n}(\mathbf{X})) = \dim_{\mathbf{K}}(\bigoplus_{n} \mathbf{H}^{n}(\mathbf{F}))$
- (b) X <u>is totally nonhomologous to zero in X_G (with respect to $H^*(-)$), i.e. $i^*:H^*(X_G) \to H^*(X)$ is surjective.</u>
- (c) G (= $\pi_1(B_G)$ acts trivially on H*(X) and the Serre spectral sequence of the fibration X \rightarrow X_G \rightarrow B_G degenerates.
- (d) G acts trivially on $H^*(X)$ and $H^*(X_G)$ is a free R-module (of rank $\dim_K (\mathfrak{G} H^n(X))$
- (e) G acts trivially on $H^*(X)$ and $j_G^*: H^*(X_G) \to H^*(F_G) = H^*(F) \otimes R$ is injective.
- (f) i*: $H^*(X_G) \rightarrow H^*(X)$ induces an isomorphism

 i*: $H^*(X_G) \otimes K_0 \stackrel{\cong}{\rightarrow} H^*(X)$, where K_0 is K considered as an R-module via the augmentation $\varepsilon: R \rightarrow K$, $\varepsilon(t) = 0$.

<u>Proof</u>: That a), b) and c) are equivalent is shown in [4], VII (1.6). If (c) holds, then $H^*(X_G)$ as an R-module is isomorphic to the E_2 -term of the Serre spectral sequence of the fibre bundle $X \to X_G \to B_G$, i.e. $H^*(X_G) \cong H^*(X) \otimes H^*(B_G) \cong H^*(X) \otimes R$ as R-modules, which gives (d).

If (d) holds, then $\mathrm{H}^*(\mathrm{X}_{\mathrm{G}})$ maps injectively into its localization $\mathrm{H}^*(\mathrm{X}_{\mathrm{G}})_{\ell}$. It therefore follows immediately from the localization theorem and the commutative diagram



that j_C^* is injective, i.e. (e) holds.

If on the other hand (e) is assumed to hold, then $H^*(X_G)$ is a R-submodule of the free R-module $H^*(F) \otimes R$. Since R is a principal ideal domain, one gets (d).

It follows from the Eilenberg-Moore spectral sequence (s.e.g. [9], (4.7)) that (d) implies (f), and clearly (f) implies (b) since i* factors through $\overline{i*}$, i.e.

i*:
$$H^*(X_G) \longrightarrow H^*(X_G) \otimes K_0 \xrightarrow{\overline{i^*}} H^*(X)$$
.

To abbreviate notation, just for the purpose of this note, we make the following

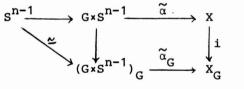
(1.2) <u>DEFINITION</u>: A G-<u>space is called h-simple</u> (i.e. homologically simple) <u>if one</u> (and hence all) <u>of the properties a)-f) in proposition (1.1) is (are) <u>fulfilled</u>.</u>

Our aim is to realize geometrically a given injective morphism of graded R-algebras $\gamma\colon B\to A=A\otimes R$ (A graded K-algebra, A "extension" of A to an R-algebra using the usual multiplication for the tensor product), which becomes an isomorphism after localization (with respect to $\{t^n, n\in N\}$) by choosing a space F such that $H^*(F) \cong A$ and successively attaching "free G-cells" to F to obtain an equivariant relative CW-complex (X,F) in the sense of

[11] (compare [3]) such that the inclusion of the fixed point set j: $F \to X$ induces the map $\gamma \colon B \to A$ (up to isomorphism) when $H^*(^-G)$ is applied, i.e. $\gamma \colon B \cong H^*(X_G) \xrightarrow{j_G^*} H^*(F_G) \cong A$.

(1.3) Remark: It is easy to see (imitating the usual proof) that the localization theorem for singular cohomology holds for a finite (or even finite dimensional) relative G-CW-complex (X,F) of the above form, i.e. for a G-space X which is obtained by attaching finitely many free G-cells (resp. free G-cells of bounded dimension) to a given space F on which G acts trivially.

We therefore investigate the situation which is induced in cohomology by attaching free G-cells $G \times D^n$ to a given G-space along the boundary $G \times S^{n-1}$. Let X be a G-space and $\alpha \colon S^{n-1} \to X$ a given (non-equivariant) map. There is a unique G-map $\widetilde{\alpha} \colon G \times S^{n-1} \to X$ defined by $\widetilde{\alpha}(g,s) = g\alpha(s)$, such that $\widetilde{\alpha}_{\left| \left\{ 1 \right\} \times S^{n-1} \right|} = \alpha$. We obtain a G-space Y containing X, X $\stackrel{q}{\longrightarrow}$ Y, by attaching $G \times D^n$ via $\widetilde{\alpha}$ to X, i.e. Y: = X $\stackrel{U}{\sim}$ ($G \times D^n$). It follows that $Y_G = X_G \stackrel{U}{\sim} (G \times D^n)_G \simeq X_G \stackrel{U}{\sim} D^n$ because of the following commutative diagram:



(the unnamed maps being canonical inclusions).

Clearly Y and X have the same fixed point set. To calculate $H^*(Y_G)$ we have the long exact sequence: $.. \to \widetilde{H}^{k-1}(S^{n-1}) \to H^k(Y_G) \xrightarrow{q_G^*} H^k(X_G) \xrightarrow{(i\alpha)^*} \widetilde{H}^k(S^{n-1}) \to ...$ We assume for the following that $(G,K) = (S^1,Q)$ or (Z_2,Z_2) .

<u>Proof</u>: By assumption, (1.1) (b) and (1.1) (e) i*: $H^*(X_G) \to H^*(X)$ is surjective, $j_G^*\colon H^*(X_G) \to H^*(F_G)$ injective and G acts trivially on $H^*(X)$. Hence α^* surjective \Leftrightarrow (i α)* surjective \Leftrightarrow q_G^* injective \Leftrightarrow (qj)* injective \Leftrightarrow Yh-simple (by (1.1) (e) and the fact that G acts trivially on $H^*(Y)$ if and only if α^* is surjective.

As an immediate consequence of this and of the localization theorem one has:

- (1.5) COROLLARY: If X is an h-simple G-space and α : $S^{n-1} \rightarrow X$ a map such that α^* : $H^*(X) \rightarrow H^*(S^{n-1})$ is surjective, then:

 (a) Y: = X $\bigcup G \times D^n$ is an h-simple G-space.
- (b) $q_G^*: H^*(Y_G) \to H^*(X_G)$ is an embedding of R-algebras which becomes an isomorphism after localization.
- (c) $\frac{\dim_{K}\left(H^{*}\left(X_{G}\right)/H^{*}\left(Y_{G}\right)\right)}{1} = 1.$
- (d) q^* : $H^k(Y) \rightarrow H^k(X)$ is surjective for $k \neq n-1$, and injective for $k \neq n+1$ (resp. $k\neq n$) if $G = S^1$ (resp. $G = Z_2$).

 In addition $\dim_K(\ker q^*) = \dim_K(\operatorname{coker} q^*) = 1$.

Proof: Only part (d) is left to be proved. But (d) follows
immediately from the Mayer-Vietoris sequence

$$\dots \to \widetilde{H}^{k-1}(G \times S^{n-1}) \to \widetilde{H}^k(Y) \to \widetilde{H}^k(X) \oplus \widetilde{H}^k(G \times D^n) \to \widetilde{H}^k(G \times S^{n-1}) \to \dots$$

(1.6) COROLLARY: Let B
ightharpoonup A be an embedding of graded R-algebras with γ_{ℓ} an isomorphism and $\dim_{K}(A/_{B}) = 1$. (Such a map will be called an elementary embedding of R-algebras for the purpose of this note.) If there exist an h-simple G-space X such that $H^*(X_G) \cong A$ and a map $\alpha \colon S^{n-1} \to X$ such that $\alpha^* \colon H^*(X) \cong A \otimes K_0 \to A_{/B} \cong \widetilde{H}(S^{n-1})$ coincides with the R map $\overline{\pi} \colon A \otimes K_0 \to A_{/B}$ induced by the projection $\pi \colon A \to A_{/B}$, then there exists an h-simple G-space Y and an inclusion

X $\stackrel{q}{\longrightarrow}$ Y, namely X \subset X $\underset{\alpha}{\cup}$ $G \times D^n = Y$ such that q realizes γ , i.e. $q_G^* = \gamma$ (up to isomorphism).

<u>Proof</u>: The above calculations show that $q_G^*: H^*(X_G) \to H^*(X_G)$ is just the kernel of $\alpha * \circ i * : H^*(X_G) \xrightarrow{i *} H^*(X) = H^*(X_G) \xrightarrow{\alpha *} \widetilde{H}^*(S^{n-1})$, whereas $\gamma: B \to A$ is the kernel of $\pi: A \to A_{/B}$ which allows the factorization $\pi: A \to A$ $\underset{R}{\otimes} K_0 \xrightarrow{\pi} A_{/B}$, since for degree reasons $A_{/B}$ is a trivial R-module (i.e.: $R^+ \cdot (A_{/B}) = 0$, where R^+ are the elements of R which have degree > 0.)

(1.7) Examples: a) The case n=1 needs a little extra attention. One could of course avoid complications by assuming all spaces and algebras to be connected. But this is not adequate since clearly connected G-spaces may have non-connected fixed point sets. Since the cohomology algebra of a topological space has a canonical splitting into a product of connected algebras (namely the cohomology algebras of the components) we assume (on the algebraic side) that all graded algebras considered here are products of connected graded algebras. A morphism between such algebras respects the splitting in the following sense: $\gamma: B = \underset{i=1}{\overset{s}{\underset{j=1}{\times}}} B_{j} \rightarrow A = \underset{i=1}{\overset{r}{\underset{j=1}{\times}}} A_{i} \text{ decomposes into } \gamma = \underset{j=1}{\overset{s}{\underset{j=1}{\times}}} \gamma_{j}$, $\gamma_j: B_j \to X$ $i \in I_j$ A_i , with $\{I_j, j=1,...,s\}$ a suitable partition of the set $\{1,\ldots,r\}$ into disjoint subsets. (In general $I_{i}=\emptyset$ may occur for some indices j in which case χ $A_{i}:=0.$ If such a morphism $\gamma: B \to A$ is an embedding of R-algebras with $A/B \cong \widetilde{H}(S^0)$ and $A \cong H^*(X_G)$ for an h-simple G-space X, then $\overline{\pi} \colon A \otimes K_0 \to A/B$ can always be realized by a map $\alpha \colon S^0 \to X$.

b) Let $\gamma \colon B \to A$ be given with $A \cong H^*(X_G)$, X an h-simple G-space. Assume in addition: X simply connected finite CW-complex, $H^k(X) = 0$ for O < k < n, $n \ge 2$ and $A_{/B} \cong H^*(S^n)$. Then by the Hurewicz theorem $\overline{\pi} \colon A \otimes K_0 \cong H^*(X) \to \overline{H}^*(S^n)$ can be realized by a map $\alpha \colon S^n \to X$, and by (1.6) $X \to X \cup_{\alpha} G \times D^{n+1} = Y$ realizes $\gamma \colon$ It follows from the Mayer-Vietoris sequence in cohomology that $H^k(Y) = 0$ for O < k < n and $\dim_K H^n(Y) = \dim_K (H^n(X)) - 1$. Clearly Y is also simply connected.

(1.8) PROPOSITION: Let γ : $B \to A$ be an embedding of R-algebras, where A and B are products of connected algebras.

If $\dim_{\mathbb{K}}(A_{/B}) = r < \infty$ and γ_{ℓ} : $B_{\ell} \to A_{\ell}$ is an isomorphism then γ can be decomposed into a finite sequence of elementary embeddings (s.(1.6)), $\gamma = \gamma_1 \cdot \ldots \cdot \gamma_r$, such that $|\overline{q}_i| \le |\overline{q}_j|$ for i < j, where \overline{q}_i denotes the generator of coker γ_i .

<u>Proof</u>: Let $Q:={}^A/_B$. Choose a basis $\{q_1,\ldots,q_r\}$ of Q as a K-vector space such that $|q_i|\leq |q_j|$ for i< j, (| | denotes the degree of an element). Define $C_1:=\ker \pi_1\colon A \stackrel{\pi}{\to} Q \stackrel{\rho}{\to} Q_1$, where $\rho_1\colon Q \stackrel{\rho}{\to} Q_1$ is the projection of Q onto the 1-dimensional (graded) K-vectorspace Q_1 generated by \overline{q}_1 , $\rho_1(q_1)=\overline{q}_1$, $\rho_1(q_i)=0$, $i\ne 1$. If $|q_1|>0$ then Q_1 can be given the trivial R-algebra structure (without unit), and for degree reasons $\rho_1\colon A\to Q_1$ is a morphism of R-algebras. It follows that $\gamma_1\colon C_1\to A$ is an elementary embedding. If $|q_1|=0$ the assumed splitting of γ (compare (1.7)a)) gives the desired result also. By construction $B\to C_1$ is an embedding of R-algebras which fulfils the hypothesis of the proposition except that $\dim_K({}^{C_1}/_B)=r-1$. The proof is finished by induction.

Clearly the above decomposition of γ is not uniquely determined, but the corollary (1.11) of the following proposition makes up for this to some extent.

(1.9) PROPOSITION: Let X be a G-CW-complex (of finite type in case K = Z_2) which is obtained from its fixed point set F by attaching free G-cells of dimension > O. Assume that X is h-simple and all components of X and F are simply connected. Then there exists a G-CW-complex Y with the same properties but such that all equivariant relative n-skeletons (Y,F) are h-simple, and there exists a G-map f: (Y,F) \rightarrow (X,F) such that f|_F = id, and f_G: Y_G \rightarrow X_G (and hence f: Y \rightarrow X, too) is a K-homotopy equivalence.

<u>Proof</u>: Roughly the proof consists of omitting those equivariant n-cells which do not contribute to the (co)-homology of X, i.e. generate elements in the (co)-homology of the n-skeleton which do not survive in X, together with the (n+1)-cells which kill these additional elements.

Since X is h-simple each component of X is a G-CW-complex itself and we therefore can assume without restriction that X is connected. Put $(Y,F)^0:=(X,F)^0=F$, $(Y,F)^1:=$ a minimal connected sub-G-CW-complex of $(X,F)^1$ (containing F) and $(Y,F)^2=(Y,F)^1$ $\overset{\circ}{\alpha}_{\mathcal{V}}$ GxD², where the $\alpha_{\mathcal{V}}\colon S^1\to (Y,F)^1$

form a "basis" of the (non-abelian) free group $\pi_1((Y,F)^1)$ (which actually is trivial in case $G=S^1$). Since the composition $S^1 \to (Y,F)^1 \to X$ is nullhomotopic by assumption one can extend the inclusion $(Y,F)^1 \to (X,F)^2$ to a G-map f^2 : $(Y,F)^2 \to (X,F)^2$ such that $(f_G^2)_* \colon H_1((Y,F)_G^2) \to H_1((X,F)_G^2)$ is isomorphic for i=0,1, and injective for i=2. The equivariant skeletons $(Y,F)^1$, i=0,1,2 are h-simple and $(Y,F)^2$ is simply connected. Assume now by induction hypothesis that one has already constructed the equivariant n-skeleton $(Y,F)^n$ and a G-map $f^n \colon (Y,F)^n \to (X,F)^n$ such that $(Y,F)^n$ is h-simple and simply connected, and $(f_G^n)_* \colon H_1((Y,F)_G^n) \to H_1((X,F)_G^n)$ is isomorphic for i<n and injective for i=n $(n \ge 2)$. Let $(X,F)^{n+1}$ be obtained from $(X,F)^n$ by attaching a disjoint union $\bigcup_{v \in V} G \times D_v^{n+1}$ of free $v \in V$

 $\widetilde{\alpha}_{\mathcal{V}} \colon G \times S^{n}_{\mathcal{V}} \to (X, F)^{n})$. Choose a subset $V' \subset V$ such that the composition

$$\mathtt{H}_{n}\Big(\underset{v \in \mathtt{V}}{\bigsqcup} \ \mathtt{S}_{v}^{n} \Big) \xrightarrow{(\alpha_{v})_{*}} \mathtt{H}_{n}((\mathtt{X},\mathtt{F})^{n}) \rightarrow \mathtt{H}_{n}((\mathtt{X},\mathtt{F})_{G}^{n})_{*}(\mathtt{f}_{G}^{n})_{*}(\mathtt{H}_{n}((\mathtt{Y},\mathtt{F})_{G}^{n}))$$

is an isomorphism, which is possible because the following composition is surjective

 $\begin{array}{ll} \operatorname{H}_n(\operatorname{F}_G) & \stackrel{\cong}{\to} \operatorname{H}_n((\operatorname{Y},\operatorname{F})_G^n) \to \operatorname{H}_n((\operatorname{X},\operatorname{F})_G^n) \to \operatorname{H}_n((\operatorname{X},\operatorname{F})_G^{n+1}) \stackrel{\cong}{\to} \operatorname{H}_n(\operatorname{X}_G) \;. \\ \\ \operatorname{Define} & (\overline{\operatorname{X},\operatorname{F}})^n := (\operatorname{X},\operatorname{F})^n \bigcup_{\alpha_{i,j}} \left(\bigcup_{\nu \in \operatorname{V}^i} \operatorname{G} \times \operatorname{D}_{\nu}^{n+1} \right); \text{ then the composition} \end{array}$

sition $H_{i}((Y,F)_{G}^{n}) \rightarrow H_{i}((X,F)_{G}^{n}) \rightarrow H_{i}((\overline{X,F})_{G}^{n})$ is isomorphic for i<n, in fact for all i, since $H_{i}(F_{G}) \stackrel{\cong}{\rightarrow} H_{i}((Y,F)_{G}^{n}) \stackrel{\cong}{\rightarrow} H_{i}((Y,F)_{G}^{n}) \stackrel{\cong}{\rightarrow} H_{i}((X,F)_{G}^{n}) \stackrel{\cong}{\rightarrow} H_{i}((X,F)$

where V" \subset (V \setminus V') is a subset such that the composition $H_n(\bigcup_{v \in V} S_v^n) \xrightarrow{(\alpha_v) *} H_n((X,F)^n) \xrightarrow{\gamma *} H_n((\overline{X},\overline{F})^n) \to H_n((\overline{X},\overline{F})^n)$ is injective and $\operatorname{im}\left(H_n(\bigcup_{v \in V} S_v^n) \to H_n((\overline{X},\overline{F})^n)\right) = \operatorname{im}\left(H_n(\bigcup_{v \in V} S_v^n) \to H_n((\overline{X},\overline{F})^n)\right)$, one gets a G-map f^{n+1} : $(Y,F)^{n+1} \to (X,F)^{n+1}$ which extends f^n such that

 $(Y,F)^{n+1} \rightarrow (X,F)^{n+1}$ which extends f^n such that $(f_G^{n+1})_* \colon H_i((Y,F)_G^{n+1}) \rightarrow H_i((X,F)_G^{n+1})$ is isomorphic for i<n and injective for i = n+1.

One finally gets a G-map of simply connected, h-simple G-spaces f: Y \rightarrow X such that $(f_G)_*$: $H_i(Y_G) \rightarrow H_i(X_G)$ is an isomorphism for all i, hence f_G and f are K-homotopy equivalences.

- (1.10) Remark: The assumptions in (1.9) can be weakened.

 a) The condition on the dimension of attached cells to be greater than zero is not really necessary. One can replace a connected G-CW-complex with non-empty fixed point set by a G-homotopy equivalent one which has no free G-cells of dimension zero.
- b) If $G=Z_2$ then any G-action is semifree and any G-CW-complex (X,F) can be obtained by attaching free G-cells to the fixed point set F. For $G=S^1$ this is not the case. But if X has only finitely many orbit types (e.g. (X,F) finite) then one can choose a finite cyclic subgroup H containing all finite isotropy groups which occur in X. The group $G/H \cong S^1$ then acts semifreely on X/H with fixed point set F, and the projection $(X,F) \to (X/H,F)$ induces an isomorphism $H_*(X_G) \to H_*((X/H)_G)$.
- c) Certainly the assumption on the vanishing of fundamental groups can be weakened but we will not go into this here.
- (1.11) COROLLARY: If $\gamma: B \to A$ can be realized by a G-CW-complex (X,F) which fulfils the assumption of (1.9), then any decomposition $\gamma = \dot{\gamma}_r \cdot \dots \cdot \dot{\gamma}_1$ of γ which fulfils the dimension condition in (1.8) can be realized.

Proof: By (1.9) one can replace (X,F) by a G-CW-complex (Y,F) such that all equivariant skeletons of (Y,F) are h-simple. The inclusions of the equivariant skeletons induce a decomposition of γ such that the given one is a refinement of this "skeletal" decomposition. After rearranging the attaching maps without changing the equivariant K-homotopy type one can realize the refinement by attaching the free G-cells one at a time in an order which corresponds to the given decomposition.

Similar to the proof of (1.9) one can show the following

(1.12) Remark: If X is a simply connected CW-complex (of finite type in case $K=Z_p$) such that $\dim_K(\bigoplus_i H_i(X)) < \infty$ then there exists a finite, simply connected CW-complex Y and a map $f: Y \to X$ which is a K-homotopy equivalence.

Proof: Without restriction we can assume that X is connected and $X^0 = X^1 = \{*\}$. Put $Y^0 = X^0$ and $Y^1 = X^1$. Assume by induction hypothesis (which is fulfilled for n = 0,1) that Y^n is simply connected and finite, and $f^n \colon Y^n \to X^n$ has been constructed such that $f^n_* \colon H_1(Y^n) \to H_1(X^n)$ is isomorphic for i<n and the composition $H_n(Y^n) \to H_n(X^n) \to H_n(X)$ is an isomorphism. Let X^{n+1} be obtained from X^n by attaching $\bigcup_{v \in V} D^{n+1}_v \text{ along } \alpha_v \colon S^n_v \to X^n. \text{ Choose a subset $V' \subset V$ such that } H_n(\bigcup_{v \in V} S^n_v) \xrightarrow{(\alpha_v)^*} H_n(X) \text{ is injective and im} \left(H_n(\bigcup_{v \in V} S^n_v) \to H_n(X)\right). \text{ Define } \widetilde{X}^n := X^n \bigcup_{v \in V} (\bigcup_{v \in V} D^{n+1}_v), \text{ then the composition } H_1(Y^n) \to H_1(X^n) \to H_1(\widetilde{X}^n) \text{ is isomorphic for all i. We therefore can find maps } \beta_v \colon S^n_v \to Y^n \text{ such that } \gamma \xrightarrow{\alpha_v m_v} \cong \gamma \beta_v \colon S^n_v \to X^n \xrightarrow{\widetilde{X}} \widetilde{X}^n, \xrightarrow{m_v} S^n_v \to S^n_v \text{ as in the proof of } (1.9). \text{ Defining } Y^{n+1} := Y^n \cup_{v \in V} (\bigcup_{v \in V} D^{n+1}_v), \text{ where } V^n \subset_{v \in V} (V^n)$

is a finite subset such that the composition $H_n(\bigsqcup_{v \in V''} S_v^n) \xrightarrow{\partial^{-1}} H_{n+1}(X^{n+1}) \to H_{n+1}(X) \text{ is an isomorphism}$ (3 being the boundary operator in the long exact sequence $\to H_{n+1}(X^{n+1}) \overset{\partial}{=} H_n(\bigsqcup_{v \in (V \smallsetminus V')} S_v^n) \overset{Q}{\to} H_n(\widetilde{X}^n) \to \dots) \text{ one gets a}$ map $f^{n+1} \colon Y^{n+1} \to X^{n+1}$ which extends f^n such that $f_*^{n+1} \colon H_1(Y^{n+1}) \to H_1(X^{n+1}) \text{ is isomorphic for i} \subseteq n \text{ and the}$ composition $H_{n+1}(Y^{n+1}) \to H_{n+1}(X^{n+1}) \to H_{n+1}(X)$ is an iso-

morphism. Since $\dim_K(\mathfrak{B} \ H_{\mathbf{i}}(X)) < \infty$ there exists a (big enough) integer m such that for $Y = Y^m$ and $f = f^m$ one has $f_* \colon H_{\mathbf{i}}(Y) \to H_{\mathbf{i}}(X)$ is isomorphic for all i. Hence $f \colon Y \to X$ is a K-homotopy equivalence.

(1.13) Remark: The preceding results reduce the problem of realizing a given embedding $\gamma\colon B\to A$ by a relative G-CW-complex (X,F), where X and each component of the fixed point set F is simply connected, to the problem of realizing certain morphisms in cohomology as induced by elements of homotopy groups.

(1.14) Remark: Given a space F. There exists an h-simple G-space X with fixed point set F such that the cup-product structure in $\widetilde{H}^*(X)$ is trivial. This corresponds to the fact, that any algebra can be obtain by deforming the algebra which has trivial product structure (s.e.g.[5], 2.2). If S^2 is equipped with the (orthogonal) G-action which keeps the poles fixed acting freely on the equator, then X can be defined as the smash product $X = FAS^2$ with the "diagonal" action. Since X is a suspension the cup-product structure is trivial. (In the simply connected case one could also apply (1.7) several times to obtain such a space X.)

The connection between embeddings of R-algebras and deformation of K-algebras is given by the following two propositions:

(1.15) PROPOSITION: If $\gamma \colon B \to A = A\otimes R$ is an embedding of R-algebras such that γ_{ℓ} is an isomorphism, then A is a deformation of the K-algebra $B = B \otimes K_0$ in the sense of R Gerstenhaber (s. [6], compare [13]).

<u>Proof</u>: Since $Y_{\ell}: B_{\ell} \to A_{\ell}$ is an isomorphism one has $B \otimes K_1 = B_{\ell} \otimes K_1 \xrightarrow{\cong} A_{\ell} \otimes K_1 = A \otimes K_1$ where K_1 is K con-

sidered as an R-(resp. R_{ℓ} -)algebra via $\eta\colon R=K[t]\to K,\eta(t)=1$ (compare [12]). As an R-module B is isomorphic to B@R since it is a (free) submodule of the free R-module A@R and rank_R B = rank_K B. Hence B being isomorphic to B@R with "twisted" multiplication can be considered a one-parameter family of deformations of the algebra B which, evaluated at t=1, gives the algebra A (compare [13]).

To get some kind of a converse of (1.12) in our situation one has to use the additional structure which comes from filtrations and gradings of the algebras involved. If X is an h-simple G-space then $B=H^*(X_G)$ has a finite filtration $0\subset F_0(B)\subset\ldots\subset F_k(B)\subset F_{k+1}(B)\subset\ldots$ by (graded) R-modules such that the cup-product maps $F_1(B)\otimes F_j(B)$ to $F_{i+j}(B)$ and the associated graded, in fact bi-graded, R-algebra is isomorphic to B@R (with R-algebra structure given by the usual tensor product) as a bi-graded algebra. Tensoring with the R-module K_1 gives an induced filtration $0\subset F_0(A)\subset\ldots F_{k-1}(A)\subset F_k(A)$ of $A=B\otimes K_1$,

$$F_{\mathbf{k}}(\mathbf{A}) = \operatorname{im}(F_{\mathbf{k}}(B) \otimes K_1 \rightarrow B \otimes K_1)$$
. Since $F_{\mathbf{k}}(B)/F_{\mathbf{k-1}}(B)$ is a free R-module $(\mathfrak{G} F(B)/F_{\mathbf{k-1}}(B) \cong B \otimes R)$,

$$F_{k-1}(B) \underset{R}{\otimes} K_1 \rightarrow F_k(B) \underset{R}{\otimes} K_1$$
 is again an inclusion and one has $\underset{k}{\oplus} F_k(A)/F_{k-1}(A) \stackrel{\cong}{=} (B \otimes R) \underset{R}{\otimes} K_1 \stackrel{\cong}{=} B$ as graded algebras.

On the other hand A \cong H*(F) has a grading as the cohomology algebra of the fixed point set F of X. If we denote the elements of A of filtration k and degree r by $F_k^r(A)$ we have the properties:

(i)
$$F_{\mathbf{i}}^{\mathbf{r}}(\mathbf{A}) \otimes F_{\mathbf{j}}^{\mathbf{s}}(\mathbf{A}) \rightarrow F_{\mathbf{i}+\mathbf{j}}^{\mathbf{r}+\mathbf{s}}(\mathbf{A})$$
 (cup-product)

(ii)
$$F_k^r(A) = 0$$
 if $k < r$,

where (i) follows from the multiplicative properties of the filtration $F_*(B)$ (and the cup-product) and (ii) from the fact that $B = H^*(X_G) \rightarrow A = H^*(F) \otimes R$ is filtration pre-

serving where the filtration of A is given by $F_{\mathbf{k}}(A) = \begin{pmatrix} \mathbf{k} \\ \mathbf{\theta} \\ \mathbf{i} = \mathbf{0} \end{pmatrix} \otimes \mathbf{R}, \text{ which implies (by tensoring with the R-module } \mathbf{K}_1) \text{ that } F_{\mathbf{k}}(A) \text{ is contained in } \mathbf{\theta} \mathbf{H}^{\mathbf{i}}(F).$

We therefore get that the embedding $H^*(X_G) \to H^*(F) \otimes R$ not only implies that $H^*(F)$ is a deformation of $H^*(X)$ but also gives a filtration on $H^*(F)$ which fulfils (i) and (ii) above such that the associated graded algebra is isomorphic to $H^*(X)$.

If $B = (B^*[t], g_t)$ is a one-parameter family of deformations of the graded commutative algebra B^* one can define a filtration on B by $F_k(B) = \binom{k}{\theta} B^k[t]$ which fulfils

 $F_{\mathbf{i}}(B) \otimes F_{\mathbf{j}}(B) \xrightarrow{g_{\mathbf{t}}} F_{\mathbf{i}+\mathbf{j}}(B)$. If $A = B_1 = B \otimes K_1$ we therefore get an induced filtration $F_0(A) \subset \ldots \subset F_{k-1}(A) \subset F_k(A) \subset \ldots$ on A from which one can recover the grading of B since by the same argument as above we get $\bigoplus_{k=0}^{g_{\mathbf{t}}} F_k(A) / F_{k-1}(A) \cong B$ as

graded algebras. But since K_1 is not a graded R-module $(\eta\colon K[t]=R\to K,\eta(t)=1$ does not preserve the degree) the algebra A does not inherit a grading from the graded (by total degree) algebra $B=(B^*[t],g_t)$. (In case $G=S^1$ one gets an induced Z_2 -grading on A since t has degree 2.) To get a converse of (1.12) we therefore assume that A can be equipped with a grading which is compatible with the filtration in the sense that (i) and (ii) above are fulfilled.

(1.16) PROPOSITION: Under the above assumptions there exists an embedding of graded R-algebras $\gamma\colon\thinspace\widetilde{B}\to A=A\otimes R$ such that γ_{ℓ} is an isomorphism and \widetilde{B} \otimes $K_0=B$ as graded algebras.

<u>Proof</u>: a) case $G = Z_2$: Define $\widetilde{B}^n = \{\sum_i a_i t^i, a_i \in F_n^{n-i}(A)\} \widetilde{C}$ A \mathfrak{S} R (compare [7], \S 3). Then $\widetilde{B} = \mathfrak{S}$ is a graded sub-

algebra of $A=A\otimes R$. Since for each a $\in A$ there exists a power t^S of t such that a· $t^S\in \widetilde{\mathcal{B}}^*$ one gets that γ_{ℓ} is an isomorphism. It remains to show that $\widetilde{\mathcal{B}}\otimes K_0\stackrel{\sim}{=} B$. But

 $\widetilde{B} \otimes K_0 \cong \widetilde{B}_{/t} \cdot \widetilde{B} \cong \bigoplus_{k} F_k(A)_{/F_{k-1}(A)} \cong B.$ For a fixed degree

one has
$$\widetilde{B}^n/_{t}$$
 $\widetilde{B}^{n-1} = \bigoplus_{i=0}^n F_n^{n-i}(A)/_{F_{n-1}^{n-i}(A)} \cong B^n$.

b) case $G = S^1$: Define $\tilde{B}^n = \{ \sum_{i} a_i t^i, a_i \in F_n^{n-2i} \} \subset A \otimes R$.

The rest is analogous to the first case.

- 2. The case $(G,K) = (S^1,Q)$. We now use Sullivan's theory of minimal models (s. [14] or [10]) to handle the non-equivariant realization problem of part 1 in certain cases. Our main result is:
- (2.1) Theorem: If $\gamma: B \to A$ is an embedding of R-algebras as in (1.8) and $A = A\otimes R$, where A is a finitely generated K-algebra, then γ can be realized by a relative G-CW-complex (X,F).

This result is an immediate consequence of (1.8) and the following

(2.2) LEMMA: If $\gamma: B \to A$ is an elementary embedding of R-algebras and X a h-simple formal G-space which realizes A, i.e. $H^*(X_G) \cong A$ and there exists a homotopy equivalence of differential graded algebras (d.g.a.'s) $M(X_G) \xrightarrow{hX_G} H^*(X_G)$, where the free R-algebra $M(X_G)$ is the minimal model of X_G , then γ can be realized by attaching a G-cell to X, such that the resulting G-space Y := X U G*Dⁿ is again formal. (Since we have to allow non connected spaces the minimal model of such a space is understood to be the cartesian product of the minimal models of the connected components.)

<u>Proof</u>: By the theorem of Grivel (s.[8] or [10] (20.3)) $M(X) := M(X_G) \otimes_R K_0 \text{ is the minimal model for } X \text{ and } h_{X_G} \text{ in-} K_G$

duces a homotopy equivalence of d.g.a's h_X : $M(X) \to H^*(X)$. 1. case: degree (of the generator) of $A_{/B} = 0$. We then already know from (1.7)a) that $\overline{\pi}$: $A \otimes K_0 \to A_{/B}$ can be reallized by a map α : $S^0 \to X$. It remains to show that the resulting G-space Y: $= X \bigcup_{\alpha} G \times D^1$ (resp. Y_G) is formal. But X_G is obtained from X_G by connecting two different components by a line, which (up to homotopy) means that one takes the wedge of these two components leaving alone the others. We therefore get that Y_G is again formal (s.e.g. [10](15.14)). 2. case: degree of $A_{/B} > 0$. Without restriction we then can assume that X is connected. The morphism h_X : $M(X) \to H^*(X)$ induces a map $\overline{h_X}$: $\widetilde{M}(X) / (\widetilde{M}(X))^2 \to \widetilde{H}^*(X) / (\widetilde{H}^*(X))^2$ of the indecomposables.

Hence any algebra map $\overline{\pi}$: $A \otimes K_0 \cong H^*(X) \to A_{/B} \cong \widetilde{H}^*(S^{n-1})$ gives a map $\widetilde{M}(X)/(\widetilde{M}(X))^2 \to \widetilde{H}^*(X)/(\widetilde{H}^*(X))^2 \to \widetilde{H}^*(S^{n-1})$ which by Sullivan's theory therefore can be realized by a map $\alpha \colon S^{n-1} \to X$ (s. [14],(10.1)). Put $Y \colon= X \ \bigcup_{\alpha} G \times D^n$ and therefore $Y_G \cong X_G \ \bigcup_{i \mapsto \alpha} D^n$. Then $K = \ker \left(M(X_G) \xrightarrow{h_{X_G}^*} H^*(X_G) \xrightarrow{i^*} H^*(Y_G)$. One therefore gets a homotopy equivalence of d.g.a.'s $h_{Y_G} \colon M(Y_G) \to H^*(Y_G)$, where $M(Y_G)$ is the minimal model of Y_G . By (1.5) Y is h-simple and q: Y \to X realizes Y.

The proof of (2.1) now consists of an iterated application of (2.2) using the decomposition of $\gamma\colon B\to A$ into elementary embeddings (s.(1.8)) starting with a formal space F which realizes $A=H^*(F)$.

(2.3) Remark: If A in (2.1) is simply connected (and $\dim_{K}(A)<\infty$) then by (1.12) one can realize A by a formal

space F which is a finite CW-complex.

- (2.4) COROLLARY: Any deformation of a finite dimensional connected commutative graded K-algebra B, which fulfils the assumption of (1.16), can be geometrically realized by an h-simple G-space X, with $H^*(X) \cong B$.
- (2.5) Remark: The above corollary does not imply that any deformation of $H^*(X)$ for a given space X can be realized by an G-action on X. (s. e.g. [1], Example 3 for a counterexample)

References

- [1] ALLDAY, C. and HALPERIN, S.: Lie group actions on spaces of finite rank. Quart.J.Math. Oxford (2) 29, 69-76 (1978)
- [2] BOREL, A.: Seminar on Transformation groups. Annals of Math. Studies, No.46, Princeton, New Jersey: Princeton Univ. Press 1960
- [3] BREDON, G.E.: Equivariant Cohomology Theories. Springer, Lecture Notes in Math. Vol. 34 (1967)
- [4] BREDON, G.E.: Introduction to Compact Transformation Groups. New York - London: Academic Press 1972
- [5] GABRIEL, P.: Finite representation type is open. Springer, Lecture Notes in Math. Vol. 488, 132-155 (1975)
- [6] GERSTENHABER, M.: On the deformation of rings and algebras. Ann. of Math. 79, 59-103 (1964)
- [7] GERSTENHABER, M.: On the deformation of rings and algebras II. Ann. of Math. 84, 1-19 (1966)
- [8] GRIVEL, P.P.: Thèse, Université de Genève 1977
- [9] GUGENHEIM, V.K.A.M. and MAY, J.P.: On the Theory and Applications of Differential Torsion Products. Providence, Mem. of the Amer. Math. Soc. No. 142 (1974)
- [10] HALPERIN, S.: Lectures on minimal models. Publications interne de l' U.E.R. de Mathématiques, Université de Lille 1977

- [11] ILLMAN, S.: Equivariant singular homology and cohomology for actions of compact Lie groups. Springer, Lecture Notes in Math. Vol. 298, 403-415 (1972)
- [12] PUPPE, V.: On a conjecture of Bredon. manuscripta math. 12, 11-16 (1974)
- [13] PUPPE, V.: Cohomology of fixed point sets and deformation of algebras. manuscripta math. 23, 343-354 (1978)
- [14] SULLIVAN, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. No. 47, 269-331 (1977)
- [15] WU WEN-TSÜN: Theory of I*-functor in algebraic topology. Scientia Sinica 19, 647-664 (1976)

Volker Puppe Universität Konstanz Fachbereich Mathematik Universitätsstraße 10

7750 Konstanz Bundesrepublik Deutschland

(Received May 15, 1979)