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Abstract. A basic problem of finite packing and covering is to determine, for a
given number of k unit balls in Euclidean d-space E¢, (1) the minimal volume of
all convex bodies into which the k balls can be packed and (2) the maximal volume
of all convex bodies which can be covered by the k balls. In the sausage conjectures
by L. Fejes T6th and J. M. Wills it is conjectured that, for all d =5, linear arrange-
ments of the k balls are best possible. In the paper several partial results are given
to support both conjectures. Furthermore, some relations between finite and infinite
(space) packing and covering are investigated.

1. Introduction

Let #“ denote the set of convex bodies in Euclidean d-space E“ i.e., the set of
all compact convex subsets of E with nonempty interior. Further, let B¢ be the
unit ball in E“. A basic problem of the theory of finite packing is to determine
for a given positive integer k the minimum of the volume of all convex bodies into
which k translates of B can be packed.

In the plane this problem and several ramifications have been extensively
studied. In particular, Fejes Téth [5] (see also [6]) showed that finite packings
with B? cannot be denser than an optimal packing of disks in the whole plane,
and Wills [25] conjectured that this also holds (except for some small k) in E*
and E*. Further, according to Groemer [11] and Wegner [22] extremal finite

'* This paper was written while the first named author was visiting the ‘“‘Forschungsinstitut fiir
Geistes- und Sozialwissenschaften” at the University of Siegen.
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packings of B’ are essentially hexagonal parts of the densest lattice packing of
disks in E’. This result has no direct anology in E' and E* (except perhaps for
large k). In the optimal arrangement of three balls in E' the centers are not, as
one might possibly expect, the vertices of a regular triangle, but rather they lie
on a straight line. Such linear arrangements are called sausages, the name
originating from the shape of the convex hull of the balls. In E' sausages seem
to be best possible up to 56 balls (see Wills [23], [24]). Then the extremal
configurations change drastically and clusters of balls yield greater densities. In
E* the same phenomenon occurs, but much later, perhaps between 50,000 and
100,000 balls (see [23] and [24]), which justifies the name sausage catastrophe.

In E* the situation changes completely. In E“, d = S, sausages seem to be best
possible for any number of k unit balls. This is Fejes Toth's [ 7] sausage conjecture
for finite packings.

Correspondingly, a basic problem of the theory of finite covering is to determine,
for a given positive integer k, the maximum of the volume of all convex bodies
which can be covered by k translates of B”. In this context there seems to be quite
a strong analogy between finite packings and finite coverings with the unit ball.
In particular, as a counterpart to Fejes Toth's sausage conjecture, Wills [24]
conjectured that sausage arrangements are also extremal, for d = §, in the case
of finite coverings of B“.

In spite of their importance it has not yet been possible to prove either of
these two sausage conjectures completely in any dimension. But there are a
number of results which support the conjectures. For a survey of the results
known so far, refer to Gritzmann and Wills [10].

In the present paper we give further evidence to support both conjectures.
Furthermore, we point out some relations to packing and covering with B? with
respect to the whole space. Finally, we present a simple result concerning sausage
catastrophes and outline some possible applications in chemistry.

In Section 2 we give some basic notation. In Section 3 we introduce a uniform
concept of packing and covering densities which, in particular, makes the occur-
rence of sausage and sausage catastrophe phenomena much more lucid. Section
4 contains the statement of our results, the proofs of which are the content of
Sections S, 7, 9, and 10. In Sections 6 and 8 we give upper and lower estimates
for the volume of parallel bodies of the regular simplex which are essential for
the proofs of Theorems 3 and 4, and which may be of interest themselves.

2. Basic Notation and the Sausage Conjectures

Let V=V denote the usual d-volume of convex bodies and, in particular, set

d/2
17/

— d T e
wa=V(B) =t a7y

If K is an arbitrary convex body and if r runs through all nonnegative real
numbers then, by Steiner’s formula, V(K +rB?) is a polynomial in r of degree
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d which can be written in the form

d
V(K +rBY) = Y owy V(K
(see, e.g., Hadwiger [12]). The coefficients V(K ), ..., V,(K) are the intrinsic
volumes of K (see McMullen [16]). Let us remark that the intrinsic volumes are
just a renormalization of the quermass integrals. Therefore, regarded as func-
tionals on X they have the well-known properties of the quermass integrals,
but, moreover, they are independent of the dimension of the space in which K
is embedded. Of particular service is the following description of the intrinsic
volumes V, of polytopes. Let P be a polytope and let F,(P) denote the set of all
i-dimensional faces f of P. Furthermore, let C(f) be the cone with vertex 0 of
outer normals of P taken at any relatively interior point of f and let a( f) be the
fraction of the linear hull of C(f) taken up by C(f). Clearly, 0< a(f)=< 1. But,
moreover,
ViP)= Y V'(falf).

T b,oPy
Let us stress the fact that the sets f+ C(f) dissect E“, and so, in particular, they
dissect P+ B“.

Let k€N and let

Fi={(2i,0,...,00+Bli=1,... k}.

Furthermore, let ¥, be a set of k translates of B“, the centers of which are
equally spaced on a straight line at such a distance that, for all such configurations,
W', covers a convex body of greatest volume.

Then the sausage conjectures can be expressed as follows:

Sausage conjecture for finite packings
For d =5 V(conv(.#,)) is the minimum of the volume of all convex bodies
into which k translates of B? can be packed.

Sausage conjecture for finite coverings
For d =5 %, contains a convex body of maximal volume of all such convex
bodies that can be covered by k translates of B

We remark that there is an extremely useful alternative statement of the sausage
conjecture for finite packings in terms of parallel bodies.

Let C, denote the convex hull of the centres of k nonoverlapping translates
of B? and let S, be a segment of length 2(k — 1). Then the conjecture is that

V(S + BY)< V(C + BY) for d=5.

Clearly, this way of stating the conjecture is well suited for methods involving
intrinsic volumes.

If A is a discrete set of points in EY and a€ A then the set of all points of
E? which are not farther away from a than from any other point of A is called
the Voronoi polyhedron of a. Departing from the usual notation, for a fixed convex
body K we call the intersection of all Voronoi polyhedra of points of An K with
K Dirichlet cells with respect to K.
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The rest of the notation used below is quite standard (see, for example,
Hadwiger [12] or Rogers [20]).

3. Packing and Covering Densities

Let A={a,, a,,...} be a finite or infinite discrete set of points in E“. We first
introduce the so-called =-density and y-density of the system &,=[a,+ B,
a,+ B% ...] of translates of B“. (The restriction to the case of the unit ball is
merely a matter of simplicity and clarity. In fact, with some obvious changes
most of the things discussed in this section hold for arbitrary convex bodies.)
We use C? to denote the unit cube with its edges parallel to the coordinate axis
and with center 0. We write, for AeR, A >0,

m(Ba, A) =max[wy card(ANAC?)/ V(AC? ~ C)|C e ¥
AMANACH+BY < C],

y(B4, A) =min[w, card(ANACY)/ V(AC? A C)|Ce X*
AC<c(AnAC?)+B*].

Then the m-density and the y-density of %, is defined as follows:

7(By) =limsup(Ba, A)

A =00

v(Ba)=liminf y(B4, A).

A =00

The system B, is called a packing if each pair of translates a; + B, a;+ B (i#j)
are nonoverlapping, i.e., if they do not have interior points in common. Clearly,
if B, is a packing then 7(%,4) =< 1. Furthermore, y(%,) =1 in general.

We use the 7- and y-densities to define packing and covering densities for all
the problems considered below, including the classical densities for packings and
coverings with respect to the whole space (see, e.g., [20]), the densities of finite
packings and coverings (see e.g., [10]), and also some intermediate types.

Let us start by defining certain types of packings and coverings. Let 1=n=d.
Then B, is called an n-dimensional packing of B? if B, is a packing and A is
contained in some n-dimensional affine subspace E of E“ usually identified with
E" such that conv(A)=E. B, is called an n-dimensional covering with B* if
Ac E" such that E" < A+ B. Obviously, d-dimensional packings and coverings
are the classical packings and coverings with respect to the whole space E“. If
A is finite and %, is a packing, then %, is called a finite packing. If A is finite,
CeX and C< A+ B then B, is called a finite covering of C. If, further, keN
and %, is a finite packing or covering with card(A) =k, then %, is called a
k-packing, k-covering, respectively.
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Now we associate with B¢ the following densities:
8 (B*) =sup[7(B4)| Ba is a k-packing of B4],
9 (B?) =inf[y(B4)| Ba is a k-covering with B4],
8"(B*) =sup[7(B,)| B4 is an n-dimensional packiné of B],
9" (BY) =inf[y(Ba4)| Ba is an n-dimensional covering with B/].

As usual, we further set 8(BY)=68%(B"), 9(B*)=39%(B"). The reason for
introducing the subdensities 8", 9" is precisely that the sausage and sausage-
catastrophe phenomena become much more evident by means of a study of these
densities.

To start with let us consider the packing problem.

Since the minimal convex set which contains a given set is its convex hull it
is easy to see how the densities of n-dimensional packings of B¢ are related. In
fact, we have

5"(BY)=—22_ 5(B").

W,Wg4_py

Since the gamma function I'(x) is strictly convex the ratio wi(w.wy_,)" " is also
strictly convex (considered as a discrete function of n, 1=n=d). To give an
impression of the size of this ratio let us remark that

e

m wy m™
< < \’-—.
V2(d+1) w04, 2d
So, in particular, we have
™
N <8'(BY).
2(d+1) (8%)

3(Bd)50'd,

=1
) for even d, n,

WpWy —p

and

Now Rogers [19] has shown

where o, denotes the ratio of the sum of the volumes of the intersection of d +1
unit balls centered at the vertices of a regular simplex of side 2 to the volume of
the simplex. Since this bound is less than Blichfeldt’s bound [3]

d+2(1)‘“2
0d< = >
2 2
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which, for d =7, is less than 8'(B?) we have, for d =7,
8(BY)=o0,<8'(B).
Accordingly, since the sequence
w; n+2 (l)"/2
W,wy_y 2 2

is convex in n for fixed d, we have

8"(BY)<=s8"'(B%) for 1sn=<d, d=7.

But using the exact values of g, (see, e.g., Leech [15]) it is easy to verify that
this inequality is valid for d = 5.

Figure 1 illustrates the behavior of the subdensities in dimension 24. For the
calculations we used the densest known packings of B“ Further, Figure 2 shows
the subdensities for d <10 again with the uncertainty of having used the best-
known lattice packings for d =9, 10 since in these dimensions the exact quantities
have not been determined as yet. Roughly speaking, the figures show that, for
small n, §(B?) < 8"(B?) with the extreme case of one-dimensional arrangements.

So the sausage conjecture for finite packings may be regarded as a generaliz-
ation of this fact to the case of finite packings of B“.

Now let us turn to coverings. In contrast to packings, in order to determine
the subdensities 9"(B“) we have to solve a simple extremum problem to calculate
the extra dilatation factor to be used to maximize the contained convex body
asymptotically. Doing so, we obtain

d/2
d Wy

n Bd =
2 ( ) (d“n)(dk")/zn"/z W,W4_p

3(B"),

2 4 6 8 10 12 W 1B 18 20 22

Sausage

SUBDENSITIES for d=24

SYEE

— — — — — Leech lattice— — — —

Fig. 1
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I
PACKING DENSITIES
for d<10
08
Densest lattice packing
06
Sausage packing
04
§(8%
) d
d
8,(8%
0 Sd_|(BdL
1 2 3 4 5 6 7 8 9 10 d
Fig. 2
which is, for large d, d —n, by Stirling’s formula,
n(d—n
9"(BY)~a —(d—) 3(B").

Now in view of Coxeter et al., bound [4]

-e_—j?~ 74 <9(B?)
(where 7, denotes the ratio of the sum of the volumes of the intersection of a
regular simplex of side [2(d +1)d ~']"/? with d + 1 unit balls centered at its vertices
to the volume of the simplex) it is easy to see that, for coverings with B,
subdensities behave like packings of B, thus motivating the sausage conjecture
for finite coverings.

To close Section 3 let us give one further definition for packings. Let k, denote
the largest number k such that

Bk(Bd) = 77'(-%‘)-

If such a number does not exist we set k; = . k, is called the sausage-catastrophe
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number of finite sphere packings. (Clearly, the sausage conjecture for packings
states that k; = for d =5 in this notation.) For reasons that will become clear
in the next section, for a d-dimensional packing lattice ¥ of B let k(%) denote
the largest number k such that

m(Ba) = m(Fi)

whenever Ac ¥, card(A) =k
Let us finally remark that such notion also makes sense for finite coverings
(see [24]).

4. Results

We show that the sausage conjectures hold for several types of arrangements.
Let us start with a counterpart to the results of Betke et al. [2] and Betke and
Gritzmann [1] who showed that Fejes Toth’s sausage conjecture holds if the
dimension of C; is sufficiently small compared with d, i.e., it holds for “flat”
arrangements. Our first theorem gives a corresponding result for “large’ arrange-
ments.

Theorem 1. Let Ac E“, card(A) =k be such that B, is a packing. Further, let
Ci.=conv(A), ceR, o< 7(B,). Then

d
Y (o— a'dzd—i)wd—i‘,i(ck) =0.
i=0

Setting, in particular, o = 7w(%,) Theorem 1 becomes a sausage criterion
showing that a certain class of finite packings of B? yields a lower density than
the sausage arrangements. In particular, Theorem 1 implies that, for counter-
examples to the sausage conjecture, the insphere radius of C, must be small
compared with the circumsphere radius.

Corollary. Let Ac E“ card(A) =k be such that B, is a packing. Further, let
C. =conv(A) and let r, R denote the insphere radius and circumsphere radius of
Cy, respectively. If, moreover, w(%,) < w(B,), then

R
1+r<v2 (1 +—2-)[(21r)_'/2(d +2)(d +1)"*]V4,
Let us point out that for large d this inequality is asymptotically of the form
rs%+sff— 1.

(For coverings a result of the same spirit was proved by Gritzmann and Wills [9].)
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Our second theorem is closely related to Theorem 1 in the sense that it
again deals with “large’” arrangements of closely packed balls, the so-called
kissing number configurations. By a kissing number configuration we understand
a packing B, of B such that there is an element ay€ A so that ||a,—a| =2 for
all a € A\{a,} and, further, if there is an x e R? with ||a,~ x| =2 and |la—x| =2
for all a € A\{a,} then x € A. So, intuitively speaking, a kissing number configur-
ation is a maximal packing of B“ such that each ball touches a given one. In a
sense, kissing number configurations may be regarded as building blocks of
densest d-dimensional packings of B®. However, Theorem 2 shows that, at least
for large d, they do not serve as counterexamples for Fejes T6th’s sausage
conjecture.

Theorem 2. Let d =12 and let B, be a kissing number configuration in E° of
cardinality k. Then

7(Ba) = 7(F).

Let us remark that this result is not true for arbitrary dimensions. In fact, in
the plane the kissing number configuration of seven disks has greater m-density
than the respective sausage arrangement. But, as a special case of the sausage
conjecture for packings, Theorem 2 should hold for d = 5.

Now we turn to special arrangements which seem to play a crucial role in the
understanding of Euclidean d-space manifesting itself not only in packing and
covering problems but also in different problems such as determining the lattice

point enumerator of convex bodies. These are configurations related to the regular
simplex T

Theorem 3.

(a) Let d=5, neN, i=<d. Further, let A be the set of vertices of a regular
i-dimensional simplex of side 2 in E°. Then

m(Ba) < m(Fis1).

(b) LetseR, s=2. Further, let A, be the set of vertices of a regular d-dimensional
simplex of side s. Then, as d > oo, we have

TJ’(@A‘)EZ_‘/E Iogyd for s=2Vm,

m(Ba)=2"Y%  for ssg.

. Part (a) of the theorem shows that the 7-density of the simplex configuration
is less than the respective sausage density, at least for d =5. In fact, the same
result is true even for d =3 (and fails for d =2). The reason for the assumption
d =5 is that we prefer a very short proof in the spirit of Section 3 rather than a
longer and much more technical one.
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Part (b) of the theorem proves that, on the other hand, the m-density of the
simplex configuration is much greater than the density 8( B?) of d-dimensional
sphere packing. In fact, by Kabatjanski and Levenstein [14],

8(34)52 -0 %99d +o(d)

Surprisingly we even obtain a finite packing of greater density than 6(B“) if we
arrange d + 1 balls such that their centres form a regular simplex of side vd/13.
To demonstrate what this means, in dimension, say, d = 169,676,676, the distance
of the balls may be 1000.

Let us now turn to asymptotic results for finite sphere coverings. As a counter-
part to part (a) of Theorem 3 we show

Theorem 4. Letd =3, so=(2/(d —1))"’. Further, let A, be the set of vertices of
a regular d-dimensional simplex of side s,. Then we have

d+|

7(Q4)< " d)l/

Compared with Coxeter et al.'s [4] asymptotic bound d/eve the theorem
shows that at least for high dimensions the y-density of a regular simplex of
suitable side is less than 9(B?). For coverings, this is, indeed, a result similar
to Theorem 3(b) for packings. It would, of course, be nice to carry over part (a)
as well. The problem is that contrary to finite packings, where the least convex
body that contains all balls of a given arrangement is simply the convex hull,
convex bodies of greatest volume covered by a given arrangement are not
characterized. So, for finite coverings we have one more optimization process
(see Section 3).

Let us further point out that for a certain ramification of the finite covering
problem considered in [9], the so-called cocoverings, the density of the simplex
arrangement is much worse than &(B“).

Now let us finally turn to the phenomenon of sausage catastrophes for packings
of B’. This problem is of particular interest because of its connections to chemistry.

As it is well known, the study of densely arranged configurations of three-
dimensional balls gives some insight into the behavior of solids and liquids. For
example, the molecular properties of many crystals which, of course, bear a
lattice structure can be described, at least approximately, as the effect of forces
on a huge number of closely packed balls. In view of this close connection it is
not very surprising that there is also a phenomenon in physical chemistry that
corresponds to our sausage catastrophes in E’.

In fact, such phenomena of one-dimensional growth of atomic structures up
to a critical limit were observed by chemists and engineers almost 40 years ago.
Such metal threads, the so-called Whiskers, caused short circuits in condensers.
In particular, the case of iron whiskers is of some interest because of their extremal
stretching properties. Since the iron atoms are usually arranged in the space-
centered cubical lattice our last result (which should serve as an illustrating
example) deals with the sausage catastrophe for the space-centered cubical lattice.
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Theorem S. Let u=2/v3 and let § be the lattice generated by (2u,0,0),
(0,2u,0), (4, u, u). Then

k(9)=<23,968.

5. Proof of Theorem 1, Its Corollary, and Theorem 2

According to an estimate of Rogers [19] we have, for every Voronoi polyhedron
of a d-dimensional packing of B,

V(P)= 22

04

The following lemma shows that in some sense we can also make use of this
inequality in the case of finite packings of B.

Lemma 1. Let Ac E? card(A) = k such that B, is a packing and C, = conv(A).
Then there is a finite set A’ with Ac A’, B ,. being a packing such that the following
property holds. Let a€ A and let P, be the Voronoi polyhedron of a with respect to
A'. Then

P,c C,+2B"
Proof. Let C = C,+ B”. Now we successively add points of bd(C) to A such
that the distance of any two points is at least 2. After finitely many steps we

obtain a maximal set A". Clearly, 3,. is a packing. Then int(P,) "nbd(C) =,
which yields the assertion. (]

Proof of Theorem 1. LetA={a,,...,a}andlet D,,..., D, denote the Dirichlet
cells of a,, ..., a, with respect to C, +2B”. Further, let P,, ..., P, be respective
Voronoi polyhedra according to Lemma 1. Then we can apply Rogers’s estimate
to P,,..., P.. Thus

k -1
oV(Ci+ BY) < kwy = kw, ( ¥ V(Di)) V(C,+2B")
=1

-1
skw,(f V(P,)) V(C.+2B%)

<o,V(C, +2BY).

So, by Steiner’s formula, we have

d d _
o Z| we_ Vi(CI=ay T wa2Y7'Vi(C)
j=

which completes the proof of Theorem 1. (]



30 G. Fejes Téth, P. Gritzmann, and J. M. Wills

Proof of the Corollary. Using the fact that the intrinsic volumes V; are
homogeneous of degree i and monotonous and applying the estimates

(g)>\[v_r__1_ <M<L)"
ol sJa+T T 2 A&l

we have

d T 1 d
L m(FoaVi(G)> \/;—r_d+l z (‘f)wdr‘

7 1 d
A ETZE b

d . d+2 R\*
Y a,,2""wd_i";(Ck)sT2d/2wd(]+—2-> .
i=0

Thus, by Theorem 1

+ d
\/Z' .- (1+r)d<u2d/2<l+£) ,
2Vd+1 2 2

which yields the assertion. O

Proof of Theorem 2. Let B, be a kissing number configuration of cardinality k
in E% Assume that 0=a,c A and all other balls of B, touch B Let r be the
maximum radius such that rBY = C, =conv(A). We consider a point x € rB? n
bd(C;) and a supporting hyperplane H of C, through x. Since we cannot add
another ball to 3,4 without violating the packing or kissing number property, the
radius of 2B? N H is at most v3 and we have r=1. It follows that

2w, = V(C+ BY).

Let M, denote the maximum number of nonoverlapping equal spheres in E¢
that can touch a sphere of the same size. In other words, M, + 1 is the maximum
cardinality of a kissing number configuration in E% Since

V(S +B?)= V(Sy, + BY) <2Mw,_,,

Theorem 2 will be proved by showing that, for d =12,

-1 Wy
M, =241 —,
Wy
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A result of Rankin [18] states that

-3/2
27 w4

Md = /4 *
w“"J (sin t)?"?(cos t —cos™*) dt

To estimate the upper bound, observe that iterative integration by parts yields,
for arbitrary nonnegative integer m,

i 1 m w1 d+2 X1
in? 2 tdt=—5 ( —)*
L s @22 2\ L a32+1)7

& d+2j " aes
+ mi
;l;[o (——d T2 1) L sin tdt

i 5747
T (d-1)29* 5 \d+1) 2"

thus

sin 2 tdt=

J'"/“ d+1 1
0 T (d-1)(d+2) 297

Using this inequality we deduce

/4
. d— 1 1
L sin? 2 t(cos t —cos 7/4) dtz(d—l)(d+2) CEE

and so, by means of Rankin’s estimate,

M, =d(d+2)20-972 24

Wy
Thus we have
1 Wgq
MdSZd 1 1

Wy

at least for d = 14. But applying the estimate
’ 27 < Wy
d + 1 Wy

M,,<1416, M,,=<2233,

and using the upper bounds
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which are due to Odlyzko and Sloane [17], it is obvious that the inequality holds
for d =12 which completes the proof of Theorem 2. 0O

6. Upper Bounds for the Volume of Parallel Bodies of
the Regular Simplex

For the proof of Theorem 3 we shall need some upper estimates of the volume
of parallel bodies of the regular simplex. Let T¢ be the regular d-dimensional
simplex of side 1 and s€R, s=0. Then, by Steiner’s formula,

V(sT"+B")=i wy_is'Vi(T") = ; wg_s' L a(N)V'(S).

SEF(TT)

I

d+1
Since T has | . i-dimensional faces, all being regular i-dimensional
i+1 &

(i+1)"?

_i'ZT’ we have

simplices of volume

i
wWg_;a;S,

d (d+1\ (i+1)"?
V(sT + B) = ( )————
T°+B)=3\iv1) 07

i=0

where a; denotes the external angle a(T') of T considered as a face of T In
particular,

1

a0=m, a; =1.
Let
d+1\ (i+1)"?w,_; ,
P"(s)'(iﬂ) 277w,
Then

Py(s)=(d +1)

and, by means of Stirling’s formula,

1 e \4? d
Pd(S)=O(d(d—1)/2 (5;) s )

Now we also prove a respective estimate in the intermediate cases. Let

1
S tadme
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Lemma 2. LetseR, s=0, ty=(es’)"/*[(4md)"*+ (es*)"/*]"". Then:
(a) P(s)=0(d[1+(es’/4nd)"*1*?) for1=i=d—1.
(b) Pi(s)=0(d[2(s*/d)'*)?) forkd<i=<d —1.

Proof. Setting A = i/d, by Stirling’s formula we have

d2 d3d/2el'/2 )
P72(d —i) iP(d — i) @2/ s )

P.~(S)=0<

1 e*’? st 4
=0 (dl/zAs/z(l 1) [24\"1\/2 d*2 (1 _A)suvu/z] )
The first factor is maximal for A =1/d, thus

1

FEOCETI

Now, for 0<<1, let

2

PO =2 E—2¢In =201 1) In(1 —1).
ar

Then the second factor is bounded by e”*’?. Furthermore, we have

2

’ 1 es
== _ + —_—
y'(1) zln4ﬂ_d 2Int+21In(1—1),
1 1
"()y==-2|-+——]) <0.
y"(1) (: 1_'>

Thus y is a concave functional which is maximal for t,. So, with some calculation,

we have
€S2 1/4
t)<y(ty)=2In| 1+ .
$(1) = y(10) n[ (w) ]

Puttipg things together, we obtain the first asserted equality (a). Now, for t,<t <1,
¥(t) is decreasing. On the other hand, 1, = o(«) and, with some further calculation,

es?

1/4
y(")=1+22\/;e [ln(“"d) —2Vme ln(zﬁe)]+z|n(1+zﬁe)

2

K s
=In2+=-In—
S

d

P(s)=0 (d[z(%z)m],,>

forkd<i<d- 1, which also proves (b). =

thus
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Using Lemma 2 and the trivial bound «; <1 we obtain an upper bound for
V(sT + B?). But we can do even better if we take Hadwiger’s [13] estimate

a‘<‘/"_+—1(2*/;;1%)i( ~In 2\/7rd—i—i)‘/2

for 1 =i=kd. As Hadwiger [13] further shows

(d'9).

= SO0
2d)2\ a4 ] a7 o,

Using Stirling’s formula again we obtain the following estimate for P;(s)a;,
l<i<kd s<2Vm.

Lemma 3. LetseR, 0<s=<2Vm, 1<i<«d. Then
P.(s)a; = o(d"™).

Proof. Setting A =i/d we have

d+Jd (d—i)/2
2'e' 7' vd d

1 1 (1=1A)/2 N d
=[_—(4we)”2 (Z2) s fo

Now, for 0=t =<k, let

P(s)a; =

Then, of course,

Pi(s)a; = e*Mo(d"?).

Furthermore, since y'(t) =3(In(s*/4)+In(1—t)) the functional y is decreasing,
thus

y(1)=y(0)=0,

which yields the assertion. O
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7. Proof of Theorem 3

Proof of Part (a). Let T =conv(A) and let T, denote those parts of T+ B*
which are contained in the sum of an n-dimensional face of T and the associated

(d — n)-dimensional cone of outer normals. Furthermore, let K,=T,n
U{a+ B?|ac A}. Then, by means of Section 3, we have

V(T+BY)= Y W(T,)

n=0
& —nWp 2wy
=wgt ¥ V(K,) 2, + 2240 Y y(K,)
nel T,wy Wy =)
= V(S“'+Bd)'
which proves part (a) of the theorem. O

Proof of Part (b). Using the notation of Section 6 we have

V(sT +B?) 1( d )

‘ — — v
7 (#) (d+)w, d+1 H,‘:.P'(S)a'

Now let 0< s <2V#. Then, essentially by Lemmas 2(b) and 3, we obtain
7 (Ba)=0(d" ).

Furthermore, if 0< s <+/d/13, then, by Lemma 2(a),

e 1/472d
P,(s)=0(d[l+(l32x4”) ] )=o(2"”)

for 1<i<d-1 and also

P,(s)=0(2?"?),
thus
7 '(Ba)=0(277),

which completes the proof of part (b). ]

8. A Lower Bound for the Volume of Parallel Bodies of
the Regular Simplex

For the proof of Theorem 4 we need a lower estimate for the volume of parallel
bodies of the regular simplex. Let s, reR, s, r =0. As in Section 6 we have

4 fd+1\ 1 ’i+l -
d+ dy _ )__ - d-i_i _a..
V(ST rB ) igo( i+1/ i 2 r swy_Q;
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As we have pointed out in Section 6, Hadwiger [13] gave upper estimates of the
external angles a; which, in particular, for i =1, d =3, read as follows:

a,<2\/27?71_—1~/m(d—1)—mzﬁ=0('1; d).

We now deduce a lower bound of type O((In d)"*/d?).
Lemma 4. Let d =3. Then we have

1 (nd)"”™
2sd(d+1) "
Proof. Using results of Ruben [21] and Hadwiger [13] we have

a, =J§j f()e? " dt,

0

where
F(t) = e—hzw?u—n/zn, 0=t=1

(with the usual convention e”*=0) and h(z) is defined via

h(z) 2
j e "dt=z

0
Since
h’(Z) — ehz(z)
we have
f'(t)=—-2x ehz(ﬁ(:—l/z)) <0
thus f is a concave functional of . Furthermore, f is symmetrical with respect
to 3, i.e.,

f(=f(1-1) and f(0)=0, f()=1.

So, for every point to, 0<t,<3, we have

g()=f(t) for 0=t=1,

where
t
Ml for O0=t=<t,,
gy (={ "
)=
2(f(t)—1
—ﬂ(i—)(%—t)+l for to<t<3},
1—2!0
and

glo(t)___glo(l —t).
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In order to deduce a lower bound for f(¢,) we have to give an upper estimate
for h(V@(3— 1)), which, in view of the inequality

[7—7-— e—12< J'Z e " dt
2 2z ), ’
means finding solutions x, of
Vo e ™
e
Setting
1
to=ﬁ, Xo=[Ind —}1In(In d)]"?
we have
1 1
‘*3=E (In d)‘/“sE [Ind —}1In(In d)]"2 =2V tox,
and thus

7G-1))<Ind-5In(In d).

So, with some calculation we obtain

a.=fj flort ‘dt>\/_f( O)J (1=0)4 " dr

1-19

f(fo) o d+1
=y2— { [1-(1-1t5)? ]_d+1[1 t) ]}
1 1\’ Ind
22@[“(”25)(1_65) ]d(d+1)
>L(lnd)l/4
2V5d(d+1)

Let us point out that this estimate can easily be improved for small dimensions,
but here we are mainly interested in its asymptotical behavior. O

Using Lemma 4 we at once obtain a suitable lower bound for V(sT?+ B).

Corollary. Letd=3,r, seR, r,s=0. Then

wgr +4‘/._(ln d) 4wy, r* 's< V(sT? +rB?).
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9. Proof of Theorem 4

The proof is an application of the previous section and the following covering
result.

Lemma 5. Letro=(1—1/d)"> Then

soT*+r,B'c | a+B“

ac A,
Proof. As is well known (and easily calculated) the circumsphere radius of the

n-dimensional regular simplex of side 1 is (n/[2(n+1)])"/% Thus, since s,<1,
in particular we have

SoT < U (a+BY)

aceAgy

and trivially
U (a+reB*)c U (a+ BY).

acAy acAy

Now let 1=n=d -1 and let f be an n-dimensional face of soT% Furthermore,
let p be an outer normal of s,T¢ (taken at 0) with length ry. Then it is sufficient
to prove the following inclusion;

p+fc U (a+B?).
aeAgnf
Let ac A;nf and E =aff(p+f). Then (a+ B?) N E is an n-dimensional ball of
radius (1—r3)"/%. Since p+f is itself an n-dimensional simplex of side s, the
assertion follows from

n 1/2
_2y1/2
50(2(n+1)) =(1-ry " Od

Proof of Theorem 4. By Lemma S and the corollary to Lemma 4 we have

V(sOT"+roBd)> L a1 (Ind)"* w4y 4,
= — " S
(d+1)wy d+1° 45 d+1 w; ° °°

N
W4y 2 Wy,

we obtain, with some easy calculation,

Y (Ba) =

So, using

d+1

Ba) <4V _—
Y(Ba,) <4 Swe(lnd)'/‘”

which completes the proof of Theorem 4. O
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10. Proof of Theorem 5

Let Q be the octahedron

Q=2conv{(u, u,0), (u, —u,0), (—u, u,0)(—u, —u,0), (0,0, u), (0,0, —u)}

and let se€ N. Let G(s) denote the number of lattice points of ¥ contained in
sQ. Then

s—1 s—1
G(s)=(2s+1)*+2 Z (2i+1)*+2 ¥ (2i+2)?
i i=0
=8485+ s +1.

After some easy calculations we obtain, for the intrinsic volumes of Q,

VO(Q)=19
VI(Q)=4X%X%+8x4xé=g(2+\/§)’
1 4
Vi@ =3 21 42
512
Vi(Q) = o
Thus
v+ B =24 f 24 isr2x B2 oy S
and so

V(sQ+ B%)— V(Sg,)+B?) = 32 (F— n) 3+16(-83£—7r)s2

+?"(4+2\/§—7)s.
Therefore we have

G(s)>0 for s<15, G(s)<0 for s=16
with
G(16) = 23,909,
which proves the theorem. m
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