D
[-A elt

Werk

Titel: The Fluid Flow Through Porous Media. Regularity of the Free Surface.
Autor: Alt, Hans Wilhelm

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0021 | log20

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

manuscripta math. 21, 255 - 272 (1977)
© by Springer-Verlag 1977

THE FLUID FLOW THROUGH POROUS MEDIA.
REGULARITY OF THE FREE SURFACE

Hans Wilhelm Alt

The fluid flow through an earth dam separating two water reservoirs of
different levels gives rise to a free boundary problem. In [1] we have
proved the existence of a solution to this problem. In this paper we
show that the free boundary is regular.

1. Introduction

In this paper we prove regularity theorems for a free
boundary problem related to stationary flow through a homo-
geneous porous medium.

Let us divide the n - dimensional space R" into four
parts. The first one is a bounded domain  with Lipschitz
boundary and denotes the porous medium. Let A be the region
of @ occupied by water. Let K be a closed set, which de-
notes the impermeable part of the space. The third part
consists of water reservoirs SO~K ,...,§§\\K with levels

1
sg , Wwhere Sg are open and relatively closed subsets of

{(y,n)€R" / h<s® and (y,h)¢TUK}.
1

We assume that S? are disjoint sets. The remainder of Rr",
denoted by L, is occupied by air. The pressure of the fluid
is given by the function

(o) .
s:-h , if (y,h)€ s®
u®(y,h) = - *

0 , if (y,h) €L

We assume

(A1) u® can be extended to a Lipschitz continuous func-
tion on R".
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(A2) S:= 3Q~NK 1is non - empty.

The classes of admissible functions and test functions
are given by

u® on S},

M= {verlZw@) /v

N ={veul>?2Q) / v=0 on s}.

The stationary fluid flow through Q can be described as

follows. Find a function u and a set A which satisfy

(P1) u€M and A is a measurable subset of @ ,
(P2) wu=0 almost everywhere in §QNA,
(P3) for all functions € ﬁ we have

[ (Vu+I(A)e) VL =0,
Q

where I(A) denotes the characteristic function of A and e

the vertical unit vector.

The problem (P1) - (P3) was solved in [1] by construc-
ting a minimal supersolution. A pair (u',A') is a super-

solution, if

(S1) wu'€M and A' is relative closed in Q ,

(S2) wu' =0 almost everywhere in Q~NA,

(S3) for all non - negative functions ¢E€ M the inequa-
lity

[ (Vu'+ I(A')e) Vg >0
! Z

holds.

For the existence proof in [1] we have used the follow-
ing assumptions:

n=1 and that

*
(A3) Suppose that Q@ 1is an open set of R
*
there are functions g_ 28,80 — R such that g_< g,
and

Q = {(y,h)e R" / yEQ"= and g_(y)<h<g,(y)},

(A4) The set S~S ‘and all the sets SN Q, ,where s€R
and QS =an{h=s} , have a finite (n-2) - dimensional lower

Minkowski content.
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Now let (u,A) be a solution of the problem (see [1]
Theorem 4.2), that is

(AM) (u,A) 1is a solution of (S1) - (S3) and (P1) - (P3),
and for all supersolutions (u',A') we have

J(u,A) < J(u',A"),
where J 1is the natural functional to the integral in (P3)

and (S3) given by

J(u,A) = [IVu+ I(A)el? .
Q

For the proofs in this paper we need further conditions
on the boundary of Q . Let us define

S, = {xes / w®>0 in B(x,e)NS for some € >0}

S

. {x€S / u°=0 in B(x,e)NS for some €>0}.

We assume

(A5) The set {ye€qa* / (y,g,(y))€ So} is open and g, is

a Cl’1 function on this set.

(A6) If (yo,ho)EQ and (yo,g‘_(yo))ES\So then there
is a ball B* in % such that yoe 3B* and

{(y,g,(y)) / yeB*}es, .

Remark. The pair (u,A) satisfies (AM). By [1] Theorem

4.2 we may assume that
——— (-]
A=Qn{u>0} and A = {u>0}.

Furthermore by [1] Theorem 2.3(4) and [1] Remark 2.4 there
is a function ga " Q* —» R such that g_<gpsg, and

A= {(y,h)eQq / g_(y)<h§gA(y)} .

By [1] Theorem 2.3(6) we have u(y,h')>0 for (y,h')€Q
with g_(y)<h'<h provided that u(y,h)>0.
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2. The behavior of the solution near S,

From the physical point of view it is evident that for
the solution we have

Vevz0 on 3ANS_,

which means that on the boundary between A and the air the
fluid flows out of the porous medium. In Theorem 2.8 we
prove this, in a weak sense, on that part of So which is

contained in the graph of g, -

2.1 NOTATION. We suppose that x_ = (yo,ho)E Q and
Xy = (yo,g+(yo))€ So. Let Z* be a ball with centre Yo and

define
Z = {(y,h) € R"/ ye€ z* and h <h<hg},

where h1 is a constant greater than sup g, - If 7* is
small enough we have 7(139::80 and {(y,ho) / yez*tca.
Let u=0 on Z~Q and
h
v e =
u (y,h) = [ uly,s)ds for (y,h)€TZ.
h

2.2 LEMMA. There is a bounded measurable function

6:2¥ — 5 R such that 6(y) =0 whenever gA(y)<g+(y)

and such that for ©CE€ C:(Z) we have

é[Vu-+I(A)e)V; = | 8(y) cly,g,(y))dy .

z*

PROOF. Let uQE M be the solution of the variational
equality

©

[(Vug +e)vn = 0 for neEM.
Q

We have ug€C'(ZWRW) by (AS) and Oguguy by [1] Lemma
1.5(1) and [1] Theorem 1.7. Using [1] Lemma 3.8 we conclude

for non - negative functions € C:(Z)
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[ (Vu+ I(A)e) Ve
Z

A

[ 1A L = / t(y,galy))dy .
Z Z*

Hence by (P3)

[ (Vu + I(A)e) Ve
z

A

/ tly,g, (y))dy .
z*n {g, = g,}

Now we apply [1] Lemma 3.8 to the function u-ug and get

[(Vu+I(A)e)VE > [Vu,ve
Z Y/

= Vug(y,g,(y))-(-Vg (y) +e) tly,g, (y))dy
*
VA

The assertion follows from the Radon - Nikodym theorem.

A consequence of this lemma is the following statement
(see [1] Theorem 3.2).

2.3 LEMMA. The function u' defined in 2.1 belongs to

Hz’p(Z) for 1<p<e and aut = (1-0)1CA) .

Our aim is to show that 6 is non - positive. To do this,

we solve a variational problem in Z .

2.4 DEFINITION. We define

A {vEHl’Z(Z) / 0§v§u¢ and v=u' on 3Z* x R}

and let wE€ M be the solution of the variational inequa-

lity

J(vwv(v-w)+v-w) - [ (uv-w))(y,h )dy > 0
Z * 2 =
/A
for vE€ M+. Then we define u'=-293 w.

h

2.5 THEOREM. The functions w and u+ have the properties
(1) wEHz’p(Z) for 1<p<ew.
(2) u'=u on dZ.

(3) aw = I({w>0}) - min(8,0) I({w=u">0}).
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(4) If D is an open subset of ZNQ and w=u' in D then

8 <0 almost everywhere in D.

(5) The Lebesgue measure of Zna{w>0} is zero.

PROOF. Assertion (1) can be reduced to [2] Corollaire I.1
with the reflection method used in [1] Theorem 3.4(1). The
proof of (2) is similar to [1] Theorem 3.5(2). Since w and
uY belong to H2°1(Z) we have Aw=0 a.e. in {w=0} and

Aw:AuJ' a.e. in {w=u+} . By definition of M’L we have

{w>0}c{u+>0}={u>0}cA

which implies Mw=aut=1-8 a.e. in {w=u¢>0} by 2.3.

The variational inequality for w implies Aw>1 a.e. in

{w>0} and Aw=1 in {u+>w>0}. We conclude 6<0 a.e.

¥

in {w=u >0} and (3) is proved. Now let D be an open set

as in (4). We have 06<0 a.e. in Dn{w>0}. Furthermore
D~{w> 0} is contained in Q~A, hence 86=0 in D~{w>0}
by definition of 8 in 2.2. Using (5) we conclude 6<0 a.e.
in D . Assertion (5) is proved in 6.1.

We translate the properties of the function w to u' .

2.6 THEOREM.

(1) O0O<u'<u in Z.

(2) There is a function g:2Z* —— R such that
fw=u'1nz = {(y,h) €2 / hxgly}.

(3) For 7 €C_(zNnQ) we have
[(vu' + I({w>0})e)ve = [max( - 6(y),0) z(y,g(y)) dy
Z 7%

PROOF. 2.5(3) and 2.5(5) yields

[(vu' + I({w>0})e)Ve = [ min(6,0) 3, ¢
& ' z0 {w=u">0)}

for 1;61?11’2(2) . We take ¢z =max(u'-u,0) as test function
and obtain using (P3)
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fle;I2 = [(vu' + I(A)e) VL
Z Z

= [ min(e,00 3, + [ T(AN{w>01) 3 T .
Zn{w-= u*>0} 2
The first term is zero since u' =u a.e. in {w=u+} , and
the second term is zero since u'-u=-u<0 in z~Tw> 0} .
That proves u' <u. We conclude u+zw and Bhu+§ LI
hence (2) and the second inequality in (1) is proved. Now

take ¢ =min(u',0) as test function and calculate

élvcl2 = évmva = min(s,o)ahr, = éahc
ZNn{w=u >0}
= [  min(6,0) dt = - [ min(e(y),0) z(y,gly)) dy < 0.
Zn{w=u+} 7
That proves wu'>0. To prove (3) we look at the set

N=2znon{w=u'=0}.

In NNA we have 0=Au¢=1—9 a.e., and in NNA we
have 6=0 by 2.2, hence 62>0 a.e. in N. For
L€C2(ZNnQ) we conclude
/ min(g,O)ahc = f min(?,ﬂ)ahc
Zn{w=u >0} Zn{w=u"}
= - [ min(8(y),0) z(y,gly)) dy
7*

Now we are able to prove the main theorem of this
section. This result is used in 3.4.

2.7 THEOREM.

L A5
(1) w(y,h) =? u(y,s)ds for (y,h)€Z,
h

(2) Aw>1 almost everywhere in Zn {u>0},

(3) 6<0 almost everywhere in Zz*.

An equivalent formulation of 2.7 is
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2.8 THEOREM. For non - negative functions ¢ € C:(Z) we

have [(Vu+ I(A)e)vr <O.
Z

PROOF OF 2.7. Define wu'=u in Q~Z and

A' = (ANZ)u(QnZn{w>01}).

Using 2.6 we see that (u',A') 1is a supersolution in the
sense of (S1) - (S3) (the proof is similar to [1] Theorem
3.7). Since the pair (u,A) minimizes the functional J in
the class of supersolutions (see assumption (AM) in 1.) we

conclude
0 > J(u,A)=J(u',A") = [IV(u-u') + I(A~NADel? + 2R,
Q
where
R = [(Vu' + I(A")e) (V(u-u') + ICANA')) > O
& z

by (S3), since u-u'€M 1is non - negative. We have proved
that Vu' =Vu a.e. in ZN{w>0}. This implies wu' =u
and w =u+ in Z . Then the theorem follows by 2.5(4) and
2.5(3).

3. Continuity properties of the free surface

Let X =(yo,h0) be an element of QN 3A and
X4 =(yo,g+(yo)). We distinguish the cases x4 € SO and

x, € S\SO , and we prove the following two theorems.

3.1 THEOREM. If x_ €QnNna3A then x, cannot be an ele-

ment of S~NS .
_—_ = o

3.2 THEOREM. If x €QN3A and x € So then the solu-

tion u is zero in a neighborhood of x,; , that is, x1¢K .

To prove the second theorem we start with some notation

and some lemmas.
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3.3 NOTATION. We consider the case x1€ So . Let p>0
and ho< U< g+(yo) - , and define

z = {(y,h) e R"/ Iy-yo|<p and u<h<g+(y)}.

If p is small enough then we have 7N 3Qc So and
{(y,ho) / ly-yol <plc@. Let w be the function from 2.7.

3.4 LEMMA. E x1€ So then there is a constant C<w

such that dusg Cu almost everywhere in a neighborhood of

Xy . Hence this inequality holds in Z if g+(yo) -y and

p are small enough.

PROOF. Let &8 be a small positive number and define

aﬁu(y,h) = %(u(y,h)—u(y,h—é)] for (y,h)€TZ.
Then ague c®Z)nul*2(z) and Bliu is a harmonic function

in Zn{u>0}. Now let v‘S be the solution of the Dirich-

let problem

Av6=0 in Z, v6=max(8ﬁu,0) on 293Z.

Since v° >0 and Bﬁug 0 on Zn3{u>0} the maximum prin-

ciple yields v‘sgagu on Zn{u>0}. Since g+€Cl’1 by

(A5) we have a representation
vix) = / P(x,E)max(aﬁu(E),O)dHn_l(E;)
97
where P is the Poisson kernel with 0 < P(x,£) < cln,g,,p)
for £€QN3Z and dist(x,2nN BZ);%. Choose p and u
such that u€H1’2(BB(yo,p) x R) and such that

lim %f 13, ul = [ 13, uly,u)l dy
§-0
B(y_,p) x [u-6,ul B(y,,p)

exists. Then we get an estimate

8 §
ahugv

A

c(n,g, ,p) Il ullL, canaz)

in a neighborhood of Xq s where the right side does not de-
pend on §. If we choose g+(yo) -u and p small enough, we
conclude Bgugc(n,g+,p,u) in Zn{u>o0}.
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Now we apply 6.3 to the domain D=2N0n {u>0} and the
sets (choose u' with u<p'<g+(yo))

K
L

{(y,m €D/ ly-y I ¢§, wghsg (N},
{(y,h) € 3D / Iy-yol=p or h=u},

and the functions v = agu and w from 2.7. We have Aw>1
in D and {w>0}nD={u>0}nD by 2.7 and w=0 on 9dD~NL.
u and v are harmonic in D, and u>0 in D, and ve<o
on 9dDNL, and the supremum of v on L does not depend on
§ as shown above. All this implies that there are constants
€>0 and C<eo such that

eaﬁu-Cu+w§0 in K,

where C does not depend on §. Letting &6-0 we get
C
Bhu E

and the lemma is proved.

A

u a.e. in K,

3.5 LEMMA. I x1€ SO then there is a constant C<ow

such that wu(y,h) < Cw(y,ho) for (y,h)€Z.

PROOF. If ho<u' <y then 3.4 implies

h
u(y,h) < uly,u')+ C fu(y,s)ds < uly,u")+ Cw(y,u').
= I =

Integration over p' yields wu(y,h) < ((u- ho)-1 + C]w(y,ho) .

3.6 LEMMA. If xOGQnaA and x:lESo then for O<a<1

there is a constant C<o such that

uly,h) ¢ Cly-y 11*® for (y,mez.
PROOF. We have w€ C1°*(Z) by 2.5(1). Since w320 and

w(xo) =0 we conclude Vw(xo) =0 . Hence for some C<e

1+a

w(y,ho)§ Cly-.yol for Iy-yolgp-

Then the lemma follows from 3.5.
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3.7 PROOF OF THEOREM 3.2. Suppose o€ R, and suppose
Y€ chicmrn1y with infy >0+ 1. Define

D = {(y',h*)/ ly'l <1 and o<h'<y(y")},

and let v be harmonic in D, continuous in D, and v =0
on 9DN graph(y) . Then we have the well known estimate
(see Kellogg’s Theorem)

[vv(y',u(y"))I < c(n,supIVle)suplvl for Iy'Ig%.
e e =

We apply this to prove 3.2. Choose a non - negative function
Q€ C:(B(O,%)) with @(0)>0 and define
. - 1y -

gp(y) = g+(y) pw(p(y yo))

ZD = {(y,h) e R" / ly—yol <p and u<h<gp(y)} .
Let v, be the solution of the Dirichlet problem

Avp:O in Zp 5

Vo = u on BZp\graph(gp) 5 vp:O on Bangraph(gp) .
Using 3.6 we conclude for x-= (y,gp(y)) with |yl 5%

vy (x)| < lc(n,g ,®) sup lul < Cp®
e =P ¥ Y7 B

if ¢ 1is small enough. Since vp:O this implies

5 o 25-1/2
(va(x)+e)-vZ (x) = Iva(x)l + (14 lVgp(y)I )

o
> c(n,g+,(p)- cp®> 0

if p is small enough. Hence
[(vv_+I(Z)e)vg > 0
A P p -
for all non - negative functions ¢E€ C°O°(Z) , 1f we set V& 0

on Z\Zp . We apply the theory of supersolutions to the
domain Z (see [1] Theorem 2.8) and get

[(Vmin(v_,u) + I(Z_n A)e)-vg > 0
A P P =

for non - negative <€ C:(Z). Using the notations
u' =min(vp,u) in Z, u'=u in Q~NZ,

A' = (A\Z)U(Z;ﬂAﬂQ),
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we can prove that the pair (u',A') 1is a supersolution
(see the proof of [1] Theorem 3.7). As in 2.8 we conclude
u' =u. This implies u=0 1in Z\Zp , which proves the
theorem.

The prove of Theorem 3.1 is quite different.

3.8 LEMMA. Suppose Xy

Then u(y,h)>0 for (y,h)€Q with yeB*.

*
€S~S_ and let B be as in (A6).

PROOF. Suppose there is a yE€ B* with (y,h) € Q~A.
Then u is zero in a neighborhood of (y,g,(y)). This is a
contradiction to the properties of B* in (A6), hence

(B*xR)NQ c&={u>0}.

3.9 NOTATION. Suppose xq€ S~S5. By 3.8 we can choose

B* in (A6) such that {(y,ho)/yEB—’r}cQ and u(x,)>0

for some x, = (y2,ho) with y2€B* and vy, #yo. Choose a

ball B, with centre Xp such that xoe Q\~§; , and choose
nECZ(Bz) with 0<ngl1 and n(x,)>0. Let D be a domain
in (B*xR)N @ with smooth boundary such that DcQ and
{(y,h) / y€ B* and Ih-holgeo}cD for some e >0.

3.10 LEMMA. There is a ball B  with centre x  such that

B_o' and B_2 are disjoint, and a domain D' with smooth boun-

dary such that

DcD'cDUBO, and x°€D', and D'\BO=D\BO,

so that the solution v ' of the Dirichlet problem
Av' =0 in D', v'=nu on 3D',

satisfies the inequality

(Vv' +e):Vv'>0 in D'N B0 .

PROOF. Let v be the solution of the Dirichlet problem

Av=0 in D, wv=nu on 3D.
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Since v20 and v(x2) >0 we have by the Hopf maximum
principle at the point Xy

(Vv+e)Vv= - |Vv] Vv-vD >0 .

Hence we can choose 60> 0 and Bo such that
(Vv+e) Vv (SO in Dn BO .

If we swell out the domain D near x_ to a suitable domain

1,a

D', we get the result (use the C a priori estimates

for the Dirichlet problem).

3.11 PROOF OF THEOREM 3.1. We use the notation in 3.10.

Define

u' =max(v',u) in D', u'=u in Q~D'.

Since v'z<u on 3D' we have u'€M. Using (P3) and taking
into account that v'+h is harmonic in D' and that D'~NA

is contained in D'nN BO by 3.8 we conclude

[Ivu'-w 12 = [ov'-v(u'-u) - [Vu-v(u'-u)

D'n A D'n A &

= [vv'.V(u'-u) + fe.V(u'-u) = [(Vv'+e)-V(u'-u)
D'n A & D'N A

JV(v'+h)-V(u'-u) - [(Vv'+e)-V(u'-u)
D! D'N A

- [(Vv'+e).Vv' < O

D'NA
by 3.10. Hence V(u'-u)=0 in D. Since u'=u=0 on
oD~ B > B, this implies v'<u in D, and we have proved
that u(xo):v'(xo)>0 , that is, xo¢ %A .

4. The case n=2

In the case n=2 Theorem 3.2 can be proved in another
way. We use the notation in 3.3 and suppose x,€an 3A .
Define

Cu = {y/yo—p§y§y0+p and u(y,u)=0}.
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Q
We have to show that y0€ Cu for some pu with up< g+(yo) s
Let I be a bounded connected component of IR~ Cu and

ho<u<u' <g+(yo) . Then we have Ic [yo-p,yo+p] and by 2.7

Aw>1 in D=2n {u>0},
w=0 on {(y,h)€3D/h>u}.

We apply 6.2 to the sets K=Dn{h>u'} and L=Dn {h-=y}
and get

. )
Dc{h<u'}, that is, v, € Cu,

or
w(y,u)> c(n)(u'-u)2 for some y€TI.

But since w(yo,u) =0 we have w(y,u)<Cp for Iy—yol <P,
where C does not depend on p and u . Hence if & is a
small positive number and p'-p>6, and if p is small
enough we conclude that yo€ 611' if Cu has a bounded
connected component. Since yoe Ch for all h with
ho<h<g+(yo) we distinguish two cases.

First case: Yo € 6h for some h with h <h<g (y ).

ThenTheorem 3.2 is proved.

Second case: For all ho<u<g+(y0) -6 we have

or Cu = [yo,y1] for some v, € [yo,yo+p] ,
Cu = [y1,yo] for some y, € [yo—p,yo] .
Since Ch c Ch' for h < h' (see Remark in 1.) we conclude

if p 1is chosen small enough

or Cu={yo} for all p with h <u<g/ (y)-$,
Cu=[yo,yo+p] for all p with ho<p<g+(yo)—6 3

(64
u

This implies BhI(A) =0 in

or

[yo—p,yO] for all up with ho<u<g+(yo)—6 .

Q = {(y,h) / ly -yl <p and h0<h<g+(yo)-6}

which yields  Au=0 in Q by (P3). Since u>0 and
u(yo,h)=0 for hxh . we conclude u=0 in Q by the

maximum principle, and Theorem 3.2 is proved.
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5. Regularity of the free surface

In 3.1 and 3.2 we have proved that the free surface has

the following property.

5.1 REMARK. If xoenn 9A then the solution u is zero

in a neighborhood of (xo,g+(yo)) .

From this we conclude that the free surface is Lipschitz
continuous (see the following theorem). For the proof we

need the maximum principle in 6.3.

5.2 THEOREM. The set U= {yeQ*/ (y,ga(y)) €an2A} is

an open set and g, is a Lipschitz continuous function on U.

Moreover QN 3A = {(y,gA(y)) / y€u}.

PROOF. Suppose y_ €U and ho=gA(yO). Then (yo.ho)
is a point on the free surface QNd3A, and by 5.1 we can

choose a cylinder
Z = {(y,h)e R"/ Iy-yol<p and ho<h<h1}

as in 2.1 such that Zc® and {(y,hl)/ ly-yol <plcQ~A.

The function

hy

w(y,h) = [ u(y,s)ds for (y,h) €2
h

is of class H2:°P(Z) for 1<p<e by 2.5(1) and we have
Aw = I(A) in Z

(see 2.3). Let 6>0 and b€ R™ Y. We apply 6.3 to the
domain D=Zn{w>0}, and the sets

K = {(y,h)€ED / Iy-yolgp—G and h_>__ho+6},
L = aDn 3z ,

and the function

vV = beV F

yw
Since w€C1(Z) with w320, we have w=0 and v=0 on
3DNL=Zn 3{w>0}. Since 2n{w>0}=zr\{u>0}=_2-07\-.we
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have Aw=1 and Av =0 in D . Moreover

v g Ibl sup IVwl .
Z
All this implies that there are constants, €>0 and

C <o depending on & , such that for all b with |Ibl<e

b-Vyw—Cu+W§0 in K.

Hence (b+e):Vw<0 in K for all b with IbI<C—1e. We

conclude that there is a €(K)>0 such that for (y,h) in
Kn 9A
{(y'sh') /h_<h'<h and ly'-yl <e(K)(h-h")} cZnA.

This completes the demonstration.

5.3 THEOREM. Let U be as in 5.2. Then g,:U — R is

an analytic function. The free surface is analytic.

PROOF. See 5.2, [4] Theorem 2, and [5] Theorem 1.

6. Appendix

6.1 THEOREM. Let Dc R" be open, and suppose that
W€ HZ *P(D) with p2 2 satisfy
Aw>1 in Dn{w>0} and w30 in D.

Then the Lebesgue measure of DN 3{w>0} is zero.

PROOF. Suppose D has smooth boundary and define for 6320

K = {ve H}*2(D) / v20 and v=w on 3D},
N6 = {x€D/dist(x,Dn{w=0}) <8},
f6=Aw in D\NG’ f5=1 in NG'
Let wy €K be the solution of the variational inequality
£(Vwév(v—w5)+f6(v-w6)) >0 for all VvEK.
We have w6€H2’p(D) by [3] Théoréme II.1 with w =w and
Awg = £ I({w6>0}) . Choose 026,28, . Then
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Hence

(1) w62§w61 for 0§62§61.
We have

2
vad—wﬂ < ﬂfo-%)md-w)
D

Hence

(2) We — W in H1’2(D) for 6§-0.
Since f; is regular in. Ns we conclude by [4] Theorem 2 and
(1) that Dn 8{w5> 0} = Ng N 2){w(S >0} has Lebesgue measure
zero. Then (1) and (2) yields for &-0
fOI({w>0}) =Aw<—Aw6 =f6 I(Dn{w6>0})
> £ 1N (DN {w,>0}))
°© 78>0 §

in the sense of distributions, which proves the theorem.

6.2 THEOREM. Let Dc R" be an open and bounded set, Lc 3D

closed, and KcD closed such that KnL is empty. Suppose

weCo(—D), Aw>1 in D, w<O0 on 3DNL.

Then there is a constant c(n) <« such that

wgc(n)dis*c(l(,L)2 on L implies wgO0 in K.

PROOF. Choose d€ C2(R") such that d»0, d=0 in K,
and d21 on L. Then choose §6>0 such that §Ad<1 in D.
For suitable d and § we have &2 c(n) dist(l(,L)2 . If wgé
on L then A(w=-6d)20 in D and w-d8d £0 on 3D. The

maximum principle yields w<éd in D, hence wg<0 in K.

6.3 THEOREM. Suppose D,K,L as in 6.2 and let u,v,w

be continuous functions in D with {w>0}c{u> 0}‘ and

Au<0 in D, u>0 on aD ,
Av>0 in D, v<O0 on 3DNL, vgl on L,

Aw>1 in D, wg<O on 9DNL.

Then there are constants € =e€(n,dist(K,L))>0 and
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C=C(n,dist(K,L), supw , inf {u(x)/w(x) 2€}) <e such that

ev-Cu+ wg0 in K.

PROOF. For 0O0<e,C<e the function w'=gev-Cu+w is

continuous in D and

Aw'>1 in D, w'<0 on 3DNL.

Define € =—%‘-c(n) dist(K,L)2 , where c(n) is the constant in
6.2. If x€L and w(x)<e then

w'(x) g evix) +w(x) < 2¢€.
If w(x)>e then

w'(x) e - C inf u + supw < 2¢

{w>e}l D "

for a suitable C since inf {u(x)/x€D and w(x)>e}>0 . By
6.2 the theorem follows.
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