

Werk

Titel: On a Formulation of Discrete, N-Person Non Cooperative Games.

Autor: Edlefsen, L.E.; Millham, C.B.

Jahr: 1972

PURL: https://resolver.sub.uni-goettingen.de/purl?358794056_0018|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

On a Formulation of Discrete, N-Person Non-Cooperative Games

by L. E. EDLEFSEN and C. B. MILLHAM, Washington¹)

Abstract: We present a method of formulating n-person non-cooperative games and a means of finding their equilibrium points.

Introduction

An *n*-person game is defined by *n* pure strategy index sets $T_k = \{i | i = 1, \dots, m_k\}$, $k = 1, \dots, n$, together with *n* real-valued payoff functions $M_k(x^1, x^2, \dots, x^n)$ defined on $\prod_{i=1}^n X^i$, where X^i is the set of all m_i -dimensional probability vectors $x^i \cdot x^i_j$ gives the probability with which player P_i plays his pure strategy *j*. A set of vectors $(\bar{x}^1, \dots, \bar{x}^k, \dots, \bar{x}^n)$ is called an equilibrium if $M_k(\bar{x}^1, \dots, \bar{x}^k, \dots, \bar{x}^n) \geq M_k(\bar{x}^1, \dots, x^k, \dots, \bar{x}^n)$ for all k.

Let $D^k = \prod_{i \neq k} T_i$ be the cartesian product of the pure strategy index sets T_i , $i \neq k$, so that the cardinality of D^k is $\prod_{i \neq k} m_i = r_k$. Let $S_k = \{i \mid i = 1 \cdots r_k\}$ index the points in D^k , and, for $k = 1, \dots, n$, let A^k be the $m_k \times r_k$ matrix (a_{ij}) , where $a_{ij} = M_k(i_k, d^k_j) = M_k(i_1, \dots, i_{k-1}, i_k, i_{k+1}, \dots, i_n)$, $i_k \in T_k$. Thus the rows of A^k are indexed by T_k and the columns by S_k .

Let Y^k be that r_k -dimensional vector whose jth element Y^k_j is given by $\prod_{i \neq k} x^i_{p_i}$, where p_i is the index from T_i in d^k_j . (Alternately, one can define, for 2 vectors, the product $x^i \star x^j = (x^i_1 \ x^j_1, \ x^i_2 \ x^j_1, \cdots, \ x^i_{n_i} \ x^j_1, \ x^i_1 \ x^j_2, \cdots, \ x^i_{n_i} \ x^j_2, \cdots, \ x^i_1 \ x^j_{m_j}, \cdots, \ x^i_{m_i} \ x^j_{m_j})$, then define $Y^k = (x^1 \star x^2 \star \cdots x^{k-1} \star x^{k+1} \cdots \star x^n)$. It is easy to see that $M_k(x^1, \cdots x^n) = x^k \ A^k \ Y^k$ and that Y^k is a probability vector. The game is thus formulated in a fashion analogous to the usual formulation of two person games, and each player views" the game as being played against the aggregate of all other players.

¹⁾ L. E. EDLEFSEN and C. B. MILLHAM, Washington State University, Department of Mathematics Pullman, Washington 99/63, U.S.A.

Let $T_k', k=1, \cdots n$, be subsets of T_k , and let $X^{k^*}=\{x\in X^k|x_i=0\quad i\in T_k-T_k'=\overline{T}_k'\}$. Given $x^{i^*}\in X^{i^*}, i=1, \cdots n$, let Y^k be the vector thus defined and let $S_k'=\{p\in s_k|Y_p^k>0\}$. If $T_k'=\{i|x_k^i>0\}$, define the deletion, $x^{k'}$, of x^k under T_k' as follows: Let $x^k=(x_1^k,\cdots x_{m_k}^k)$ and $I(x^k)=\{i\in T_k|x_k^i>0\}$. Let $m_k'=\mathrm{card}\ I(x^k)$ and index $I(x^k)$ by $j,j=1,\cdots m_k'$. Then $x^k'=(x_{i_1}^k,x_{i_2}^k,\cdots x_{i_{m'k}}^k)$, where $i_j< i_{j+1},j=1,\cdots m_{k-1}'$. Let x^k be the extension of $x^{k'}$, and define the deletion and extension of Y^k and $Y^{k'}$ in the same manner.

Let A_i^k and A_i^k represent, respectively, the ith row and jth column of A^k , and let A^{kt} be the $m_k \times r_k$ matrix, each of whose rows is A_t^k , for any $t \in T_k$. Finally, let U represent the set of all equilibrium points of the game.

Theorem I: $(\bar{x}_1^1 \cdots \bar{x}_n^n) \in U$ if and only if $\bar{x}^k A^k \bar{Y}^k \ge A_i^k \bar{Y}^k$ for all k.

Proof: This follows directly from the formulation above and from the fact that $\sum x_i^k = 1$.

Theorem II: Given any collection of the subsets $T'_1 \cdots T'_n$ of the T_k , $k = 1, \dots n$, and the resulting subsets $S'_1 \cdots S'_n$, let $B^1 \cdots B^n$ be the submatrices of $A^1, \cdots A^n$ indexed by the $T'_1, \cdots T'_n$ and $S'_1 \cdots S'_n$. Let $t^k \in T'_k$, $k \in \{i | i = 1 \cdots n\}$, and consider the system of equalities and inequalities given by:

$$1) \left(B^{kt} - B^k \right) \, \bar{Y}^{k'} = 0$$

$$2) (A^{kt} - A^k) Y^k \ge 0$$

where $Y^{k'}$ is the deletion of Y^k , Y^k a probability vector. If $(\bar{x}, \dots, \bar{x}^n)$ solves 1) and 2) for all k, then $(\bar{x}, \dots, \bar{x}^n) \in U$.

Proof: Let $\overline{Y}^{k'}$ be a solution of $(B^{kt} - B^k) Y^{k'} = 0$.

Then B_j^k . $\bar{Y}^{k'} = B_i^k$. $\bar{Y}^{k'}$ for all $i, j \in T_k'$, so that

$$A_{i}^{k} \ \bar{Y}^{k} = A_{i}^{k} \ \bar{Y}^{k} \text{ for all } i, j \in T_{k}^{\prime}.$$

Also, if \bar{Y}^k is a solution of $(A^{kt} - A^k)$ $Y^k \ge 0$, then

$$A_i^k$$
 $\bar{Y}^k \ge A_i^k$ \bar{Y}^k for all $i \in T_k$. (2)

Since \bar{x}^k is the extension of $\bar{x}^{k'}$ under T_k , we have

$$\bar{x}_k = 0$$
 for all $i \in \bar{T}'_k$;

now

$$\begin{split} \bar{\boldsymbol{x}}^k \; \boldsymbol{A}^k \; \; \bar{\boldsymbol{Y}}^k &= \sum_{i \in T_k} \; \bar{\boldsymbol{x}}^k_i \; \boldsymbol{A}^k_{i \cdot} \; \bar{\boldsymbol{Y}}^k \\ &+ \sum_{i \in T_k} \; \bar{\boldsymbol{x}}^k_i \; \boldsymbol{A}^k_{i \cdot} \; \bar{\boldsymbol{Y}}^k \\ &= \sum_{i \in T_k} \; \bar{\boldsymbol{x}}^k_i \; \boldsymbol{A}^k_i \; \bar{\boldsymbol{Y}}^k \end{split}$$

but since $\sum_{i \in T_k} \bar{x}_i^k = 1$ and from (1) and (2),

$$\bar{x}^k A^k \bar{Y}^k = A_{i:}^k \bar{Y}^k \ge A_{i:}^k \bar{Y}, \quad i \in T_k, \quad j \in T_k,$$

or \bar{x} A^k $\bar{Y}^k \ge A_i^k$. \bar{Y}^k for all $i \in T_k$ and for all k. The conclusion follows from Theorem I. Lemma 1: If $(\bar{x}_1^1, \dots, \bar{x}_n^n) \in U$ then $\bar{x}_i^k = 0$ for all i such that

$$\bar{X}^k A^k \bar{Y}^k > A_i^k \bar{Y}^k$$
.

Proof: Assume $\bar{x}_i^k \neq 0$ and \bar{x}^k A^k $\bar{Y}^k > A_{i\cdot}^k$ \bar{Y}^k for $i \in T_k'$. As before, let \bar{T}_k' be the complement of T_k' in T_k . Then

$$\bar{x}^k A^k \bar{Y}^k = \sum_{i \in T_k} \bar{x}_i A_i^k \bar{Y}^k + \sum_{i \in T_k} \bar{x}_i A_i^k \bar{Y}^k.$$

However, if

 $i \notin T'_k$ (i. e. $i \in \overline{T}'_k$) then either $\overline{x}_i^k = 0$ or $\overline{x}^k A^k \overline{Y}^k = A_i^k \overline{Y}^k$, so

$$\begin{split} \bar{x}^{k} \ A^{k} \ \bar{Y}^{k} &= \sum_{i \in T_{k}} \bar{x}_{i} \ A_{i}^{k} \ \bar{Y}^{k} + \sum_{i \in \overline{T}_{k}} \bar{x}_{i}^{k} (\bar{x}^{k} \ A^{k} \ \bar{Y}^{k}) \\ &= \sum_{i \in T_{k}} \bar{x}_{i}^{k} \ A_{i}^{k} \ \bar{Y}^{k} + \left[1 - \sum_{i \in T_{k}} \bar{x}_{i}^{k}\right] \bar{x}^{k} \ A^{k} \ \bar{Y}^{k} \end{split}$$

so

$$\sum_{i \in T_k} \bar{x}_i^k \ A_i^k \cdot \ \bar{Y}^k = \sum_{i \in T_k} \bar{x}_i^k \ (\bar{x}^k \ A^k \ \bar{Y}^k).$$

But from the definition of T'_k , this cannot hold unless T'_k is empty; thus proving the lemma for all k.

Lemma 2: If $(\bar{x}^1 \cdots \bar{x}^n) \in U$ then for all $i, j \in T'_k = \{i \mid \bar{x}^k_i > 0\}$,

$$A_{i}^{k}$$
. $\bar{Y}^{k} = A_{j}^{k}$. $\bar{Y}^{k} \ge A_{r}^{k}$. \bar{Y}^{k} for all $r \in \bar{T}_{k}^{\prime}$.

$$\begin{split} Proof \colon \bar{x}^k \; A^k \; \bar{Y}^k &= \sum_{i \in T_k} \bar{x}_i^k \; A_{i^*}^k \; \bar{Y}^k + \sum_{i \in T_k} \bar{x}_i^k \; A_{i^*}^k \; \bar{Y}^k, \\ &= \sum_{i \in T_k} \bar{x}_i^k \; A_{i^*}^k \; \bar{Y}^k \end{split}$$

so that Lemma 1 gives

$$\bar{X}^k A^k \bar{Y}^k = A^k_i, \bar{Y}^k \quad i \in T'_k$$

and

$$A_{i\cdot}^k \ \overline{Y}^k = A_{j\cdot}^k \ \overline{Y}^k \quad i, j \in T_k';$$

since

$$(\bar{x}^1,\cdots\bar{x}^n)\in U,$$

$$\bar{X}^k A^k \bar{Y}^k \geq A_r^k \bar{Y}^k \quad r \in \bar{T}_k'$$

thus proving the lemma.

Theorem III: If $(\bar{x}^1, \dots \bar{x}^n) \in U$ there exist subsets $T'_1, \dots T'_n$ and resulting submatrices $B^1, \dots B^n$ for which $\bar{x}^1, \dots \bar{x}^m$ yield the solution to the sets of equalities (1) and inequalities (2) defined in Theorem II.

Proof: Choose index sets $T'_1, \dots T'_n$ such that $T'_k = \{i | \bar{x}_i^k > 0\}$, and derive $S'_1, \dots S'_n$ and $B^1, \dots B^n$. From Lemma 2:

$$A_{i}^{k}$$
, $\bar{Y}^{k} = A_{i}^{k}$, $\bar{Y}^{k} \geq A_{r}^{k}$, \bar{Y}^{k} for all $i \in T_{k}'$, $j \in T_{k}'$, $r \in \bar{T}_{k}'$.

Let $\bar{Y}^{k'}$ be the deletion of \bar{Y}^{k} . Choose any $t^{k} \in T'_{k}$. Then

$$B_i^k$$
, $\bar{Y}^{k'} = B_i^k$, $\bar{Y}^{k'}$ $i \in T_k'$

and

$$A_{i\cdot}^k \ \bar{Y}^k \geqq A_{i\cdot}^k \ \bar{Y}^k \quad i \in T_k,$$

or

$$(B^{kt} - B^k) \ \bar{Y}^{k'} = 0 \text{ for all } k$$

and

$$(A^{kt} - A^k) \ \bar{Y}^k \ge 0 \text{ for all } k.$$

Thus the $T'_1, \dots T'_n$ that were chosen produce the equalities and inequalities for which $(\bar{x}^1, \dots \bar{x}^n)$ yield solutions, and the theorem is proved.

Theorems II and III together show that we can find all equilibrium points of an *n*-person game by solving the appropriate equalities and inequalities for all possible subsets T'_k .

Given any m_k -probability vector x^k let, as before, $T'_k = \{i \mid x_i^k > 0\}$. Also let $Q(x^k)$ be the set of all m_k -probability vectors with the same index sets T'_k as x^k .

Theorem IV: If $(\bar{x}^1, \dots \bar{x}^n) \in U$ and $x^k \in Q(\bar{x}^k)$ then

$$x^k A^k \bar{Y}^k = \bar{x}^k A^k \bar{Y}^k$$
 for all k .

Proof: From Lemma 2, if $(\bar{x}^1, \dots \bar{x}^n) \in U$ then $A_{i\cdot}^k$ $\bar{Y}^k = A_{j\cdot}^k$ $\bar{Y}^k \ge A_{r\cdot}^k$ for all $i \in T_k', j \in T_k'$, If $x^k \in Q(\bar{x}^k)$ then

$$x^{k} A^{k} \bar{Y}^{k} = \sum_{i \in T_{k}} x_{i}^{k} A_{i}^{k} \bar{Y}^{k} + \sum_{r \in \overline{T}_{k}} x_{r}^{k} A_{r}^{k} \bar{Y}^{k}$$
$$= \sum_{i \in T_{k}} x_{i}^{k} A_{i}^{k} \bar{Y}^{k}.$$

But, from Lemma 1, A_{i}^{k} , $\bar{Y}^{k} = \bar{x}^{k}$, A^{k} , \bar{Y}^{k} , $i \in T_{k}$, therefore

$$x^k A^k \bar{Y}^k = \bar{x}^k A^k \bar{Y}^k$$
 for all k

and the theorem has been proved.

References

Kuhn, H. W.: An Algorithm for Equilibrium Points in Bimatrix Games. Proc. N.A.S., Vol. 47, pp. 1656-1662, 1961.

MILLS, H.: Equilibrium Points in Finite Games. J. Soc. Indust. Appl. Math. Vol. 8, pp. 397-402, 1960. MANGASARIAN, O. L.: Equilibrium Points of Bimatrix Games. J. Soc. Indust. Appl. Math. 12, pp. 778-780, 1964.