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Abstract. Given a point P = (g, : ... : @,) of projective space P" = P"(4) where 4 is
the field of algebraic numbers, let d (P) be its degree and H (P) its absolute multiplicative
height. Northcott’s Theorem says that given d, n and X, there are only finitely many
points PeP" with d(P) £d and H(P) £ X. We will show that there are at most
c(d, ) X¥“+" such points.

1. Introduction

The distribution of rational or algebraic points on algebraic varie-
ties is most simply described in terms of asymptotics of their heights.
Here we will study points in projective space P" = P"(A), where 4 is
the field of algebraic numbers.

When P = (g, : ... : a,) lies in P"(A), let Q (P) be the field obtained
from Q by adjoining the quotients a;/a; with 0 < i, j < n and @; # 0,
and let d(P) be the degree of Q(P). Let H(P) denote the absolute
multiplicative height (as defined in [2], [4], [6] or [8], and also below).
NorTHCOTT’s Theorem [3] says that given d, n, X, there are only finitely
many points PeP” with d(P) £ d and H(P) £ X. Here we will show
that the number of such points is at most

¢, X4@+m (1.1)

with ¢ = ¢,(d, n) = 204+ m@+n+10)
Let K = A4 be a number field of degree k, and M (K) a set of properly

‘\
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normalized absolute values of K, such that they extend the standard or
a p-adic absolute value of Q. Then the product formula

[1 lalr=1

ve M (K)

holds for ae K*, where the n, are the local degrees. Given @ =
=(ay, @y, ..., @,)e K", we set |a|, = max (a|,, -..,|a,|,) and

n,

By the product formula, Hy(P) is in fact defined for
P=(q:q:...:a,)eP"(K); it is called the (multiplicative) field height
of P. It is well known that H,(P) = Hy(P)’if L2 Kwith[L:K] =4
and PeP"(K) < P"(L). Therefore if PeP”, and if in fact PeP"(K)
with a number field K of degree k, the absolute height

H(P) = Hx(P)"*

is independent of the field X.

Given a number field K of degree k, and given PeP” as above, let
K(P) be the field obtained from K by adjoining the quotients «; /g
0=<i j<n; ¢+#0), and let dx(P) be the degree [K(P):K]. The
formula

Hy(P) = H(P)"*® (1.2)

is valid for PeP"(K), since such P have di(P) = 1. In general, we
define Hy(P) by (1.2). Let Z(K, d, n, X) be the number of P e P” having

dy(P)=d and Hy(P)=<X. (1.3)
We will prove the following
Theorem. We have
Z(K,d,n, X)L c,(K, d, n) X°*", 14
Z(K,d, n X)=c,(K,n) X" when X > X,(K, d, n), (1.5)
Z(K, d,n, X) 2 c,(K, d)X**" when X > X,(K, d).  (1.6)

The constants c,, c3, ¢4, like all the constants in this paper, are positive.
In particular, we may take
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2 4 p2
CZ(K, d, n) - 2kd(d+n+3)+d +n +10d+10n.

For K = Q we have the explicit lower bounds
z@, 1,n,X)>iX"+‘ when X 2 1, (1.7

Z(Q, d, n X)>679€@+D x4+ when X > 2. (1.8)

Note that the exponents of X in (1.4) and (1.5) are the same
when d =1, and they are the same in (1.4) and (1.6) when n = 1.
In the other cases there is a considerable gap between the upper and
lower bounds. The number of PeP" with d(P) = eand H(P) £ Xis £
< (Q, e, n) X*€*" since Ho(P) = H(P)* £ X* for such P. Applying
this estimate for e =1, ..., d and taking the sum, we obtain (1.1).

There is an asymptotic estimate due to SCHANUEL [4]: For given K
and n,

Z(KK, 1, n, X) ~ cs(K, ) X"+ as X - oo. (1.9)

In proving the lower bounds (1.5), (1.6), we will use Schanuel’s result.
With extra effort it would be possible to give explicit values for the
constants c;, ¢, X;, X, depending only on n, d, k = deg K and the
discriminant of K.

Note that Hqo(P) = H(P)*P. An alternative to Z(K, d, n, X) is the
number Z*(K, d, n, X) of PeP" with

de(P)=d and Hg(P)< X (e, H(P) S X',

As we will point out in Section 7, our theorem holds for Z* in place
of Z, but with a new constant ¢XX, d, n) in place of c, (K, d, n).

In a subsequent paper [7] we will give an asymptotic formula for the
case when the ground field K = Q and when d = 2, i.e., the quadratic
case. This formula will suggest that Z(K, d, n, X) should have order
of magnitude near X™*@+1.7+V_[n other words, the combined lower

bounds in (1.5), (1.6) are likely to be nearer the truth than the upper
bound (1.4).

2. Lower Bounds

Given K, d, let L be an extension of K with [L: K] = d. By Scha-
nuel’s formula (1.9), Z(L, 1, n, X) ~ ¢s(L, n) X"*"' as X —» oo. Here
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Z(L, 1, n, X) counts the number of PeP” with H,(P) < X and
Q(P) = L. The number Z’(L, 1, n, X) of elements PeP” with
H,(P) < X and Q(P) = L satisfies the same asymptotic formula:

Z'(L,1,n X)~cs(L,n) X"*!' as X - o0. (2.1

This is so, because when PeP"(M) where M is a proper subfield of L,
then H,(P) = H, (P)"' £ X™' with [ = deg L, m = deg M, and (again
by Schanuel) the number of such P is of smaller order of magnitude
than X" +',

But when Q(P) = L, then K(P) = L and [K(P): K] = d, therefore
Hy(P) = H(P)* ¥ 9 = H(P)' = H,(P). This implies Z(K, d, n, X) =
=2Z'(L, 1, n, X), so that (1.5) follows from (2.1).

Note that we used only a single field L with [L: K] = d. It appears
to be difficult to improve upon (1.5) by using various fields. The
quadratic case to be dealt with in [7] suggests that often a single field
already gives the correct order of magnitude.

Let N(K, d, X) be the number of irreducible monic polynomials
f)=x4+ax‘" "+ +a, in K[x] of degree d and with
Hy(f) £ X. Here the height of a polynomial is defined as the height of
its coefficient vector. If i, ..., @, are the roots of such a polynomial f,
then we have (see, e.g., [8], Ch. VIII, Theorem 5.9)

H(a)" = H(a) - H(a,) < 2'H(f) < 2/ X%,

where k = deg K. This gives Hy(a;) = H(a;)* < 2% X. Since f has d
roots in A,

Z(K, d, 1, 2% X) 2 dN(K, d, X). 2.2)

By (1.9), the number of points P =(1:q,:... :a,)eP‘(K) with
Hy(P) < X is ~ ¢5(K, d) X**'. Therefore the number of monic poly-
nomials fe K[x] of degree d and with Hg(f) < X is ~ ¢5(K, d) X**' as
X — oo. It is easily seen that the number of reducible polynomials is of
a smaller order of magnitude, so that

N(K, d, X) ~ cs(K, d) X*' as X - o0. (2.3)

In conjunction with (2.2) this yields Z (K, d, 1, 29 X) 2 ¢5(K, d) X gt

when X > X;(K, d), therefore (1.6). .
Take the special case K = Q. When XeN, the number of points

acZ"* ' with 1 < |g| < X (i = 1, ..., n)is (2X)"* . The number of such
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points whose coordinates are multiples of a prime p is < (2X/p)"*', so
that the number of primitive points @ Z"*' with |a| < X is

1

n+1
p

g(zx)n+l(1_z >>l(2X)"‘H.

) 2
Since each point in P"(Q) corresponds to a pair @, —a of primitive
points in Z"*', we have Z(Q, 1, n, X) > 1(2X)"*'. When X 2 1 is real,
with integer part [X], we have

Z@ 1, n, X) 2 Z@, n, 1,[X]) > i(zm)"“ > iX” !

ie., (1.7).
It is well known that the constant ¢;(Q, »n) in (1.9) is given by
¢s(Q,n) = 2"/{(n + 1). Therefore (2.3) becomes

N@, d, X) ~ QY¢d+ 1) X' as X oo.

An explicit lower bound may be obtained as follows. N(Q, d, X) is the
number of irreducible polynomials f(x) = ayx? + --- + a, in Q[x] with
coefficients a;e Z having q, > 0, gcd (ay, ..., a;) =1 and |a;| £ X. By
Eisenstein’s Theorem, this number is bounded from below by the
number of polynomials f(x) = byx*+ 2b,x*~' + --- + 2b,_,x + 2b,
with 2 b b, and with 1 <b, <X, |by|, ..., |bs £ X/2, having
ged (by, ..., b,) not divisible by a prime p > 2. If we ignore the last
condition, there are precisely

[%] (L + 20x20) 2[("/%1] —e), (4

say, such polynomials. Thus

NQ d X)zgX)— Y g X/p). 2.5)

pprime
p>2

By considering residue classes of X mod 4, we see that g(X) = 1 G
except when X =1 (mod4), when we have g(X) =1X“*'(1 — X2
Thus when X > 1,

1 6
X) 2 X911 =572 = 2 x4+, 2.6)
g( )_4 ( ) = (
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On the other hand, g(X) < (X + 1)**', and g(X) = 0 when X <2.
Therefore when d > 1,

Y st ¥ (5+1)“'§

S, \P
<l ¥ (iz(x+1)d+'+£+—lx+1)<
4 pprime 4 y4
2<ps X2

2
<1(1(X+ 1)+ + (d + 1))i+1')§
4\4 4 4

< 1—16—((X+ Y1+ (d+ 2) X,

When X 2>2d+4, then (d+ Dlog(1+ X N<@+ 1)X"'<1/2,
so that (X + 1)"*! < e X“*'. Also (d+2)X*> <1 X“*", so that our

sum is

< (i)(e'ﬂ + l)X"“ < (14)x**1.
16 2

Comparison with (2.5) and (2.6) gives the explicit bound

N@, d, X) > %X‘”‘ when X = 244 4.

When d>2 and X 24d-2%2 (2d + 4) - 2%, (2.2) yields
Z@, d,n X)2Z(Q, d, 1, X)> N@Q, d, 2-X) >

> _l_lb_(X/zd)d+l > (X/6d)d+ l.

Now P = (1:4/2) is counted by Z(Q, d, 1, 2), so that Z(Q, d, n, X) 2
=2Z@Q, d, 1, 2)=21 when X=2. Thus for X in the range
25X <4d- 24

Z(Q, d, n, X) 2 (X/(4d - 2%))** ' > (X/6%)+!.

We have established (1.8) for d > 2. When d = 1, (1.8) follows from
(1.7).
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3. A Connection with Decomposable Forms

Before embarking on the upper bounds of our theorem, we wish to
point out a simple counting argument via decomposable forms.

We will always represent PeP” by a tuple (a,: @, : ... : @,) with each
2, Q(P). When [K(P): K] = d, let 7, ..., 7, be the embeddings of K(P)
over K into A4, and set

d

f(x) =f(x0’ ) xn) = H (Tu(aoxo S 050 S anxn));

i=1

here 7, is applied to the coefficients. Then fe K[x] is a form of degree
d, and it is irreducible over K. This last assertion is easily seen, or else
it may be found in [5, Ch. VII, Lemma 1B]. We have

d
H(f) S ¢s(@d n) [] H(zi(ayx, + -+ + @,X,)) = cs(d, n) H(P)"

I

by [2, Ch. III, Proposition 2.4], and the fact that conjugate points have
the same height. Therefore, with k = deg K,

Hy(f) = H(f)* < ¢;(K, d, n) H(P)* = ¢;(K, d, n) Hg(P).
When H,(P) < X, this gives
Hy(f) = (K, d, n) X. (3.1)

The form fis decomposable, i.e., it is a product of linear forms (with
coefficients in 4). The decomposable forms (modulo constant factors)
make up a projective manifold ¥, embedded in the projective space P”
with m = <d; n) — 1, consisting of all forms (modulo constant fac-
tors) in n + 1 variables of degree d. Now dim V' = dn, so that by (1.9)
(and by projecting ¥ on a suitable coordinate space of dimension dn),
Fhe number of fe V(K)(i.e., fe V with coefficients in K) satisfying (3.1)
I8 < (K, d, n) X"+, Since f has d linear factors, we may conclude that

Z(K, d, n, X) < ¢o(K, d, n) X"+,

4. The Main Lemma

; Lemma. Let K be a number field of degree k, let s= 1, t 2 1, and
= (0, ...,6) # 0 with components in K. When a=(a,, ..., @)eK’,
Write Hy(6, @) = H(8,, ..., 6,, a,, ..., a,) and
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Hy(@) = Hy(6, a)/H\(0). 4.1)
Then the number of ac K’ with Hy(e@) < X is

< kit + it +15)2 HK(G)I ) Gl (42)

Proof. We begin with case t = 1. Here we will prove the slightly
stronger estimate that the number of ae K with Hy(a) < X is

< 25+SH,(0) X2 4.3)

Our argument will be similar to one in [1]. Fix an Archimedean
absolute value ve M (K). We may suppose that K is embedded in C
and that |£], = |&| for e K. We have

Ho(a) == (max (Igl’ Ial)) " l_[ (max (Iolv’ lalv)> ’ — Hl (a) Hz(a),
6] veM () 161,

say. Given X, 2 1, X, = 1, we first wish to estimate the number N of

elements ae K with

Hi(a) = X,, H)(a)=X,. (4.4)
Such @ have |a] < |6] X, ™.

Let us suppose that v, corresponds to a complex (i.e., non-real)
embedding of K. Then , = 2 and |e| < |0| X", so that in particular a
lies in the square in the complex plane given by |Z#eal, |F»al <
< |6| X”*. Suppose N = 16, and choose the integer m with m? < N <
< (m + 1), so that 2m? > N. We divide the square into m? squares of
side 2|0\ X)”?/m. There will be two of our N elements a in the same
subsquare, say a, a’. Then |a — | < 2+/2|0| X!”2/m, and

la — & < 8|62 X,/m® < 2*|0P X, /N.

A similar argument can be made when v, corresponds to a real
embedding, and in both cases we get a # a’ in our set with

la — a’[;0 < 2*|0];0 X, /N. 4.5)

When v is ultrametric
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; al, |la’
la— o), < 16, max('—'”, '—”) <
01, 161,

< |0|, max (1, la—l") max(l, L |”>,
|01, 6],

max (0], |al,) max(0l,, |e'l,)
161, |61,

This estimate, but with an extra factor 2, is still valid when v is

Archimedean. In conjunction with the product formula and with (4.4),
(4.5) we obtain

so that

la —a’|, =16,

1= I |a—a'|:v§2*+’( 11 |013”>X1X3/N,

ve M(K) ve M(K)
so that

N <2 H (0) X, X2. (4.6)

This estimate is also true when N < 16.
Next, consider ae K with

2""'< H(a) <2™ and H,(e) < X. (4.7)

They have H,(a) < X-2'~™ By applying our estimate above with
X,=2" X,= X-2'"" the number N,, of such « is seen to have

Nm é 2k+5_mHk(0)X2.

Every a with H,(a) < X satisfies (4.7) for some integer m = 1, so that
the bound (4.3) follows by taking the sum over m.

The lemma will now be proved by induction on ¢. When ¢ > 1, write
o« =(a, ..., a_,) and

Hy(a) = Hy(a") H* (a)

with
i H(6,
Ho(a/) — HK(os a)’ H"‘(a) — K( ll/) .
Hy(0) Hy (6, &)
Given an integer m = 1, consider ae K' with
-1 < H(a) < 2", Hy(a) = X. (4.8)

5
12 Monatshefte fiir Mathematik, Bd. 115/1-2
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By the case ¢ — 1 of the lemma, the number of possibilities for a’ is
< 2k(z—- D+@-1D@+14)2 Hk(a)t- 1 . 2m1_

But when &' is given, set Hy(a) = H*(a), so that Hy(a,) =
= Hy(a)/H,(a’) £ X - 2' =™, By the case ¢ = 1 of the lemma, the num-
ber of @,e K with this property is

< 2k+5HK(0’ a’)(X 2l—m)2 = 2k+7—2mHK(0’ a/)Xz < 2k+7_mHK(0)X2
in view of (4.8). The total number of ae K’ with (4.8) is less than
2kl+ t(t+13)2+ m(t — ')HK(0)‘X2. (49)

Each e with Hy(a) < X satisfies (4.8) with some m in
1<m=<m,=1+ [log,X]. Taking the sum of (4.9) over m in this
range, we get

kt+t(t+13)2+ 14+ my(t—1) 2
<2 TV H(0) XL
é 2k1+z(r+ ls)/ZHK(o)er+ l.

5. Proof of the Cases d =1 and n = 1 of the Theorem

Z(K, 1, n, X) is the number of PeP"(K) with Hy(P) £ X. We first
consider P of the type (1: @, : ... : @,). We apply the Lemma with s = 1,
t=n, 8= (1), Hy(0) = 1. The number of points P in question is

é 2kn+n(n+ 15)/2xn+l — g(k, n) Xn+1’

say. By the same reasoning, the number of points PeP"(K) with
Hy(P)< X of the type (0:...:0:1:0;,,:...:0,) is < gk, n— X" ~7*".
Taking the sum over j, 0 < j < n, we obtain

Z(K, 1, n, X) < 2kn+n+192+1 yn+1 5.1)

and the case d = 1 of the Theorem.

We now turn to the case n = 1. We construct a polynomial f as in
section 3. In our case, f = f(x,, X;) is a binary form of degree d. We
may take c¢(d, 1) = 2¢[see 8, Ch. VIII, Thm. 5.9], so that (3.1) becomes

Hy(f) < 2% X.

The coefficients of f=a,;x{+ ... + ayx{ represent a point P =
=(ay:... :ay)€P4(K). Thus the number of possible forms f (up t0
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constant factors) is £ Z(K, 1, d, 29 X). In view of (5.1), and since f
has d linear factors, we get

Z(K, d, 1’ X) < dZ(K, 1’ d, 2de) <d- 2kd+d(d+15)/2+l . 2dk(d+l)Xd+l <
< Qkd?+2%kd+d+9d yd+1 (5.2)

6. Proof of the Theorem

Let Z°(K, d, n, X) be the number of PeP” with (1.3) and with
P=(l:q:...:a,) such that

K KP)s ... K(P)
where P, = (1:@,:...: ). We will prove that
ZO(K, d, n, < 2kd2+4kd+d2+9dXd+n‘ (61)

The case n = 1 follows from (5.2). In the induction step from n — 1 to »,
set L=K(P,_,) and d, =[L:K], d, =[K(P):L], so that d,d,=d and
d,>1, d,> 1. Initially suppose d,, d, to be fixed. Here H(P,_,) <
< H(P) = Hy(P,)"* < X" by (1.3), and with k = deg K. We obtain
Hy(P,_)=H(P,_, < x't < x. By induction, the number of possi-
bilities for a,, ..., @,_, is at most
2kd|2+4kd,+d12+9dl At 62)
Next, H(l:a,)< H(P)< X" so that H,(1:a)< X“9%*
= x*h%kd - x, By applying (5.2) with the field L (in place of K) and
noting that [L: Q] = k d,, we see that the number of possibilities for @, with
[L(,): L] = d, and H,(1:@,) < X is at most

2kd,d§+zkdldz+dzz+9fizxd2+" 6.3)

Taking the product of (6.2), (6.3) we get

2k(d,’+d,d§)+k(4d, +2ddy) + di +dj +9d, +9d gty +dy (64)
Observe that d?+d,d? <d’, 4d, +2d,dy<4d, &+ &E<d2 and
4+ dy < d. We still have to count the number of possible factorizations
d= d,d,. This number is < d < 2%, Multiplying (6.4) by 2¢** we get the
bound in (6.1).

12+
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Next, let Z°(K, d, n, u, X) be the number of PeP” with (1.3) and
with P=(1:q,:... : a,) such that
K K(P)g ... < K(P) = K(P).
We first count the number of a, ..., @, with
=1l H(P)= 2"
By (6.1), this number is
ZO(K d u 2m) < 2kd2+4kd+dz+9d . 2m(d+u). (65)

Given 0=(1, «a,, ..., a,), the (n — u)-tuple ¢ =(a,,,, ..., @,) has
Hy(0, a)/(Hy(0) < X - 2' ~™ By the Lemma withs =u+ 1,t=n—u,
and K(a,) = K(P) in place of K, the number of possibilities for a’ is

< 2kd(n—u)+(n—u)(n—u+15)/2 . 2m(n—u)(X' 21—m)n—u+1

Taking the product with (6.5) we obtain (on noting u = 1)

< 2k(d2+dn+3d)+d2+9d+n(n+15)/2Xn—u+l . 2m(d+u—l)

We still have to sum over min 1 £ m < m, = [log, X] + 1. The sum of
2m@+u- 1 yar this range is < 2¢*“X?**~ ! Therefore

ZO(K d n u X)<2kd(d+n+3)+d2+10d+n2+9n-le+n
’ ] 2 b .

For any P = (q,:...:a,), there are numbers » and i, < i, ... <i,
suchthate, #0and K¢ K(¢,:0,) & ... & K(g, ... :¢;) = K(P). Af-
ter reordering, P will be of the type counted by Z°(X, d, n, u, X). Given

Rt 1), and sum-

u, the number of (v + 1)-tuples iy < i; < ... < i, is ( i
u-+

ming over u we get a factor 2"*'. Therefore

Z(K, d, n, X) <on+l, 2kd(d+n+3)+d2+10d+n2+9n—le+n.

7. The Counting Function Z*

Given a field K of degree k we have d(P) < kdy(P), therefore
Hy(P) < Hi(P). The inequality

Z*(K,d, n, X) = Z(K, d, n, X) (7.1

follows. Now let N 2 K be a field which is normal over Q. We will
prove that
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Z*K, dyn, X) £ Y Y Z(L, e, n, X), (7.2)

Lc N ed

where the outer sum is over the subfields L of N.

Clearly [K(P): K] = d implies [N(P): N] = e with e|d. Construct
the form f = f(x,, ..., x,) as in Section 3, but with respect to the field
N. Then f is of degree e, it lies in N[x], and is irreducible. It is the form
of least degree in N[x] with the factor ¢, x, + - + @, x, (Which lies in
Alx]). Let L be the field obtained from Q by adjoining the coefficients
of f. Let / = deg L and let o, ... 0, be the embeddings of L into 4. The
polynomials o,f, ..., o,f lie in N[x] and they are pairwise distinct,
therefore pairwise coprime since f, and therefore each o.f, is irreducible
in N[x]. The product F = (g,f) --- (g;f) lies in Q[x]. Any nonconstant
factor G of F, Ge Q[x], must be divisible by some o,f, since these are
irreducible over N. Therefore G must be divisible by each o,f, hence
must be divisible by their product, since they are coprime. Therefore
F is irreducible. Since F has the factor q,x, + ‘- + @,x,, we may
deduce that d(P) = deg F = le = ld; (P), and Hy(P) = H,(P).

We may conclude that the number of P with given e and L is
bounded by Z(L, e, n, X). Now (7.2) follows.
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