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1. Put

coshzy = "

=7 8 @nl (1)

p=0

CosS

Gandhi [3] conjectured that the positive integers S,, are divisible
by 2". The writer [2] proved the truth of this conjecture and indeed that

Son = 27" 8, = (— 1)%™-D (mod 4). (2)

Salié [5] in a recent paper gave another proof of (2) and at the same
time showed that

Spn = (— 1)%A™*=D 4 4 7,(n) + 8 y5(n) (mod 16), (3)
where
0 n=0,1,...,2—1 (mod 2¥+?))
2{m) = { 1 (n=2,...,2_ 1 (mod 2*+Y)).
Since

2 pa(n) = 1 — (— %",
(3) is equivalent to
8op =2 — (— 1)%A™=D | 8 y.(n) (mod 16). 4)

The purpose of the present note is to prove the following result:

1 1 i 1
(= DO = 1 (= 1P — gy Z (= 150D (51 2 B,
®)

where B, is the Bernoulli number defined by

> BZ
ez_].—”_o ”n!.
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Since 2 B,, is integral (mod 2), it is evident that (5) yields congruences
(mod 27), where 7 is arbitrary. In particular (5) implies both (1) and (3).

We also obtain an expansion similar to (5) for the coefficients f,,
defined by

sibhz = "
sinz  ,_, "(2n)!"
2. Since
o 2n
cos z =,£0(* 1" B @n)l’

where the E,, are the Euler numbers in the even suffix notation, it
follows at once from (1) that

8= Z (— 1y (") B, (6)

r=0
Now we recall that, in the notation of Norlund [4, Ch. 2], if
Cﬂ = 2” E’I(O)’
then
E=0C+1)" C=(E—-1)" (7
and
nC,_, = 2"(1 — 2") B,. (8)
Now if f(z) is an arbitrary polynomial, it follows from (8) that
1'(C) =2 B) — (4 B)
and in particular
n(C+1)"'=@2B+1)"— 4B+ 1)~ 9)
Since
2B+ 1)"=2"B,(%)=0 (n odd),
it follows from (7) and (9) that

f(E)=— (4 B+1), (10)
where f(z) is any odd polynomial.
We take
1 £
f@) = 51 £ Uany & (11)
so that

/() = 2 (— 1 @) By, = S,
by (6). Thus
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Son=—5 1 'f; (— 1y Gri) (4 B+ 1)+ (12)
Now
n 2741
Z(—1 G @B+ = 2 (— G £ e B
r=0
2n+1
=2 (") 4B, Z(— 1y GaZa )
=0
Since
2n
Z' (21;;3_—6;1) wf == xa—l (1 + m)?n—c+1,
r=3—1

it is evident that
1/'.:—1
> — 1)3—1 (l_i)h—a-i-l}.

{1+ 4 (

IOy (-1 =
In particular we have

F (=17 (0 = % {(1 — iy + (1 — i)

r=0
=2 (1)
_ Ji=apre (m even)
B 0 (n odd),
n *2s—1
3 (—1) (2t — 5 a+ g+l (] i)h—23+1}
,iaa-l
= 2 (1 — i)2”—2l+1 ((_ l)n—:,‘: . l)
=— 2 A1) (- (— 1)
— (_ 1)%(n+s)(n+a—1) gn—s.
It follows that
G @B

22+ 1) E (=17 EN + Z (Y4 By, T (— 1y (55
r=0 8=0 =3

2n+1(2 n + 1) g(n) + z' (2n+1) 42: Bﬂa . (_1)'/,(n+a)(u+l—1) on—s

=0

= =2 @n 4 Dgln) + 2" Z (Z)AE0TD (030 9 B,

o*
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(=1 (n even)
“"’"‘{ 0 (n 0dd).

Therefore (12) becomes

oy oA e LA R Db S )

Multiplying by (— 1)%™*~D we get

‘S;n =2¢g(n) —

o T 3 ?0(_1)“4-'/”(‘_1) (21:2—:-1) 233 Bm-
(14)

We may regard (14) as a 2-adic expansion of (— 1)%"*—D)g;
Since, by the Staudt-Clausen theorem, 2 B,, is integral (mod 2), the
term corresponding to the value s on the right of (14) is divisible by
at least 2%, Thus for example (14) implies

(=1)%A%D 8y, = 14(—1)"—

(—1)%=e=D g =1 J (—1)*— 1 (mod 4),

2n+1 =
which is identical with (2). Next we have

(=% §' =1 4 (—1)* — (— 1)”‘1?" (mod 32). (15)

2n4+1
To see that (15) implies (3) or (4) it suffices to show that

4
A(—1)4=D 148 () = 1-H(—1)" — (—1)"~5" (mod 16),

2n4+1 "
or what is the same thing
8 a(n) = 2(1 —(— 1)%"*=D) —(—1)*(4n)  (mod 16). (16)

For n=0,1, 2,3 (mod 8) we find that the right member of (16) is
congruent to O (mod 16), while for n = 4,5, 6, 7 (mod 8), it is con-
gruent to 8 (mod 16). This evidently implies the truth of (16).

3. The following corollary of (14) may be noted. For brevity put

8gn = (— 1)V (2n 4+ 1) S;,. (17)
Then it is evident that forr > 1,5 > 1,
r n4-2br r
Z (1Y () Sipyapi=— Z (—1wthe=Dg% B, 3 (—1Y () ("£29).
j=0 =0 j=0

Since (3,) is a polynomial in z of degree 2 s we have
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Z(=1Heith)=0 (r>2s),
i=0
so that
2r-1
(=1 (7Y Soppar; =0 (mod 2%-1). (18)
=0
This result can be improved.
4. Let
sinh z 2 " ”
sin @ =”=0ﬂ2"(2 n)!’ (19)

go that the B,, are positive rational numbers with odd denominator.
Some properties of f,, are discussed in [1]. Gandhs [3] has conjectured
that the numerator of g,, is divisible by 2". If we put [4, Ch. 2]

© 2n

sin @ =nfo(_ 1)* Dy, @2n)’
so that
Dy, = (2 B+ 1) = (2 — 2" B,, (20)

then it follows from (19) that

Pu=gn1 Z(— 1 CE Da (21)

Moreover it follows easily from (1) and (19) that

2% Bo = 2:) (27) Bar San_ar (22)
and
Szn = z‘; (_ 1)' (g:') g ﬂ2r ﬂﬁn—ﬁr' (23)

Differentiating (19) we get

® 2)2"-1 z
nfl Baon @n_1)! =z (coth  — cot x).
Since
= (2 x)m+2
z coth z — z cot . = 2,50(_43’—4‘2)—! By s
we get

dr
NPy = 2 (412-:2) 24+? ByioBonarias
r<n

8o that
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ﬁZn—4r—2
2n—2r—1 ¢

27" B = 2
ﬂ% 2r<n27+1

n—1\ 92r+1
(4r+1) 2 = B4r+2

(24)

This evidently shows that the numerator of ,, is divisible by 2*; this

can also be proved by means of (22).
If we put B3, = 27" B,,, (22) and (23) become

22” ﬁlh = 20 G:) ﬁ;r S;n—‘.’f
and
S;n = E’; (_ 1)' 22n—Zr ﬂ;r ﬂ;n—Zr’
respectively. Thus in particular
S = (— 1)* B2 (mod 4),
so that
Bin=(—#D  (mod 4).
We have also from (26)

Son == (— 1) {3 — 4 B3 in_s} (mod 16).

Since
ﬂ; ﬂ;u—z =i (_' 1)./’”(”—]) (mOd 4)3
we get

B = (— 1)* 8}, — 4(— 1)%re+D (mod 16).

In the next place, we have, by (21) and (20),
n 2r
_ 1Y (2n+1 2r\ 9s
ﬂ2”—2n+1rf:)( 1)(21' )’5(5)2‘3:

Zn

“2n+1,5
Now, exactly as above,
2 0 (n even)
1Y (2
rf'l( 1) (ﬂr—l) == { (_1)‘/,(n+1) on (,n Odd)
and
I (1 (25 = (DAt ern g,
Thus

ﬂ,ﬂ —_ — (_.1)'/:"("""1) (1 —(= 1)7!) gn—1 R

+2n+1,=,,c

Z ()2 B, X (— 1) (%),

2' (’.2-:1) 22.9 Bzg . (_1)‘/,(u+a) (n+s+1) 2u—a

(25)

(26)

(27)

(28)
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and therefore

1
—)hret g
( 1) ﬁ% 2n+1 €n+
+ gl 2 (DR () 2 By, (20)

where

_Jo (n even)
€= { 1 (n odd).

While (29) can also be thought of as a 2 — adic expansion, the
convergence is considerably slower than that of (14). For example
it requires a little computation to verify that (29) implies (27).
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