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Complex Analytic Curves and Maximal Surfaces

By
K. Abe, Storrs, CT, and M. A. Magid,' Wellesley, MA
( Received 28 September 1987, revised 27 June 1989)

Abstract. Maximal immersions of a surface M? into n-dimensional Lorentz space
which are isometric to a fixed holomorphic mapping of M? into complex Lorentz
space are determined. The main tool is an adaption of Calabi’s Rigidity Theorem.
Such an adaption is necessary because of the existence of degenerate hyperplanes in
complex Lorentz space.

Every minimal surface in Euclidean space is locally isometric to a
complex analytic curve. Essentially, the minimal surface is the real
part of this analytic curve.

The Calabi Rigidity Theorem [C1] implies that each class of
isometric minimal immersions contains exactly one complex analytic
curve. In [C2] CALABI considered a fixed holomorphic immersion
A:M*—> C™ and described the space of all non-congruent minimal
immersions f: M?>— R" which are isometric to A. This space is
parametrized by nx m complex matrices with m < n < 2m which
satisfy certain conditions. A full exposition of these results appears
in [L].

In this paper we consider maximal immersions of a surface M? in
Lorentz space R{ which are isometric to holomorphic immersions of
M? in complex Lorentz space C}". Given a fixed holomorphic curve
A: M* — C}" we describe all the maximal immersions g: M? — R} which
are isometric to 1. The main tool is our Fundamental Lemma, which
is the appropriate adaptation of Calabi’s Rigidity Theorem. The
existence of degenerate hyperplanes in C{" makes it clear that such an
adaptation is necessary. We show in Theorem 2 and Proposition 11
that if the image of 4 is contained in no hyperplane of C}" the result
is virtually the same as in the positive definite case, while if 1 is
contained in a degenerate hyperplane (but no non-degenerate
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256 K. ABE and M. A. MAGID

hyperplane) we show that m — 1 < n < 2m, and the space of nx m
complex matrices needed to describe all # up to congruence must be
supplemented by the choice of an arbitrary holomorphic function
on M>.

1. Preliminaries

The metric g on Lorentz space R}, is given by g(v,v) =
= —vi+0i+...4 0! for all v=(v,,...,0,)€R]. The indefinite
Kaihler metric on C} is given by

(Zys. o020, (215 e 2= — 2,21+ 232+ ... + 2,2,
for any (z,,...,z,) in C{. We also set
@520, (2150 nZ)) = — 224+ 234+ ... + 22

Throughout this paper a Riemannian metric 4 is fixed on the
surface M. All immersions of M?into R} for any » are assumed to
be isometric immersions, inducing the metric 4. Our local coordinates
(u,,u,) on M? will always be isothermal with respect to A, i.e., if
h = h;du;du; then h,, =hy,, and h;,=0. The local complex
parameter w = u, + iu, make M’ into a Riemann surface with the
conformal structure determined by A. Thus we can speak of
holomorphic functions on M? or of a holomorphic immersion
A M?*>CP.

Let #: M* - R} be an immersion of M? into Lorentz space RI.
Following [H-O] we write

ﬂ(ul9u2) = (ﬂl (ulauZ)a' . ':ﬂn(ubuZ))
and set

LA O o)

dw 2|0u, Ou, T0u, Ou,|

;1_19 takes its values in C{. Since (u,, u,) is isothermal,
w

dp d .
(d—f:’ﬁ) =3(hy—hp—2ih,)=0
and since 4 is Riemannian

() = 4+ ) >0.
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An immersion g: M? — R is called maximal if the mean curvature
vector # = 0. In terms of the isothermal coordinates u,,u, on M2,

2n=A4B=(45,,...,48).

Thus g is maximal iff the 8, are harmonic functions, that is, 4 8, = 0.
Equivalently g is maximal iff 0B _ i% = <£> is analytic for
Ou, Ou, aw),

k=1,...,n

Given a maximal g: M*> — R we can locally define a holomorphic
function f, so that Re(f,) = f«. The holomorphic curve defined
locally by

y W) = ¥ (o + i) = %m(w),...,ﬁ(w>)ecr

can be considered as a maximal immersion y: M? —» R?" = R} x R}
isometric to g by writing

et 1) = %(Ref,,...,Ref,,,Imf,,...,Imf,,).

The Cauchy—Riemann equations give

Gy L1106 26, 0k _%]

ou, Tz[éu_,"“’au; 0w, du,
and

Oy _ 1[0 0B, OB 0B,
du, 2 [0112’ L PR A 6u1:|'
This shows that 4y =0 and that A is the metric induced by
y: M* - R3". If M*is simply connected then y is well defined globally
on M2,
If «: M?> — Rf and : M? - Rj are maximal isometric immersions
and y and 4 are the holomorphic curves associated with them as above

then
dy dy\_ /db db
<dw’ dw> B <dw’ dw/
The analogous statement in the Kihler case is enough to prove the

following theorem.
18*
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Theorem 1. [L]. In each class of isometric, non-congruent minimal
surfaces in Euclidean space there exists exactly one holomorphic curve.

The proof of this theorem depends on a result of Calabi (see p. 144
of [L)).

Proposition 1. Let ¢: D°— C" and y: D* — C™*" be holomorphic
mappings of the unit disk such that

m+n

Tiglt=3 lnl?
j=1 k=1

and consider C" = C™*" as the span of the first m coordinates. Then
there is a unitary transformation U: C"*" — C™*" such that y = Uo ¢.

In the indefinite case this proposition is not true. For example,
(p(W) = (Oa 0, W) and '/’(w) = (w2, Wz, W) have || (sz ={p,p =
= (p, ) = || p||% but pis not rigidly equivalent to ». In a certain sense
this is the only difficulty.

2. An Algebraic Lemma

Definition. A unitary transformation Ue U(1,m — 1) is a linear
mapping U: CI"—>C{" such that (Uv, Uw) = (v, w). Equivalently
UeU(1,m — 1) iff U has a matrix representation, such that

I

The hypotheses of our Fundamental Lemma are stated in terms of
the causal character of hyperplanes, which we now define and
characterize without proof.

Definition. A subspace P of Cf is degenerate iff L # 0€ P such
that (L,p) =0, VpeP.

Proposition 2. a) A4 hyperplane P passing through the origin in C{
is degenerate iff P satisfies the equation z;= Z]'; ,4;z; with
|02|2+ iws |ak]2= 1.

b) P is a degenerate hyperplane passing through the origin in Cf iff

there is a unitary transformation of P onto the hyperplane defined by
Zl = 22.
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Definition. A subspace P of C} is spacelike iff (p,p) > 0, Vp # 0
in P.

Proposition 3. a) A hyperplane P passing through the origin in C¥
is spacelike iff P satisfies the equation z,= Z,k= ,4z; with
|ay |2+ ...+ & |2 < 1.

b) P is a spacelike hyperplane passing through the origin in C* iff
there is a unitary transformation of P onto the hyperplane defined by
z,=0.

Fundamental Lemma. Suppose ¢: D°— C!" and y: D° — C"*" are
holomorphic mappings of the unit disk such that || ¢ ||* = || y||%. Consider
C" = C"*" as the span of the first m coordinates. If the image of v is
not contained in a degenerate hyperplane of C{"*", then there is a unitary
transformation Ue U (1,m + n — 1) such that Uo ¢ = y. If the image
of ¢ is not contained in a degenerate hyperplane or a spacelike
hyperplane then the same conclusion holds.

Proof: We reduce the problem to Proposition 1, first considering
the case that the image of y is not contained in a degenerate
hyperplane of C!"*". Consider the two maps ¢:D°—C” and

17): D’ —C"" given by (‘ﬁ = ('/)1, P25+ s q)m) and '/j == ((Pb Y2500 1/)m+n)'
Since

— e P+l + oo+ ol = =l 2+ TP+ oo+ [ inl?
we have
lp P+ 1@+ oo+ loml?=To P+ Lwal >+ oo+ [ Pmanl

By Proposition 1 there is a unitary matrix {:C™*" — C™*" such that
Uo@ = ¢. Setting ¥ = U~' we have a unitary matrix ¥ such that
Voy = ¢. Writing V = [V]] gives

Yi=0n ¢ + V2 ¥2 +...+ Utmsn¥mn

‘pj= jl(p1+vj2w2+"'+vjm+nwm+n j=23""m (*)

0=0p1+Uaps+ ... + Vkmyn¥men k=m+1,...m+n

If v,; = 0 then, contrary to hypothesis, v, = v, 92+ ... + V{pinVman
With |0, 4+ ... 4+ |0 peal®= 1. Thus ¢, = v (y; — vy, — ... —
~ Uy min¥men)- Substitution for ¢, in the remaining equations of (*)
yields
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1
Q= ;}“(th'ﬂl + (V01 — VLY Y2+ oo F (VUi — U Ulm+n)#’m+n>
1"

for 2<j< mand
1

0= ;(UkIWI + (V1 — V) Y2+ . + (Vkmyn V11— Uiy vlm+n)'l’m+n>-
1

Let V be the matrix of this transformation, so that

- e

P1
(p o
Voy = 0”' , le.,
0 _l
-th
1 -y, ~ Utm4n
V_L Un
- : Uy Uy — Uy i
Uy : ¥ — Uty
vm+n1 :

A tedious check shows that VeU(l,m+n—1) and V'=U
satisfies Uop = y.

Next we assume that the image of ¢ is not contained in a
degenerate or spacelike hyperplane. With ¢,y as above
AUe U(m + n) such that Uog = y. If we write U = [4;], we have
Ui+ Uup@r+ .o+ U= @ Iy =0, then gy = up e + ... +
+ Uy P With Jup |2+ oo+ Uy, |2 < 1, since (0, 4y, . .oy Uy ) 1S @
row in a unitary matrix. The proof now continues as above. QED

In light of the Fundamental Lemma we introduce some notation.
Let: ¢: M*— Cf be holomorphic. We say that ¢ satisfies condition

(D) if the image of ¢ is contained in some degenerate hyperplane;

(S) if the image of ¢ is contained in some spacelike but no
degenerate hyperplane;

(F) if the image of ¢ is contained in no hyperplane or is contained
in a timelike hyperplane, but no spacelike or degenerate hyperplane.

Now fix a holomorphic isometric immersion i: M?> — C{", where
the conformal class of 4 is used to make M? into a Riemann surface.
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We will describe all non-congruent isometric immersions g: M — Ry
with » = 0 for any n. To say that 1 and g are isometric means that

L/di di\ _ /dp dg
2 <dw’ dw> h <dw’ dw>'
In order to normalize our immersions we introduce the following
terminology.

Definition. An immersion g: M — RY is full if the image of 8 is not
contained in any proper subspace of R{. (We make the analogous
definition of i: M — CY").

Definition. An immersion f: M — R{ is degenerately full if the
image of g is contained in a degenerate hyperplane of R, but not in
any non-degenerate hyperplane of R. The same definition is used for
AM—-C.

This definition reflects one difference between the Lorentzian and
Riemannian ambient spaces. The curve A (¢) = (¢, t, 1) is contained in
a degenerate plane but there is no non-degenerate plane to which we
can restrict our attention. Note that a map cannot be both full and
degenerately full.

For later use we record, without proof, the following fact.

Lemma 1. If i: M* - C}" is holomorphic with A(p,) =0 and the
image of A is not contained in any complex subspace of C{', then the
image of A is not contained in any real subspace of CI" = R3™.

3. Standard Forms for Holomorphic Functions with Equal Norms

We will always require that our immersions 4 and # are either full
or degenerately full and that for some p,e M, 1(py) = B(py) = 0. If 2
or f were contained in a spacelike or timelike hyperplane we could
simply consider the maps as full or degenerately full in a lower
dimensional vector space. Thus, by assumption, 4’ satisfies either (F)

or (D); in fact 4’ is either full or satisfies (D). A priori j—i can satisfy

(F), (D), or (S). A large part of what follows determines which
combinations are possible, as well as the relationships between m and
n. In order to do that we need to find standard forms for holomorphic
functions with equal norms.
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We fix some notation which will be in force for the remainder of
this paper. Let ¢: M — C{ and y: M — CY" be holomorphic immersions

with || @ || = ||y |I* and ¢(py) = w(py) = 0. We will replace ¢ by ﬁj—ﬂ

w
and y by 1’ later. Before we give the standard forms we have two
corollaries to the Fundamental Lemma.

Corollary 1. Let y and ¢ be as above, with n < m. If v is full then
there is a holomorphic isometry F:C{" — C{" such that y = Fog. (Fis a
unitary transformation plus a translation.)

Proof: [L], p. 147.

Corollary 2. Let ¢ and y be as above, with n < m.
a) If ¢ satisfies (D) then vy satisfies (D).

b) If y satisfies (D) then ¢ satisfies (D) or (S).

Proof: (a) By Proposition 2, there is an A€ U(1,n — 1) such that
(Ag), = (Ag¢),. If » does not satisfy (D) then we have, by the
Fundamental Lemma, Ue U(1,m — 1) such that UocA¢ =y or
Ag=Vy, where V= U"". If V = [v,] this implies

Vpyyr+ oo+ Uy Y= Uy + ... + Uy 9y OT

Uy — Up UVym — Uim

Yi=""——"¥Yt ...+t T Y
Uyp — Uy Vip — Uy
(v, # vy because the first column of V has length — 1).
— vy |? — . .
But|22=%2|" 4 P2 T Um " g6 that ydoes satisfy (D).
Uy — Uy Uy — Uy

(b) Suppose, contrary to fact, that ¢ satisfies (F) and y satisfies
(D). By the Fundamental Lemma there are unitary maps U and A4
such that Uop = Aoy with

Ui+ .o+ U, Q= Uy @+ .o+ Uy, Py

. Uy — U Uy, — U .
This implies that ¢, =-2 "2¢,+...4+ 2" "1y  with
Uy — Uy Uy — Uy

|ty — U |2+ ... + | Uy, — ty)> < |ty — 14y | s0 that the image of ¢
is contained in a spacelike or degenerate hyperplane. QED

Definition. Projection onto the last k — 2 coordinates in CF is
denoted by pr:Cf — C*~2,
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Definition. Projection onto the last k — 1 coordinates in C¥ is
denoted by qr: CF - C¥".

Proposition 4. If y satisfies (D) and m < n then there is a
BeU(l,m — 1) and Ve U(1,n — 1) such that (By), = (Bvy), and

h
h
_ prBy

L 0

for some holomorphic function h. Conversely any ¢: M — C{ defined
from v in this way satisfies || ¢ ||* = ||y||*

Proof: By Corollary 2, ¢ also satisfies (D). Thus we can find an
AeU(l,n—1) and BeU(1l,m — 1) so that (4¢), = (4¢), and
(Bvy), = (By),. After including C™~?into C"~2 Calabi’s result gives a
Ue U(n — 2) such that

prBy
0
prde=U .
0
h
Now A¢ = h | for some holomorphic function & = (A4 ¢),. Thus
prdg
[ h ] [ ]
h h
b rB rB
A—l(A(p)=(p=A_l h =A—1 U p Yy = V p y
0 0
prde :
| L 0 ] [ 0

for some VeU(1,n — 1).
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If (By), = (By), then it is clear that for any Ve U(1,n — 1),

Al
| o |

There are two more propositions which are similar to Proposi-
tion 4.

Proposition 5. If ¢ and y satisfy (D) and m > n then there are
V,Be U(1,m — 1) such that

¢
h

N=v| n

0 prBy

for a holomorphic function h. If (By), = (By), and VeU(1,m — 1)
then any (9,0, ...,0) = V (h, h,pr By) satisfies || ¢||> = || y|I*.

Proof. As above we can find Ae U(1,n — 1) and Be U(1,m — 1)

so that (4¢), = (4¢), and (By), = (By),. In addition there is a
Ue U(n — 2) so that

prde prde
0 0 o
ul . =prBy or . = U 'pr(By).
0 0
Now
[ 1
2 A—IA(p A—l h
0]_ 0 _ prde|
1 - 0 -
0 0 el |
[ 0 |
'A_, h h
= I h =V| h |[|. QED
i m="I\U'prBy prBy
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Proposition 6. If y satisfies (D), ¢ satisfies (S) and m > n then there is
aVeU(l,m—2)and a Be U(1,m — 1) such that

'

0 0
T V[prsz]
0

If (By), = (By), then any ¢ defined from vy in this way satisfies
l@l? = llpll™

Proof: Thereisan Ae U(1,n — 1) and a Be U(1,m — 1) such that
(A¢); =0 and (By), = (By),.
After including C"~' into C"~? there is a Ue U (m — 2) such that

qrde qrde
U 0 =prBy or 0 = U 'prBy.
0 0
As before
-
0
a9 qrde
0| _ 0 |- 0
N - [U“‘prsz]’
P Lo
so )
Ay @
4! 0| |0 147! 0
Im—n—l - —[ Im—n—l U—‘PrB'P
LO 0
'
or O =V ! ]for some VeU(l,m — 2). QED
: | pr By
0

4. Relations Between the Dimensions of the Receiving Spaces

Now we assume that we have both a holomorphic 1: M — C{" and
a maximal g8: M — R} which are isometric, full or degenerately full
and that A(py) = B(p,) =0, for some p,e M. This implies that
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dp |?

dw
these assumptions 4 is full iff A’ is full.

= || A’||? and that gg}- is holomorphic. We also note that with

The next several propositions determine the possible relationships
between m and n.

Proposition 7. Assume that i: M — C{" is holomorphic and full,
B:M— Ry is maximal and full or degenerately full and

12 = 2 L‘f’

’ Then m<n<2m+ 1.

(Note: This proof follows [L] p.148. There the conclusion is
m < n < 2m. We will be able to obtain the same result later.)

Proof: If 2 is full then there is a unitary matrix Ue U(1, N — 1),
N = max {m, n}, such that
g U
L= *

If m > n then

)|~
dw n _‘/—2 },'m
0
L 0 .
The (n + 1)* entry gives a linear relationship among {1,...,4,,},

which would imply that 1" is not full. Since
B(w) =2 Rej o e,

it follows from (*) that

;15(0/1 + O (w.

Denoting the first m columns of U by S we have

ﬂ(W)=w/§Rer%dz= ﬁRc Ui(w) =
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[EL]: V2[Re S,Im S [—Rfria]'

If n — 2m > 0 we can find at least » — 2 m linearly independent real
vectors de R" with d[Re S, Im S] = 0, so that

By
dl : |=0.
Ba

Since g is either full or degenerately full, there can be at most one such
d # 0, and d must be null. QED

Proposition 8. Assume that 2: M*—>C is holomorphic and
degenerately full, p: M — R{ is maximal and full or degenerately full,
e =2| %\

and m<n Thenn<2m+ 1.
dw

Proof: By the hypothesis A’ satisfies (D) and since m < n by
ap

Corollary 2 we know dw also satisfies (D). Thus, by Proposition 4,
P
W
ﬁ ;1% _pl|Pr é”
| o |

for some holomorphic # and Ve(1,n — 1). Thus

S
h

B=12ReV pré}l

[ 0

Letting S be the first m columns of ¥, we have
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h
ﬂ=1/§ReSl h ]

prBi
As in Proposition 7, n < 2m + 1. QED

Proposition 9. Assume that A:M*—C}] is holomorphic and
degenerately full, p: M" — R{" is maximal and full or degenerately full
2
and |1 |)*=2 @ . If—(!é satisfies (D), then m < n.
dw dw

Proof: We examine the proof of Proposition 5 more closely. If
m > n the proof says

dp —1 _1 10
d'—w al:l ..:. a1:" 0 1 h

9 = 1/'\/5 a’;_l1 ”'. a’:_nl ul._ll .'.. u]_,!'l_z h ) .
: I R = - prBi

0 , s Up 21 oo Uy 22

But the (n + 1)st entry gives a linear relation among 1',...,4),, in
addition to (B1'), = (B1'),, which contradicts the assumption that A’
is degenerately full. QED

Proposition 10. Assume that i M*—Cy is holomorphic and
degenerately full, f: M* — R} is maximal, full or degenerately full and

e =2| %

dw

Before the proof we note that there are examples of these kinds of
A and 8.

2
. Ifj—fi satisfies (S) and m > n then m=n + 1.

Example 1. Let m =3, n =2, 2(2) = (2% 2% z) and

df [cosh(o + it) sinh(o + i7)7[0
dz [sinh (0 + i7) cosh(o + ir)] [z]

with (cosho)(sinho)(cost)(sint) # 0. Then B(x,y)= (sinhocosz
(x2— y?) — 2coshasinz(xy), coshocosz(x?— y?) — 2sinhosinz(xy)),
ap

and - is not full, while g (x, y) is full. (See [H-O] p. 56.)
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Proof: By Proposition 6 we have

a
dw 0
0 =V pI'Bl'
f 7
0
for VeU(1,m — 2). Again

I 0

O |=y2rerv |BP3].

0 (B2),,
Ifm—n—1>0,thisyields 0 =v,,,,(BA;+ ... + 0,1 1 (BA),»
which is a contradiction if (v, 2. 05 0p4ymy) #0. If
(Uns1,25 - - » Uny1,m—1) Were the zero vector then the (n + 1)st row of V'
would be (v, ... Vy;1.m_y) and would not have positive length.

Thus m =n + 1. QED

Combining the results in Corollary 2, and Propositions 7 through
10 we have so far established the following.

If 2 is full then m < n < 2m + 1, while if 1 is degenerately full
either @ satisfies (D) and m<n<2m+ 1 or L. satisfies (S) and

dw dw

m=n+ 1.

We can actually show that in the first two cases that n < 2m. In
the proof of Proposition 7 we noted that 3 is degenerately full iff there
is a null vector ce R} such that

Re
¢[Re S, Im S] [_ Im] —0
and no vector d # ac with this property. If the rank of [Re S, Im S]
is n — 1, then there is one vector d such that d[Re S,Im S] = 0. For
the f defined using S to be degenerately full, this vector d must be null.
The following lemma shows this cannot occur.

Lemma 2. Let S be an nx m complex matrix formed from the first
m columns of a matrix Ve U(1,n — 1). If the rank of [Re S,Im S] is
n— 1 and d[Re S,Im S] = 0 for some d # 0, then d is not null.
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Proof: For convenience, set [ReS,ImS]=Q =][y...,0,,
Wi,. .., W,]. The hypothesis dQ = 0 is equivalent to d-v; =0 = d- w,
for 1,...,m, where - denotes the standard dot product. This implies
that d is perpendicular to the column space of Q in R". Suppose that
dis null in R{, i.e., g(d,d) = 0.

Given any x = (x;,...,x,)€R" let X = (— x;,X,,...,x,). Then
x-y=g(%y), and we have g(d,v) =0=g(d w) =g(d,d). If we
denote the column space of Q by W then our hypothesis implies
dmW=n—-1. Since d-W=0, {dd® W=R" We also know
that d- d = 0, which implies that de W n W' where W* is the ortho-
gonal complement of W in R{. This means W is a degenerate sub-
space. However g(v,,v,) + g(w,;,w,) = — 1, which holds because
VeU(1,n — 1), implies that v, or w, is timelike and a degenerate
subspace has no non-zero timelike vectors. QED

We can conclude that rank Q = n and, in Propositions 7 and 8§,
n < 2m. We summarize these results in the following theorem.

Theorem 2. Let i: M*— C" be holomorphic and p: M* — R} be

maximal with ||A'||*> =2

2
g—i H . Assume in addition both are full or

degenerately full while for some pye M*, 1(py) = B(p,) = 0.

(@) If 2 is full then B = ﬁRe S A, where S is an nx m complex
matrix satisfying

o) 'S[‘ll

n—1

]S=[_1I ], so that S is the first m
m—1

columns of a unitary matrix in CY,
(ii) the nx 2m matrix [Re S, Im S] has rank n, so that  is full,

(iii) ‘A''S —1 SA =0, so that % s o ihe quadric in
In—l aw
CP-,
ivy m<n<2m.
dp h
(b) If 4 and —— satisfy (D) then g = ﬁReS h for some
w pr (B

holomorphic h and BeU(1,m — 1) with (Bi)y= (BA); where S
satisfies (1) —(iv).
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() If 4 satisfies (D) and 5—:1 satisfies (S) then m=n+ 1,

B = 1/§Re V[prOB/I] where Ve U(1,m — 2) and Be U(1,m — 1) and

(i) holds with V substituted for S. The rank of [ReV,Im V] is
always n.

5. Determination of All Immersions Isometric to a Fixed
A M*—>Cy

Given 12: M — C{" we determine all maximal g: M — R{ isometric to
A. Unlike the case studied by Calabi, we must be concerned with
whether § is full or degenerately full.

Lemma 3. Let S be an n x m complex matrix formed from the first
m columns of a unitary matrix in C}. If : M* — C}" is holomorphic and
full and rank [Re S,Im S] = n then f = y2Re (S2) is full.

Proof: If f is not full then there is a d+# 0 in R" such that

d[Re S, Im S] [—Rlenzx A] =0, giving d[Re S, Im S]-imagei=0 in

R>™. However, by Lemma 1, the image of 1 spans R>™ so that
d[Re S,Im S] = 0, a contradiction. QED

Now we can state our result in the simplest case, which is the exact
analogy of the case, studied by Calabi.

Proposition 11. If A: M* — C}" is holomorphic and full, and S is an
nx m matrix satisfying (i—(iv) in Theorem 2 then f = ﬁ Re(S 1) is
Sull, maximal in R} and isometric to A.

The following example shows that if 1 satisfies (D) and S satisfies
(i—(iv) in Theorem 2 it is still possible for # = y2Re(S1) to be
neither full nor degenerately full.

Example 2. Let m = 3, n = 5.

19 Monatshefte fiir Mathematik, Bd. 108/4
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Set
(17 [0] 'OW 0]
h(w) 110 1 0 0 0
A(w) =| h(w) | = spanc| 1],] 0 | = Spang 0 , 0 , G , 0.
k (w) of |1 B HENEE
0 1 0 0
o] lof lof L1}
cosh6 0 0
isinh6 0 O
Let S = 0 siny 0 |. S satisfies (i) and (ii) and if
0 icospO0
0 0 1

k* = h*(— cosh?6 — sinh?60 + sin’y — cos?y) then S satisfies (iii). If

d=

s T 1, - 15—
| cosh 6 cosy

siny sinh 0’ O]
then d-[ReS,ImS] = [siny, — siny, 0, — sinh 0,sinh 6,0] so that

d[Re S, Tm 5] [ _RI“;; ﬂ

degenerately full.

= 0. Since d is non-null g is neither full nor

Lemma 4. Let A: M* - C" be holomorphic and degenerately full. If
m=n+1,BeU(1,m — 1)sothat (B2), = (B4),, VeU(1l,n — 1) and

- 0 dp .
p = ﬁ ReV pr (B /1)] then (E) satisfies (S).

0
(B7) v,(BA); + et v,,(BA),,
Proof: V| .7 |= : ;
(B;l) UVpa(BA)3 + ... + 0,,(BA),,
Note that

- ﬁ“ (U12(Bl)3 + e + U,,,(B}.)m) + . + 5n|(v"2(Bl)3 + o +
+ vnn(B}')m) = O’

i.e., there is a complex vector y = (yy,...,7,) such that



Complex Analytic Curves and Maximal Surfaces 273

0
Y V (B:}‘):S = 0.
(BA),
: < dag dap - e\ (9B
Equivalently y(——) =0, so that <—> = — (—) (~> .
,;,’dwj aw), ,;z yi/\aw),
Since — |y, >+ 92>+ ... + | yl?= =1,
2 2 2
|721" + ...2+ vl _ =1+ |2y|| <1,
Lyl [yl
. dp . . .
It is also easy to see that T is contained in no degenerate hyperplane.

QED
Lemma 5. If Ve U(1,n — 1) then rank[Re V,Im V] = n.
Proof: If rank [Re V, Im V] < n then there is a d # 0 € R" such that

z": d,Rev,;=0= i d,Imv,; j=1,...,n
m=1 m=1

But then z @, +id,v,;=0,j=1,...,n which would imply that
m=1

rank V' < n. QED
Lemma 6. Let A: M*> — C}" be holomorphic and degenerately full. Set

0
n=m— 1, choose Ve U(1,n — 1) and let f = y2Re V[Pr(Bl)]for

BeU(1,m — 1) with (B2), = (B2),. If B is not full then the first column
of V is a vector of the form v + iuv or iv with veR{, ueR and
0> g(v,v) = — 1. If the first column of V is of this form then B is
neither full nor degenerately full.

Proof: Assume first that g is not full. Then there is a non-zero
vector de R{ such that

0
Re(pr B1)
0
— Im (pr B7]

If [Re V,Im V] = [v,,...,0,, W, ..., w,] then

19*

d[Re V,Im V] -
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d'vk=0=d'wk, k=2,...,n, (1)

because pr(B4) is full in C"~'. Taking advantage of the fact that
VeU(1,n — 1), we write

~1
dReV,Imv)| bt [RCV]=:C

Tm
In—l
in two ways. Using (1) C equals
-1
I,,_| ‘Re
[%,0,..:90,2,0,...0] 1 [‘Im Zjl, where
In—l
x =d"v,
y=d-w. @
But C is also equal to [— d,,d,, ...,d] = d. Thus we have
d,=xRev, + ylmu,,
3)

d,= —xRev,, —ylmuo,,, k=2,...,n.

Substituting (3) in (2) gives x = Ax + By and y = Bx + Cy, where
A= —-g(v,v), B= —g(v,w)and C= — g(w;, w)).

We have 4 + C =1, and by Lemma 5 we know xy # 0. Thus
\A; ! _BA —0 or B’= A(A —1). This gives A(1 — 4) >0 or
1>A4>0and 1> C>=0.If v, = 0 or w, = 0 the first column of V'is
of the required form, so we may assume that v, # 0 and w, # 0. One
of v, und w; is timelike. If 4 = 0, i.e., v, is null, then B = 0, but again
we would have v, = 0. So we may assume that v, and w, are future
timelike. Then B> = A(A4 — 1) implies, using the reverse Cauchy
Schwarz inequality, that w, = pv, and 0 > g(v,,v) = — 1.

Conversely, assume that the first column of V is of the form
v+iuv or iv with 0> g(v,,v) = — 1. In the first case write
[Re V,Im V] = [v,v,,...,0,, p U, W,, ..., w,]. Because V'is unitary there
are several equations relating the inner products of the columns of the
matrix,
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g, v) +pg,w) =0
ug(v,v) =g(,w) k=2,..,n
g@,0) +u’g(v,0) = — 1.
The first two sets imply that g(v,v)=0=g(v,w), ie,
ﬁ'vk = 0 = 6'wk. Thus

0 .
Repr(B1)
0
— Impr(B2)

Since g (9, 0) # 0, B is neither full nor degenerately full. The second
case is similar. QED
Now we can state the theorem.

0[Re V,Im V] = 0.

Theorem 3. If : M — C{" is holomorphic and degenerately full,
n=m—1,VeU(l,n — 1), V satisfies (iii) of Theorem 2 and the first
column of V is not a vector of the form v + ipv or iv with ve R and
0> g(,v)= — 1 then for Be U(1,m — 1) with (B4), = (B1),

B =+2Re V[pr (OBA)]
dap

is maximal, full, isometric to A and dw satisfies (S).
w

The last theorem describes those g: M — R{ for which j—f) satisfies
(D). In order to state the theorem we introduce some additional
notation. If § is an nxm complex matrix and [ReS,ImS] =

=[v,.. ., Uy Wi,..., W,] set
X = spang {v; + Uy, U3, ..., Uy Wy + Wy, Wy, ..., W} < RY.

Theorem 4. Let i: M — CY{" be holomorphic and degenerately full and
S an nxm complex matrix satisfying (i)—(@1v). If dimX =n or

h
dimX =n—1 and X is degenerate then p = ﬁReS h is
prBi
maximal, isometric to A and full or degenerately full. We note that Z—i

satisfies (D) and B is degenerately full if dimX =n — 1.
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Proof: We need only prove that g is full or degenerately full. Here
B is full or degenerately full iff de R with

dp,+...+d,p,=0 4

implies that d = 0 (so 8 is full) or that d is a multiple of a fixed null
vector (so f# is degenerately full). Because Bpr is full in C"~2, (4)
holds iff d[Re S, Im S]€ spang {e, — e,, €,,,1 — €,,,,} in R3". Thus, (4)
holdsiffd-v, + v,=0=d v, =d-w, + wy,=d-w,, k =3.4,...,m.

Here dmX =n—2 or n — 1 or n. Now dim X = n iff g is full,
while if X = n — 2 there is a non-null d such that - X = 0 and g is not
full nor degenerately full. Finally, if dim X = n — 1, there is a null
vector de R{ such that d- X = 0 iff X is degenerate. To see this note
thatd- X =0iffd L Xin R!. IfdeXn X* thend L Xand d- X = 0.
If d- X = 0 and d is null than de X n X*. QED

References

[C1] CaLABI, E.: Isometric imbeddings of complex manifolds. Ann. Math. 58,
1—23 (1953).

[C2] CaLaBi, E.: Quelques applications I’analyse complexe aux surfaces d’aire
minima (together with Topics Complex Manifolds by H.Rossi). Les Presses de
I’Université de Montreal, 1968.

[H-O] HorFrFMANN, D., OsserMAN, R.: The Geometry of the Generalized Gauss
Map. Memoirs of the A. M. S., No. 236, 1980.

[L] Lawson, H. B. Jr.: Lectures on Minimal Submanifolds, Vol. I. Berkeley, CA:
Publish or Perish, Inc.

K. ABE M. A.MaGID
Department of Mathematics Department of Mathematics
University of Connecticut Wellesley College

Storrs, CT 06268, U.S.A. Wellesley, MA 02181, U.S.A.



	
	Complex Analytic Curves and Maximal Surfaces.


