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Newton’s Method for Convex Programming
and Tchebycheff Approximation

By

E. W.CHENEY and A. A. GOLDSTEIN

§ 1. Introduction. The rationale of Newton’s method is exploited here in
order to develop effective algorithms for solving the following general problem:
given a convex continuous function I defined on a closed convex subset K of E,,,
obtain (if such exists) a point x of K such that F(x)=<F(y) for all y in K. The
manifestation of Newton’s method occurs when, in the course of computation,
convex hypersurfaces are replaced by their support planes.

The problems of infinite systems of linear inequalities and of infinite linear
programming are subsumed by the above problem, as are certain Tchebycheff
approximation problems for continuous functions on a metric compactum. In
regard to the latter, special attention is devoted in §§ 27—30 to the feasibility
of replacing a continuum by a finite subset in such a way that a discrete approxi-
mation becomes an accurate substitute for the continuous approximation.

It is to be pointed out that the basic idea of the algorithms below is not
new, having been first used by REMEz [, 2, 3, 4]. Other authors who have put
it to use in one form or another are NOVORDVORSKII-PINSKER [4], BEALE [6, 7],
BraTTON [8], STIEFEL [9, 10], WoLFE [11], STONE [12], and KELLEY [13].

The general problem described above is put aside until § 21 in order that
the main ideas may be developed in a simpler setting. Consider, then, a matrix
having a finite number, 7z 1, of columns and at least #+1 rows (the number
of rows may be non-denumerable),

Al.. AL b
A2 0 dE by
A point x=(xy, ..., x,) € E,, is sought which will minimize the function

F(x)=sup X A} x;— b,.
i j=1

The linear Tchebycheff approximation problem is already included by this
problem. Note that any continuous convex function F defined throughout E,
may be represented as above via its support planes. These planes assume the
form
Aix;—b;.
1
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§ 2. Nomenclature. Consider the three matrices
A}l ... A} A... A 1 A}.. AL 1 b
A=|A4}...42 B=|42...4% 1 C=|42...42 1 b,

The Haar condition on A is the requirement that every » xX# submatrix of A4
be non-singular. The solvency condition on A is the requirement that every
(n+1) X (n-+1) submatrix of B be non-singular. The normality condition on C
is the requirement that every (#--2) X (n-2) submatrix of C be non-singular.
The functions R* defined above are known as residual functions, and the hyper-
planes in £, ., whose equations are

z=R' (%)

are residual planes. An edge is the intersection of any # residual planes. When
the Haar condition is fulfilled, each edge is a 1-dimensional manifold in E,_,
along which z is not constant. When the solvency condition is met, each set of
n+1 residual planes has in common a single point called a verfex. Assuming
the normality condition, no more than #-4-1 residual planes can pass thru a
vertex.

The solvency condition is equivalent to the following: given a point xCE,
and a set of rows {A“, ...,Aiﬂ} from A, there corresponds a unique vector
u=(u,, ..., u,) satisfying Zu;—=1 and x=2u;A%. Stated otherwise, each set
of n+1 rows from A has an #-simplex for its convex hull.

The notation o(I) denotes the number of elements in the set /. The notation
H{A":i¢cI} denotes the comvex hull of the set of points {4':7¢€I}; ie., the set
of all linear combinations X'u; A* where u; =0, o{t:u;>0}< oo, and Zu,=1.
The notation [, v] will be used for Xu,v;. The notation C{4*: €I} denotes
the comical hull of the set of points {4*:7<1}; i.e., the set of all linear combi-
nations Xu; A* where u; =0 and o{i: u; >0}<<oo. A half-space in E, is a set
of the form {x:[a, x]=k}. A polytope in E,, is the intersection of a finite number
of half-spaces.

§3. Lemmas. A. Let K be a closed convex set in Hilbert space and # a
point not in K. There exists an unique v € K closest to #. Furthermore, for
x€K,

x,u—v]<[v,u—v]|<[u,u—uv].

This theorem is well-known. See for example [14].

B. Let £ denote a subset of £, and x a point of H({2). There exists 2'CQ
such that o(2')<n-+1 and ¥ € H('). If 2 is connected then there exists 2’ Q2
such that o(2')<# and x € H(£'). See [15, p. 9] and the references given there.

C. The distance between two polytopes in E, is attained. Thus, if bounded
below, the function F(x) = max 2 Aix;—b; attains its infimum in E,. See [/4].
Si15sm f=1
D. Let a matrix B result from an # X# non-singular matrix 4 by replacement
of its 7" row by a vector 4. Let the columns of 471 be designated by C,, ..., C,.
If A=[b,C,]=0, then B is non-singular and the columns D, ..., D, of its
inverse are given by D,=A47C, and D;=C;—A1[b, C,]C, (j 7).
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E. The convex hull of a compactum in E,, is itself compact.
Proof. Let £ be a compactum in E,, K its convex hull. By §3B to each
x€ K there corresponds a representation x= )¢, (x) A*(x) with¢; (¥) =0, Z;¢, (x) =1,
i=0
and A*(x) €. If {x;} is a sequence in K then there exists by the compactness
of Qandof Q={(t,, ..., t,):t,=0, Zt;=1} asequence J, such thatklim Al(x) =4

exists in £ and liin (to (%), - s tu (%)) =(tg, ..., t,) exists in Q. Clearly then

* n 1
XYt A€ K, proving the compactness of K.

In a general Banach space, the convex hull of a compactum is totally bounded,
by a theorem of MAzUR, but not necessarily closed.

§4. Lemma. Let E denote an arbitrary linear space, £ a set of linear func-
tionals on E, and K the convex hull of £. The system of linear inequalities

(S) fx) <o (f€Q)
possesses a finite inconsistent subsystem if and only if 0 € K.

Proof. (i) Assume 0€ K. Then an equation of the form 0=}/, holds

where f,€0, ¢;>0 and X'¢;=1. Thus for any x€E, 0=2'¢;f;(x), slhzolwing that
the system
() h<o (=ism)
is inconsistent.

(ii) Assume that system (S) has system (S’) as an inconsistent subsystem.
Denote by N the set of solutions of

Lilz)=0 (1=i1=m)

and select x;, ..., x,CE (n=m) so that N®x, ®--- Dx,=E. Since every x£E
has a representation x = xo—l—i ¢;x; with x €N, £, (x) = Z'¢;f;(x;). The system (S')

j=1
may therefore be written

(8) Ddici<0 (1Si<m)
j=1

where A;: fi(x;), and this system too is inconsistent in E,. We shall show
that 0€ H{4!, ..., A"}=K' where A*= (4}, ..., 4}). Indeed if this is not the
case, then by §3A, there exists a halfspace {x: [x, c]<0} in E, containing K'.
This would make ¢ a solution of (S”). Thus 0€ K’, and an equation of the form

0= Y¢;A* must obtain with ¢;=0 and Xe;—1. From this we obtain easily
i=1
2'e;f;=0, which completes the proof. For infinite systems this lemma generalizes
corollary 5 of [16].
§5. Lemma. Let £2 denote a compact subset of E, and b a continuous real-
valued function on 2. For x € E, define f(x)= sup [4, x] and FF(x) = sup [4, x]
4eq 4eQ

—b(A). Consider also two systems of linear inequalities

(s) [4,2]<0 (S) [4,2]<b(A)+M (4€9Q).
18*
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The following statements are equivalent

(i) F is bounded below.

(i1) £ is bounded below.

(iii) System (s) is inconsistent.

(iv) 0€ H(L).

(v) System (s) has an inconsistent subsystem comprising at most n-1
inequalities.

(vi) For some M, system (S) has an inconsistent subsystem comprising at
most 7+ 1 inequalities.

(vii) For some M, system (S) is inconsistent.

Proof. (i)—(ii).

F(x) =sup{[4, x] —b(4)} <sup[4, x] — igfb(A) =f(x) — iIA}fb(A).

(if)—(iii). If (s) is consistent and is satisfied by z° then ¢=sup[4, 2°]<0,
4

for the supremum is necessarily attained, £ being closed and bounded. But
now f(£2°) =tg—>— oo as {— 4 oo.

(iil)—(iv). H(L2) is compact by §3E. If 0¢ H(£2) then by §3A, there is a
halfspace {x: [x, 2]<<0} containing H(£2). Thus z satisfies system (s).

(iv)—=(v). If 0€H(Q) then by §3B, there exist A4° ..., A" such that
0€H{4°, ..., A"}. By §4, then, the system
(s') [4z]<0 (0=i=n)
is inconsistent.

(v)—>(vi). Assume system (s’) inconsistent. Put M =— 0rrglasxb(A") then for
all z, max {[4%, 2] — b(4")}=max [4’, z] —maxb(4") =M. Thus the system
(S) [4%,2] <b(d)+ M 0=i<n)
is inconsistent.

(vi)—(vii). Trivial

(vii)—(i). If (S) is inconsistent, then clearly F(x)=M for all x.

§6. Lemma. Let S;>S,> ... be a nested sequence of compact sets in E,,.
Then H(NS;)=NH(S,).

Proof. Clearly NS;CNH(S;). Hence by the convexity of NH(S;), HN S;) C
NH(S,). For the converse, let x=(x,,..., x,) be a point of NH(S;). Then
for each ¢ there is, by § 3B a representation

n .. .
x =Y,y
7=0
where the (n-41)-tuple {9 = (#", ..., #9) lies in the set

Qz{(to, ...,tn):tjgo, 27t7=1}

and where y{” € S;. By the compactness of @ and of S, there exists a sequence
of integers 7, %, ... such thatklim W =t=(t,, ..., t,) exists in Q andklim Yy =y,
— 00 —> 00

exists in S;. For each £, all but a finite number of y{, y{*, ... lie in S, because
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the S,’s are nested. Since each S, is closed, y,€S,; thus y,€NS;. Hence
x= Xt;y;, showing x ¢ H(N S;). Q.E.D.
i=0
§7. Theorem. Let £ be a compact subset of E, and b a continuous real
valued function on . Define R (A4, x)=[4, x] —b(4) and F(x)=sup R(4, x).
4€Q

If there exists an x°Z£ E, such that F(x%) <F(x) for all x, then there exists a
set {4°, ..., A*} CQ with k< # such that inf max R (4", x)=F(x°) =M=R(4" x°)
(0=i=<k). s

Proof. Define for each 1=1, 2, ... the set Qiz{A €EQ:R(A4, x°)=F(x% — 71}
Clearly the sets £; are compact and nested. We shall prove that for each 7 the
following system is inconsistent:

(1) [4,z]<0 (A€9Q).
Indeed, if 2° satisfies (1), then define ¢g= sup [4, 2°]. Since £, is compact and
A

[4, 2°] is a continuous function of 4, there is an A°€.Q; for which [49, 2°] = q.
. 1 1
Thus g0, Tt o= 2| supid| SmceR(A, W ) =R(4, )+ [4,2),

it is clear that for 4 €£2; we have R(A, o4 zo) <F(x0)+- 1, while for 162,

Al = ) —

2ic 21

R(4, 4 51 #) <F(#) — 1 +

Thus F (xo -+ ﬁ 20) < M, a contradiction. This shows that for all 1=1, 2, ...,
system (1) is inconsistent. By §5, 0€ H(£;). By §6, OEH( ﬂ.Q,-). Furthermore

i=1
NQR,={AC2:R(4, x°)=F(x°)}. Now by §5 there exist 49, ..., 4% in NG,
such that the system '
[Az] <0 (0=iZk)

is inconsistent, whence the theorem. A related result may be found in [17].
§ 8. Remark. Let £ denote a closed, bounded, connected subset of E, and

n

b a continuous function on 2. If infsup > A;x;—b(4)> — oo, then 2 contains
¥ 4eQ j=1

vanishing # X7 determinants; in other words, the Haar condition is violated.

Proof. By §5, 0€ H(L2). Since £ is connected, by § 3B a there exist points
AL, ..., A" in 2 and non-negative coefficients cy, ..., c, fulfilling X¢;=1 and
2¢; A'=0. This latter equation exhibits a linear dependence among 43, ..., A™

§9. Lemma. If 4 is an (#n+41) Xx» matrix of rank » and if the function
f(x¥)=max [A4", ] is bounded below, then the solvency condition follows.

Proof. 1f the solvency condition fails, there exists a vector (u, ..., u,) 30

such that
1 AY... Ag) <uo> <O
<1 AY o AG u, 0)

thus [4%, u]= —u,, where 0=<i¢<# and where u=(u,,...,n,). If u,=0, the
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rank hypothesis is violated. If u,==0, then either 4% or —# is a solution of
the inequalities [4°, z]<0. Thus f(2) <0, whencetligrn f(tz) = — oo.

§10. Lemma. Assume that the set {4: 0=<i<n-1} satisfies the Haar
condition and that 0€ H{4*: 0=¢<n}. Then there exist unique indices, 7, and
7, among {0,...,n} such that 0€H{4": 0<i<n-+1, i==i,} and —A"+1¢
C{A*:0=<i<mn, i=14,}. Furthermore, i{y=1,. See Satz 5, p. 4, of [10].

Proof. Since 0€ H{A": 0=i=n}, and since {4°:0=<i=n} satisfies the
solvency condition, there exist unique coefficients #,, ..., %, such that #,=0,
Zu,=1, and Zu;A'=0. Because of the Haar condition #u,>0. By §9, there
exist unique coefficients v, ..., v, such that Xv;=1 and Xv,A*=A"*'. For

anyj<nwehave0=A"*"'— X0, A'= A" —p; A1 — X'v, A'= A" — 9, X' — % At
— Xy A=A 3 (ﬁu_’ﬁ — v,») A? throughout which, X’ abbreviates Z{;o,i*i.
If _”% =v; for all ¢, theri this equation will furnish a barycentric representation
of 0 in terms of {A*: 0=1<n+1, i:i:j}. This will indeed be the case if 7 is chosen

to fulfill_ZL = Z_ for all 4. If this value of j be denoted by 7,, we have in fact
7 t
v

LN % for all 7==1,y, due again to the Haar condition. The uniqueness of i,
Ui, i
may be seen at once from the fact that any other choice will lead to a negative
coefficient in the above representation of zero. For each j this representation
is unique up to scalar multiplication due to the Haar condition. Similar argu-
ments apply to 7.

§11. Remark. Assume that the set {4, ..., A""%} CE, satisfies the Haar
condition. The system of inequalities

(1) [Ai,z]<0 (1Si<n+2)
is inconsistent if and only if it possesses precisely two inconsistent proper sub-
systems.

Proof. The “if” part being trivial, we proceed at once to the “only if”’ part.
If the system (1) is inconsistent, then by §4, 06 H{4*:1=i<n- 2}, and thus,
by §3B, there exists an index 7, such that 0C H{4*:1<i<n-2, i==i,}. By
§§ 5 and 9, the solvency condition holds for the set {A*:1=<i<n+2, i==1,}.
By § 10, there exists a unique index 7, #=7, such that

0EH{A* 1<i<n+2, i1}
By §4, the inconsistent subsystems are obtained.
§ 12. Remark. Consider two related matrices

‘AL... AL Ar AL, AL
A=(A§...A§> A*=<Ag Af...Aﬁ)

in which the number of rows is finite or denumerable. If every (#+1) xX#n sub-
matrix of 4 is of full rank then (43, 43, ...)7 may be chosen so that in A* every
(n+1) X (n+1) submatrix is of full rank.

Proof. Set A=t and expand a typical (#+1) X (#+1) determinant of A*
by the elements of its first column, obtaining thereby a polynomial in ¢ whose
coefficients are # X# determinants from 4 which are not all zero by hypothesis.
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The set S of all the roots of all the polynomials obtained in this way is an at most
denumerable set. One may therefore select any ¢4 S to obtain the desired con-
clusion.

§13. Theorem. Assume that the function f (x):lngqasx [4%, x] is bounded

below, that m=n-2, and that the Haar conditions prevails. Then there exist
at least m—mn sets IC{1,...,m} such that o(/)=n-+1 and 0EH{A*:icI}.
This bound is best possible.

Proof. By §5 and the boundedness of f there exists a set J,({1, ..., m}
such that o(ly)=n+1 and 0€ H{A":i€1,}. By §5, the function max [4%, %]
is bounded below. By the Haar condition, the set {4*: € I} has rank #. ' By §9,
then, the solvency condition is satisfied by this set. By §10, to each index
&I, there corresponds uniquely an index 7;€ 1, in such a way that 0€ H{4*:
i€Il+5—1;}.

Since j may be selected in m —#n —1 ways, the number m — # is established.
That this bound is best possible is shown in the next paragraph. Observe that

it has been shown that to each ¢ there corresponds an I ({1, s, m} such that
i€I, o(l)=n+1 and 0€ H{4d*:i¢cI}.
§ 14. Example. Let positive numbers ¢, ..., {,_, be selected. Define
=1 0 0 cos 0
0o —1 0 e 0
0 0 —1 sss 10
4 — : : : :
0 0 0 e —1
5 8 g .
byow Loy e O,

It turns out that (i) 4 satisfies the Haar condition; (ii) inf max [4%, x]> — oo;
x 1

and that (iii) there are precisely m —n sets I ({1, ..., m} such that o(J)=n-+1
and 0CH{4": icI}.

Proof. (i) Suppose that 4 contains a singular # X7» submatrix B. Then a
dependence X'¢; B;=0 exists among the columns of B. If exactly % of the first
n rows of A are present in B, then this equation implies the vanishing of % of
the coefficients ¢; as well as the vanishing of the polynomial X'¢,#/ at exactly
#n — k positive points. Since such a polynomial has at most # — % —1 changes
of sign, it can have by DESCARTES' rule at most #» — & — 1 positive roots. Thus ¢ =0.

(ii) This follows at once, using § 5, from the observation that
0EH{AL, ..., A1},
(iii) If 06 H{4*: €I} and o(I)=n-1, then one may write 0= > k; A* where
i€l

k;=0 and 2'k,=1. It may be seen at once from these conditions that all the
first # rows of A must be among {4*:¢€I}. The number of ways of obtaining
a set of w41 rows from A including the first # is m — n.

§15. Theorem. Define F(x) = max Ri(x) and f(x) =1rgnisn Ri(x). If either

of the numbers Fy=inf F(x), fo=supf(x) is finite, then the other is also, and
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these values are achieved at appropriate points; furthermore f, < F; i.e.
max min R (x) < min max R’ (x).
x 1 x 1

Equality occurs here if and only if there exists a point ¥ and a number M satis-
fying R'(y)=M (1=i=m).

Proof. By §3C, if Fy>> — oo, an 2°C E,, exists for which Fy=_F(x?). Define
then I={i: R*(x®) =F,} and observe that the system of inequalities [4%, 2] <0,
(¢&1) is inconsistent. This implies that x° maximizes the concave function
Igéiln Ri(x). Thus E)=52P 1311}1 Ri(x) gsgp miin Ri(x)=/,. Here we obtain strict

inequality unless R*(x%) = F, for all . The arguments are the same if one begins
with the assumption f,<< cc.

§ 16. Algorithm I. We are given a bounded subset 2 of £, and a bounded
real-valued function on £ which we write 4, for 4 €Q. For each 4 €Q define
R(A, x)=[A, x] —A,. Also define F(x)=sup R(4, x). It is desired to obtain

AeQ

an x€E, for which F(x)<F(y) for all y if such an x exists. Assume that in
getting started a subset {4°,..., 4’} CQ2 is known which spans E, and satisfies
0€H{A", ..., A'}. In this connection, see § 18. At step & (k=) in the algorithm
there is given {49, ..., 4¥} Q. Select x* to minimize the function F*(x)=
max{R (4°, x): 0=i=k}. (This may be accomplished by the algorithm of § 17,
by the methods of [18], by linear programming, etc., etc.) Select 4 =A*+1cQ
to maximize R (A4, x¥), or to come within 1/k of this maximum. Repeat this
cycle, obtaining thereby a sequence x%, #'*1, ... . The validity of this algorithm
is established in § 22.

§17. Algorithm II. We are given a subset {41, ..., A"} of E, satisfying the
Haar condition and an m-tuple (b, ..., b,,). It is desired to obtain a minimum

for the function F(x) = max R*(x) where R(x)= ZA;:xj— b;. It is necessary to
<i<m i=1
assume that infF(x)> — oo, or equivalently, 0 € H{A4!, ..., A™}. At each stage

there is given a set 1 {1, ..., m} of n+1 elements and a point y€E,. Select

j€{1,...,m} to maximize R(y). Select y’ to minimize max R'(y'). Select
i€+

heI to minimize R*(y’). Define I'=1-j—h, and start anew with I’ and ¥’

A starting procedure is given in § 18 and a formulary in §19. This algorithm

is now in use on the IBM 704 computer, having been programmed by Mr. NORMAN

LEVINE.

The following remarks will assist in interpreting §19. In each cycle there

is a set of indices I={s,, 7, ..., ,}, a point ¥= (%, ..., %,) and a number x,
such that R*(x)= — x, for ¢ I. This equation may be written x*= Db*, where
¥ = (%9, %1, ..., %), b¥=(b;,, ..., b;,) and where D is the inverse of

(1 A;’«...A:’:)
1 A Al

In the formulary, /=0 signifies the problem of minimizing F(x)=maxR'(x);

l=1 signifies the problem of obtaining a solution of FF(x¥)<0; and /=2 signifies
the problem of minimizing F*(x)=max | R*(x)|.
1
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§ 18. Starting Procedure for Algorithms. Assume the Haar condition and
that the function F(x)= max R’ (x) possesses a greatest lower bound M. By §3C

there exists an x° such that F(x°)=M. Algorithm II requires, for starting, a
set of rows {4%, ..., A"} from the matrix having the property that the system
of inequalities

[A9,z]<0 (0=j<mn)

be inconsistent. The existence of such sets (indeed, 7 — # of them) is guaranteed
by §13. To obviate the search for such a set, a new row A4° is adjoined to the
matrix, and a number b, is selected in such a way that

(1 RO(x0) = [49, 2] — by < M;

that is, x° remains a solution of the augmented problem. Toward this end,

define A°= — >’ A%, and suppose b, is large enough to validate equation (1) above.
i=1

It is to be verified that the set {4°, ..., A"} satisfies the Haar condition and
the condition that the system

(2) [4i2]<0 (0=i<wn)
n
be inconsistent. Indeed, supposing a non-trivial linear equation 0= > u, A, the
i—0
i1,

Haar condition on {4, ..., A"} implies that ¢,==0 and that #,==0. The replace-

ment of A°in this equation by — >’ A” will then yield an equation which exhibits
i=1
linear dependence among A%, ..., A"

Finally, we obviously have 0€ H{A4°, ..., A"}, showing (§ 4) that system (2)
is inconsistent.

If the presence of A° vitiates the Haar or solvency condition at a subsequent
juncture in the algorithm, the above technique may be repeated. Specifically,
suppose that at a certain juncture the set I contains 0, and that the set {4*: ¢€ I}
fails either of the two desired conditions. Then A° could be replaced by — > 4°,
and the computations may proceed. b

Since there is no a priori knowledge of the number [A4°, x°] — M, b, is chosen
in practice by trial, and the number

M* = inf max R'(x)
x 0=is=m
is calculated by means of the algorithm. If, in the last cycle of the algorithm,
0¢ 1, then condition (1) above is not satisfied by b,, and b, must be increased.
As b, increases, M* decreases, but if M* < min (—¥,), then by § 15, the (original)
function F is not bounded below. ==
Assuming the Haar and Normality conditions, the Tchebycheff problem of

minimizing the function F(x) = max | R*(x)| has an alternate starting procedure.
sSism

Let J be any set of # -1 indices, and let x* be a point which minimizes ma]x | R (x)|.
i€

Such a point may be determined by methods of [18], for example. Define

R™i—= _Ri(x). The set I={i: 1<i<2m, R'(x*)=F(x*)} is a satisfactory

starting set.
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§ 19. Formulary for Algorithm II

Tiov (0=s=n)

Read I'n Starting Procedure
1 A} ... AL 1—->A 10—,
Do : no
(- . . —,ZA;”*A? (1=5=n)
1 AP...AY i=1
(by, ..., by) (+1,..., +1) > (6 ... Oy)
0 polytope (0,1, ..., m) = (4g...%,) =1
[ =41 inequalit 0 0. _1 0 0
2 minimaxy A e 1.4" 8 -+ D" From Matrix-
: -\ : : Inverse
an ... an Dy Dp Subroutine
(Eﬂ)k_l —>:~ test D,‘»’ >0? (0=j5=n) Lo lég)or
A D — Dy P
0=k =n) yes
by — biﬂ Compute
#—> 0 EoDw by~ ¥y (0<k <n) [
n
kélA;xk——bL»R, 1=1 =m)
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§ 20. Algorithm III. Consider the problem of obtaining the minimizing point
for the function F(x)=sup [4, x] —b(4), 2 being a countable compact set in
4@

E, and b a continuous function on £2. Let the elements of £ be enumerated:
A, A2, ..., For each m let x™ be chosen to minimize the auxiliary function

(m) — i
Fml(x) 12’2;12(‘4 ;%) s

By § 7, there isa subset {4%, ..., A™} of 2 having the property that the minimum of
F*(x) = max R (A%, x)

0=j=n
equals the minimum of F. Thus in the presence of the Haar condition, the
sequence xM, x® . is eventually stationary and gives the minimum point

for F. The algorithm therefore converges in a finite number of steps.

§21. Algorithm IV. Let 2 and A denote bounded subsets of E, and 4 and ¢
bounded real-valued functions on £ and A respectively. Define the closed convex
set K={x€E,: [B, x]=<c¢(B), all BEA}. Define the continuous convex function
F(x)=sup{R (4, x): A €Q}, where R(4, x)=[4, x] —b(4). It is desired to
obtain, if such exists, a point y of K inducing a minimum value of F. Assume,
in getting started, that finite sets £°C£ and A°CA are available for which
0Cint H(2°U A°). In this connection, see § 18. At the m'™ step there are given
two finite sets 27CQ and A”CA. Define F™(x)=sup{R(4, x): A€£2"} and
Km={x: [B, x]=c¢(B), all BEA™}. Select x™ to minimize F” on K™ In this
connection, see §23. Select A'€ 2 to maximize R (A4, x™) within a tolerance
of 1/m. Select B'€ A to maximize [B, x”] —c(B) within a tolerance of 1/m.
Begin anew with Q"*1=0"U{4'} and A" '=A"U{B'}.

§22. Theorem. If K is non-empty then algorithm IV is effective in the
sense that

(i) F™(x™) # p=int{F(x): x€K};

(i) the sequence {¥™: m=0, 1, 2, ...} possesses cluster points, each of which
lies in K and minimizes ¥ thereon.

Proof. We have finite sets 20 and A° fulfilling 0 €int H(W) where W=0Q0U A°.

Define ﬁ:lli[rllfl max [w, x]. If 90, then there exists an x°==0 such that
xll= wE

[w, x°]<0 for all w<W. Hence [w, 2°]<0 for all wE H(W). Since this is in-
compatible with the fact that 0 €int H(W), 9> 0.
Now assume K ==¢. Select v£ K and define M =9 *max [sup ¢(B), F(v)+
Be4

sup b(4)]. Let x be an arbitrary point satisfying ||x||> M. Select w®€ W such
Aca
that [w? x]= max [w, x]. If w°€Q° then FO(x)= [w® x] — b(w®) =|| x| ¢ —

supb(4) > F(v)=F°(v). On the other hand, if w®€A° then [w° x] —c(w®) =

)

|| x||# —sup ¢(B) >0, so that x ¢ K° This argument establishes that lenlf Fo(x)=
BeA x o

ilrllfll MFO(x), so that, due to the continuity of F°, the infimum on the left is
2 €K ||x]|=

attained. Thus x° exists. By the same argument, 1éllf( F(x)= eKi(rllf”SMF(x) =p< co.
The following inequality is obvious: F™(x™)= g}(fmF ”(x) g—e }g‘f+ 1F ml () =

Fril(xmtl) < p. Since FO (x™) <™ (x™) = p=F(v), and since x™ € K°, we know by
virtue of the preceding paragraph that || x”|| < M. Let y be any cluster point of
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the sequence x°, 1, x%, .... If for some m, yQK’” then select 6 >0 such that
[B™, y] —c(B™) > 0. Select i=m so that ||x'—y|<d/r where r= sup |]B||

Then [B", #] —¢(B") = [B", y] — ¢ (B") + [B", £ — y] > 0 || B||- | # || =
contradicting x* € K* C K™. Hence y ¢ N K™. Now define G (x) = sup [B, x] —c(B).

m=0

If y¢K, then put d=31G(y). Take m=1/0 so that |a™— y||<6 Then
G(y)<G(x")+O=[B', "] —c(B)+ | - TO<[B,y]—¢c(B)+38=36=0G(y),
a contradiction. Note that we use here the fact that y € K"+, Thus y € K.

It was shown earlier that F”(x™) is non-decreasing and bounded by 4. Thus

F™(x") # p—3 ¢ for some £ 20. If £ >0, select m =1/e so that ||y — 2™||<¢/2g,
where g= sup ||4||. Then F(x™)> F(y) —e=p — e. Take i >m so that ||y — x| <
A€

g/2q. Using R™*!(x)=[A4’, x] —b(A’), we have R™F!(x™) — R"+1(x}) =F(x™) —
L _Fi(¥)=F(") —e—p-+3e=e On the other hand, R"*+1(x") — R™*1(x})

=||4’]| - || #" — &']|<e, a contradiction. Hence e=0, establishing (i). As for
(ii), observe that every cluster point y of {x”} lies in K. Then as above,
P=F(y) SF(a™) + 0SSR (a™) +20 <R™(2') + 30 S F'(«) + 30 < p + 34,
Q.E.D.

§23. Algorithm V. Define F(x)= max Ri(x) and G(x) :krr\/lia<mei(x), where
Ri(x)=[A", x] —b; and 1<k<m. It is desired to obtain the minimum of F
on the domain K= {x € E,.: G (x) =0}, if such exists. It is assumed that {41, ..., 4"}
satisfies the Haar condition.

In each cycle of the algorithm, a set 7 {1, ..., m} is given such that

(1) o) =n+4+1

(i) 0€H{A*: i1}

(i) IN{1, ..., &} non-empty.

(See §18 for starting procedure.)

Obtain a point x and a number u such that

(iv) s€IN{1,...,k} >R (x) =

V) i€IN{k+1,...,m}=R(x)=0.

If G(x)=<0 and F(x)=u, then x is a solution.

If G(x)>0, select p€{k+1, ..., m} so that R?(x) > 0.

If G(x)<0 and F(x)>p, select p€{1, ..., k} so that R?(x)> u. In both the
latter cases, select g€ so that 0€ H{A": i€ 1I'} where I'=IU{p}—{g}. See
§ 10 in this connection. Begin the next cycle with I’ in place of I.

§ 24. Effectiveness of Algorithm V. Consider a set I satisfying (i), (ii), and
(iii). PutI={i,, ..., %,}, with {5, ..., 0} C{1,..., k}and {i;,,,...,3,} {k+1,...,m}.
We show first that the following matrix is non-singular.

A .. Ak 1

B_ Ay .. AY 1
Al LAY 0

A A0
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Suppose, on the contrary, that there exists a non-zero vector u= (uy, ..., %,
for which Bu=0. Then [A%, u*]=—u, , for 0=<p =<7 and [A%, u*]=0 for
j+1=p=mn, where u*=(u,,...,u,). If u, ;=0 then the Haar condition is

violated. If w,.,=0, then write, in accordance with (ii): 0= X 4,4% with
2.2,=1and 1,=0. By the Haar condition, 4,> 0. Thus 0= [0, #]= X2, [4", u],
a contradiction. Thus there is no difficulty in obtaining x and y satisfying (iv)
and (v).

We show now that if G (¥)=0 and F(x)=pu then x is a solution. If not then
there exists y such that F(y)<<p and G(y)=<0. Then the vector 2=y — x satis-
fies the inequalities

(A, z)<0 d€IN{1, ..., k}
dz2)=0 d€eIN{k+1,...,m},

and one obtains a contradiction as above. Hence x is a solution.

If G(x)>0 or F(x)> u then the algorithm specifies how to obtain a set I’
satisfying conditions (i) and (ii). We now show that I’ satisfies (iii) as well.
If not, then o(IN{1,...,k})=1 and k<<p=wm. Select y€ K. Then [4}, y]<},
for k<<i<m. Thus [A’, y —x]<0 for t€IN{k+1, ..., m} and [4?, y — x]<O0.
This contradicts property (ii) for I'. Thus there is no difficulty in obtaining
an x" and u’ satisfying

[4°, 2] — b, =u' ieI'N{1, ..., k}
[}, '] —b,=0 icel'0N{k+1, ..., m}.

By subtracting, we find
(AL % —x]=p'—p €INI'N{,... &}

[A}, ' —x]=0 teINI'N{k+1,...,m}
[A?, 8" — x]<u'—u when pe{1,..., k}
[A?, ' — x] <0 when pe{k+1,..., m}.

Since 0€ H{4*:1¢I'}, W' —u>0. Thus in proceeding from one cycle of the
algorithm to the next, the value of x increases. Since there are but a finite
number of sets I satisfying (i), the algorithm will terminate with a point x satisfy-
ing F(x)=u and G(x)=<0. This completes the proof. It may be observed that
if K is empty the algorithm will indicate this fact by the impossibility of comput-
ing x and u in some cycle.

§ 25. Algorithm VI. It is desired to obtain x* € E, minimizing the function
F(x)= max R*(x). This algorithm has the feature that at the k-th step, an
1si=m

upper bound 7, and a lower bound s, are provided for the unknown number
p =inf F(x); furthermore, 7, p and s, 7 p. The desirability of such a feature
was pointed out in [9].

Assume now that the Haar and normality conditions are fulfilled and that
F is bounded below. For any I C{1,..., m} define I} (x)= max R'(x). In each

computing cycle there will be given a point x€E, and a set I C {1, ..., m}, the
latter satisfying o (I)=#-1and 0 € H {4*: i € I'}. Define then J={j: R/ (x)=F(x)}.
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Select z to minimize Fy,;. If 2=z, then z is a solution. Otherwise proceed to
select an x” which will minimize F on the ray {x+#(z — x):¢=0}. Define I'=
{tcIUJ: R (z)=F;(2)}. Begin anew with x" and I'. See §18 for starting
procedure.

§ 26. Effectiveness of Algorithm VI. The proof will be given in six parts.

(1) The point x’ is well-defined because on the indicated ray, F is a polygonal
function which is bounded below and thus attains its minimum (§ 3C).

(2) If x==z then F(x')<F(x). To prove this, observe that for each 7€ ],
Ri(2) =F;_j(2) <Fy (%) =F(x), the strict inequality being due to the uniqueness
of z (a consequence of the Haar condition). Thus for small £>0, F(x+¢(z — 1)) <
F(x). Note that F(x) has then the properties claimed above for 7,.

(3) I’ satisfies the conditions laid down for I. To prove this, observe that
the system of inequalities [4*, d] <0, (1€ I') isinconsistent. Thus0€ H{4*:icI'}.
By the Haar condition, then, o (/') > n. By the normality condition, o (') <n-+1.

(4) If x=z then z is a solution. Indeed if x=2, then x minimizes F;_;. By
the uniqueness of 2, F;; is increasing in a neighborhood of z. Now F(x) =F;,;(x)
and F;;<F always. Thus F is increasing in a neighborhood of x, and x must
be a solution.

(5) If x"==2" then I (2") > I (2). To establish this, note first that minF,. <
min Fy.,;-=min k... If equality occurs here, then z=2" due to uniqueness of z. In
this event, x’=x"" because x, x’, z are colinear, as are x’, x”, 2/, so that the
minimum of F on the ray xz occurs with the minimum of F on the ray x'2"
Hence x'=2" as well. Note that F,(2) has therefore the properties claimed
above for s,.

(6) There are but a finite number of sets I in {1, ..., m}, and in each cycle
of the algorithm a new I occurs because of (5). Thus the algorithm terminates
at some cycle in which x =z, such a point being a solution, by (4). This concludes
the proof.

§ 27. Approximation in C(T'). Let 7 denote a compact metric space and
C(T) the linear space of all continuous real-valued functions defined on 7. For

any subset S of T define |S|= sup infd(s, ), and define a semi-norm in C(7T)
teT se€S
by writing ||f|ls = sup |/(s)|. Let M denote a given subset of C(7) and g a fixed
SES

element of C(7). The problem of approximating g by elements of M is to be
investigated. Specifically, given &> 0, it is desired to obtain by a simple algorithm
an f, € M fulfilling the condition

lfo—gllr—e<p=inf||/—gllr

Since in practice it is easier to compute the semi-norms || ||s instead of || ||,
it is advantageous that the following principle be valid.

(P) To each &> 0 there corresponds a 6 >0 such that p —e<||f,—gl[s=
lfo—g|lr<<p+ ¢ whenever |S|<d and ]|f0—g||5<6—f—/ienﬂil’ I1f—glls-

§28. Lemma. Let M designate a finite dimensional subspace of C(7’). There
exist two constants ¢>0 and Q>0 such that ||f||;=< (Q whenever |S|<g¢ and

It —glls=p+1.
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Proof. Let {f,, ..., [,} be a basis for M, and define for each ¢€ T" an n-tuple
At)=(f (), ..., }.(?)). Due to the independence of the f,’s, the set {A(f):¢€ T}
has a zero orthogonal complement in £, and thus contains a basis {4 (4,), ..., 4(,)}.
Hence the nXn determinant whose entries are 4,;=/;(f) is non-zero, and by
the continuity of the determinant function, there exist positive numbers ¢ and »
such that |detB;;|=7 whenever max | B;;—A4,;|=0. Select >0 so that

|£,(s) —/,()| =6 whenever d(s,t)<g. Assume |S|=¢q, ||/—¢g|[s=p+1, and

f=2x,f;. For each select s;€ S satisfying d(s;,?;)=q. Clearly |/(s;) —g(s;)| =
1

p+1. Thus | Xx,[(s)|<p+1+]|gllr=c. Since d(s;,t;)=q, |1,(s;) —1.¢)| =6,
and |det/,(s,)|=7. By CRAMER's Rule, each |x,| has an upper bound d=
cn! r1(d+max |4;,[)" Y, whence |[f||r=2|%] - |Lllr=dX]||fllr= 0.

§29. Theorem. Principle (P) is valid under either of the two following
conditions:

(1) M is an equicontinuous subset of C(T);
(ii) M is a subset of a finite dimensional subspace of C(T).

Proofs. (i) Given &> 0, take d<< ¢/3 such that |/ (s) —f(¢)] <¢/3 and | g (s)—g (¢)|
< ¢/3 whenever f€ Mand d (s,#) < d. Suppose|S| < dand||f, —glls<d+ ir}fl]f—glls.

Select t&T so that |fy(t) —g(t)|=|fo—g|lr- Select s€S so that d(s,t)<<o.
Then p < ||fo—gllr=I[/o(&) =g O|=[Fo(&) — o ()| + |fo(s) —g ()| +]g(s) —g ()] =
e3+|fo—glls+eB<etint|/—gls=e+p. Thusp—e<p—2¢3=|lfo—glls=
lfo—gllr<et+2.

(ii) By the Lemma, if §<<min(1, ¢), | S| =9, and ||f0~g||s§6+/iélﬂfl I —ells,

then ||fo||r= Q. Thus the approximating functions are taken from a bounded
subset of a finite-dimensional subspace of C(7'), which is therefore equicontinuous.
Hence (ii) reduces to (i).

§30. Examples. A. Let 7=[0, 1] and let M consist of all functions on T
having a first-derivative bounded in modulus by a constant 2. Then M is equi-
continuous since |/(s) —/({#)|=|/(v)| - |s—¢|=k|s—¢|. This M is infinite di-
mensional, containing the independent set {¢*: 0= a=} logk}.

B. Now let U denote an arbitrary (non-topological) set and B (U) the Banach
space of all bounded real-valued functions on U, normed by ||¢|= sup | @ ()|.

uelU

Let N designate a finite dimensional subspace of B(U) spanned by {¢,, ..., ¢,}.
Let ¢ denote any fixed element of B(U). We seek ¢* € N such that ||g* — & <
|lp —#|| for all ¢ €N. This problem may be treated by Algorithm I after re-
casting the problem as follows. For each u ¢ U, define an n-tuple 4*= (¢, (4), ...,
@ (u)). We then seek x* € E, which minimizes the function F(x) = sup |[A“, x]—
& (u)]. wel

It is also possible to recast the problem into the form of § 27. Define B*=
(pr(u), ..., @, (u), 9 (u)) and denote by T the closure of the set {B*: w¢ U} in
E,.1. On E,_; define the functions f;(y) =1-th component of y, 1=i=<n-+1.
Clearly T is compact and f; € C(T). It turns out that for each x € E,,, || X x,9,— ¥y
=|| 2 #,f; —fiillr- Thus by §29, Principle (P) is valid.
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