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On a Formulation of Discrete, N-Person
Non-Cooperative Games

by L. E. EDLEFSEN and C. B. MiLLHAM, Washington?)

Abstract: We present a method of formulating #n-person non-cooperative games and a means of finding
their equilibrium points.

Introduction

An n-person game is defined by n pure strategy index sets Ty = {i|i=1,---, m;},
k=1,---, n, together with n real-valued payoff functions M, (x! x2---, x") defined on

[T X', where X' is the set of all m;-dimensional probability vectors x - x! gives
i=1
the probability with which player P; plays his pure strategy j. A set of vectors
(x!...,x*... %" is called an equilibrium if M, (x!..., ¥ .. > M, (x!...,
xk ..., x" for all k.

Let D* =TT T; be the cartesian product of the pure strategy index sets T}, i + k,

i¥k
so that the cardinality of D* is [ m; =r,. Let S,={ili=1---r,} index the points
i*k

in D% and, for k=1,--- n, let A* be the m, x r, matrix (a;;), where a;;= M, (i, d¥) =
=M, (iy,-ic_ 15 ik Ix+ 1" in), ix € Ty Thus the rows of 4* are indexed by T} and
the columns by S,.

Let Y* be that ri-dimensional vector whose jth element Y} is given by [ x},, where

i*k

p; is the index from T; in df.. (Alternately, one can define, for 2 vectors, the product
Xt xd = xd, xb x{,-ee, xh, o, X4 e, xh Xy eee, XY X,eee, Xh, xh,), then
define Y*=(x! % x? % ---x* "1 % x**1... % x"). It is easy to see that M, (x"-- x")
=x* A4* Y* and that Y* is a probability vector. The game is thus formulated in a
fashion analogous to the usual formulation of two person games, and each player
,views" the game as being played against the aggregate of all other players.
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Let Ty, k=1,---n,besubsets of Ty, and let X** = {x e X*|x;=0 ie T,—T;= T}.
Given x”" € X”,i=1,---n,let Y* be the vector thus defined and let S}, = {pe 5| Y5 >0}.

If Ty = {i|x¥ >0}, define the deletion, x*, of x* under Ty as follows: Let x*=
(%, -~ xk.) and I(x*)={ie T;|xf>0}. Let m;=card I(x*) and index I(x*) by
J»j=1,---m. Then x* = (xf, xk,---x§ ,).where i;<i;,, j=1,---mj_,. Let x* be
the extension of x¥, and define the deletion and extension of Y* and Y* in the same
manner.

Let Af. and A*; represent, respectively, the ith row and jth column of 4%, and
let A*¥ be the m, x r, matrix, each of whose rows is 4%, for any t € T,. Finally, let
U represent the set of all equilibrium points of the game.

Theorem I: (x!---x")e U if and only if ¥ A* Y*> 4% Y* for all k.
_Proof: This follows directly from the formulation above and from the fact that

T X=1.

Theorem II: Given any collection of the subsets T --- T, of the T}, k=1,---n,
and the resulting subsets S;---S,, let B'-.- B" be the submatrices of A4'---A"
indexed by the T}, --- T,and S;---S,. Let t* € T}, k € {i|i=1---n}, and consider the
system of equalities and inequalities given by:

1) (B —-B* Y¥=0

(A —AH Y =0
where Y* is the deletion of Y*, Y* a probability vector. If (x--- X") solves 1) and 2)
for all k, then (x!---x") e U.

Proof: Let Y* be a solution of (B¥ —B¥) Y* =0.
Then B%. Y* =Bt Y* for all i, j € Ty, so that

Al Yi=A% Y foralli,je Ty (1)
Also, if Y* is a solution of (4 — 4%) Y*>0, then

Ak Y* 2 Ak Yrforallie T, )
Since x* is the extension of x* under T}, we have

x=0forallie T;;
now
PLD (I - A L
€T
+ X xFALY*
ieTk
=T BAT

ieTk

but since 3° x¥=1 and from (1) and (2),

ieTxk
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ATV =AY 245 Y, ieTy, jeT,

orx A* Y*> A% Y*forallie T, and for all k. The conclusion follows from Theorem I.
Lemma 1: If (x!---x") e U then x¥=0 for all i such that

R 4% TE> Ak T

Proof: Assume X¥+ 0 and x* A* Y*> A% Y* for i e Tj. As before, let T; be the
complement of Ty in T,. Then
AT =Y 5 AT+ T kA TR

. ieTk ieTi
However, if

i¢ Ty (i.e.ie T;) then either ¥ =0 or x* A* Y*= A% Y* so
AT = T % AT+ Y (R AT
ieTi ieTk

= Y R AT A[1— T ] & AT
ieTk ieTk

SO

3 xk Ak V=3 xk(xk 4% Y.

ieTk ieTk
But from the definition of T}, this cannot hold unless T}, is empty; thus proving the
lemma for all .

Lemma 2: If (x!---x") e U then for all i, j e T} = {i|x* >0},
AL V=A% Yz AL Yeforallre T,
Proof: ¥ A* Y= 3 xk 4k Y+ ¥ xb AL YX
€Tk ieTi

= 3 gk 4k T

ieTk
so that Lemma 1 gives
A=A P ieT]
and

since (xt--xmeU,
BAPLE T reT;

thus proving the lemma.
Theorem II: If (x!,---%") € U there exist subsets T{,--- T, and resulting sub-
matrices B!, --- B" for which x,--- X" yield the solution to the sets of equalities (1)
and inequalities (2) defined in Theorem II.

Proof : Choose index sets T}, --- T, such that Ty = {i|x} >0}, and derive S {,---S,,
and B!,.--B". From Lemma 2:
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AL V=A% Y 2 Ak Y+forallie Ty, je T, re T,.
Let Y be the deletion of Y*. Choose any t* € T;. Then
BEY¥=BL Y ieT

and

A T > AL 75 ieT,
or

(B¥ — B Y¥ = 0 for all k
and

(A — A% Y* = 0 for all k.

Thus the T7i,--- T, that were chosen produce the equalities and inequalities for
which (x!,--- x") yield solutions, and the theorem is proved.

Theorems II and III together show that we can find all equilibrium points of
an n-person game by solving the appropriate equalities and inequalities for all
possible subsets Tj.

Given any m,-probability vector x* let, as before, T} = {i|x} > 0}. Also let Q(x*)
be the set of all m,-probability vectors with the same index sets Ty, as x*.
Theorem IV: If (x!,---X") € U and x* € Q (x*) then

xk A*¥ Yk=x* A* Y* for all k.
Proof: From Lemma 2, if (x',--%") € U then A} Y*=A} Y*> A} Y* for all
ieT,je T;,reT;. If X Q(x*) then
XA =3 xt Ak T4+ 3 Xk Ak T*

ieTk reTk
_ v AT

ieTt
But, from Lemma 1, 4% Y*=x* 4* Y* i e T}, therefore
x* 4% Y =x* A* Y* for all k

and the theorem has been proved.
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