/_L'A 7ot

Werk

Titel: On the Uniqueness of Scales Derived from Canonical Representations
Autor: DJOKOVIC, D.Z.; Aczél, J.; Pfanzagl, J.

Jahr: 1970

PURL: https://resolver.sub.uni-goettingen.de/purl?358794056_0016 | log5

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

On the Uniqueness of Scales Derived from
Canonical Representations

By J. AczeL, D. Z. Djokovi¢ and J. PFANZAGL!)

In PFANZAGL [1968] a general theory of deriving scales from canonical repre-
sentations was developed. In this paper we shall solve some mathematical
questions connected with the uniqueness of these scales. To illustrate the scaling
problem in question, let us consider the example of mental tests. Let A be a set
of dichotomous items, B a set of subjects. As usual, we assume that item a€ 4
will be solved by subject b € B with probability P(a,b). It seems an admissible
idealisation to assume that for all pairs a,b we have 0 < P(a,b) < 1.

If P(a’,b) = P(a",b) for all be B, we may consider a’ and a” as equivalent.
Similarly, if P(a,b’) = P(a,b”) for all ae A, we may consider b’ and b” as equiv-
alent. This divides the sets A4 and B into equivalence classes. Subjects in the same
equivalence class are of equal intelligence, items in the same equivalence class of
equal difficulty. We can suppose the function P being defined on these equiv-
alence classes or restrict the sets 4 and B to sets A’ and B', respectively, which
contain just one element from each equivalence class.

The interpretation of b as the intelligence of the subject suggests to assume
that for any pair b',b" € B, b’ #+ b” we either have

P(a,b’) < P(a,b”) forall aeAd’
or P(a,b) > P(a,b") forall acA’.
If condition (1) is fulfilled we may define a natural ordering in B’ by
b <b” iff P(a,b) <P(a,b”) forall aeAd.

With this ordering, the function P is strictly increasing in its second variable.
We remark that the dual condition, that for any pair a', a"€ 4, a’ #+ a”, we
either have

(1)

P(a',b) < P(a",b) forall beB
or P(d,b) > P(a’,b) forall beB,
will be a reasonable idealization of reality only under special circumstances.

)
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We shall assume that to each intellegence level there corresponds a unique
level of difficulty, which is characterized by the fact that a task ‘of this level of
difficulty is solved and not solved with equal probability. This correspondence
may be formally defined by:

To each b € B’ there exists a uniquely determined
ae A’ such that P(a,b) = 1/2.

(Despite the intuitive interpretation which the value 1/2 gives to this corre-
spondence, any other constant between 0 and 1 could be used as well.)
If in addition:

)

For every a € A’ there exists exactly one b € B’ such that
P(a,b) = 1/2,

then the order in B’ induces an order in A’ in a natural way:
a<a iff P(,b)=P@,b')=12 and b <b". (5)

If condition (2) is fulfilled, then the order in A’ given by (5) is the same as the
order defined by:

a <a iff P(a,b)> P(a",b) forall beB'.

In the simplest canonical representation it is assumed that each difficulty level
ae A’ can be expressed by a real number m(a), each intelligence level b e B’ by
a real number n(b) such that P(a,b) is uniquely determined by m(a) and n(b)
and m(a), n(b) are strictly increasing. One of the common assumptions is that

P(a,b) = F(n(b)—m(a)). (6)

It will be true only in special cases that the dependence of P on a is expressible
by a single scale m. In general, each item has its own “dispersion” and P(a,b) is
not uniquely determined by m(a) and n(b). In the following we shall assume that
the dispersion of each item is expressible by a positive number, say k(a), and that
P(a,b) is uniquely determined by m(a), k(a) and n(b). One of the current psycho-
metric models assumes that m, k and »n can be chosen such that

n(b)—m(a)
W) ™
The function F in (6) and (7) is strictly increasing since n is strictly increasing
with respect to the order (1).

In both representations the scales m and n can be subject to arbitrary shifts.
On account of assumption (3) it is natural to assume (and we may do this without
loss of generality) that the scales for intelligence and difficulty are tied together
by the requirement that m(a) = n(b) iff P(a,b) = 1/2 (i.e., that intelligence level
and corresponding difficulty level have the same scale value). This standardization
implies that for both representations (6) and (7)

F(0)=1/2.

(4)

P(a,b) = F(
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The concern of this paper is the question to what extent the scales m and n
are uniquely determined, supposing that representations (6) and/or (7) exist (The
reader interested in sufficient conditions for the existence of a representation (6)
is referred to PFANZAGL [1968]). The uniqueness-problem will be solved here
under the assumption that the ranges of m and n are intervals, which are then
identical on account of (3) and (4). In the sequel we denote this interval by {C,D>.
It may be closed, open, half-open, finite or infinite. The problem of uniqueness
assertions under less restrictive assumptions (e. g. that the range of m is an interval,
and that B and hence the range of n is a discrete set) which is of great importance
for possible applications will not be considered here. We mention however that
the method of the paper DAROCZY, GYORY [1966] could be applied to this prob-
lem.

We shall consider the following three cases:

(i) There exist two representations (6),

(ii) There exists a representation (6) and a representation (7).

(iii) There exist two representations (7).

In the cases (i) and (ii) we shall suppose only strict monotony of m and of n,
an assumption which is quite natural. It remains an open problem to give uni-
queness assertions under these conditions also in the case (iii). We succeeded,
however, in solving this problem under additional weak differentiability con-
ditions.

(i) We have to solve the functional equation

F(n(b)—m(a)) = F*(n*(b)—m*(a), F(0) = F*(0)=1/2. ®)

As the ranges of m and n are both {C, D), strict monotony of m and n implies
that to every pair of real numbers y,ze {C,D) there exists exactly one pair
ae A, be B such that y = m(a), z = n(b), i.e, b = n~(z), a = m~1(y).

We introduce new functions u,v,® by

v=n*n"', &®=F*'F, )

The above conditions on m and n imply that u and v are strictly increasing,
continuous functions. Our equation (8) becomes

u=m*m!,

®(z—y) =v(z)—uy), @0 =0, y,zelC,D). (10)
If we put y = z we get u(z) = v(z) and (10) takes the form
‘P(z—)’) = U(Z)—U(Y), Y»Z€<C,D>- (11)

From (11) we deduce
U(Z)—U(y '; Z) — ¢<Z;y> - v(y ;’ Z)_v(y),

v(y + z) - %[u(z) + ()], y,ze{C,D). (12)

ie.,

2
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Since v is continuous and strictly increasing, (12) implies [AczeL, pp. 44 —45]
that v(z) = az + f = u(z) where «, 8 are constants and « > 0.
Hence, we have proved the following:

Theorem 1

Let m and n be strictly increasing functions defined on 4" and B’, respectively,
having the same real interval as range. Let m* and n* be another such pair of
functions. If these functions satisfy (8) with F and F* strictly increasing, then

m*(a) = am(a) + B,
n*(b) = an(b) + B,

t
* = —_—
Fr® =F(=),

where o and f are appropriate constants.

(13)

(i) In this case we have to solve the functional equation

n* (b) —m*(a)

F(n(b)—m(a)) = F*( ), F(0) = F*(0) = 1/2. (14)

k*(a)
We introduce again u,v,® by (9) and g by
g=k*m™!'. (15)
The equation (14) is transformed into
d>(z—y)=—”%?y‘)‘—(y), ®(0)=0, y,ze{C,D). (16)

This equation implies that @ and g are continuous. Of course, we consider @
as being defined only in the interval {x|x = z—y, y,z€ {(C,D)}. Similar remarks
apply to F and F*. Putting y = z we get again u(z) = v(z) and

v(z)—v(y) = 2(z—y)g(y), y,ze<C,D).
By interchange of y and z we get
v(Y)—v(z) = P(y—2)9(z), ,ze{C,D).
Adding the last two equations we get
P(z—y)g(y) + 2(y—2)9(z2) =0, y,ze{C,D).

Defining
he-3) = Googs y#7, 32e(C.D)
we obtain
g(z) = g)h(z—y). 17

From (17) we deduce
g h(u—y) = gu) = g(2)h(u—z) = g(y)h(z—y)h(u—z).
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Since g(y) # 0 we infer that
h(u—y)=h(u—z)h(z—y), u#z#ys#u, uyzel{C,D).
The only continuous solution of this functional equation is (cf. AczkeL, pp. 37— 39)
h(z-—y) = Pz

where f is a constant. Now (17) implies that g(z) = de’* where 6 is a positive
constant. The equation (16) leads to

v(z)—v(y) = 6P(z—y)e”, y,ze{C,D).

This equation implies

%6_” [U (HTy)—v(y)] = 45(—2%)}—) = %e~ﬂ%l|:v(z)—v<—z ; y)]’

ie.,

y,ze{C,D}. (18)

v(z + y) _ v(z)e—gz_ + v(y)ezgzx
= — T
2 e—ﬂf +e 2
If = 0 then g = constant and we have essentially case (i). Let f # 0. One can
easily verify that v(z) = «e?* + y is a solution of (18) for arbitrary constants «
and y. By AczeL [1964] there are no other continuous solutions. From (16) we
get @(x) = $(ef*—1).
Hence, we obtain:

Theorem 2

Let m and n be strictly increasing functions defined on A’ and B’, respectively,
having the same real interval as range. Let m* and n* be another such pair of
functions. Let k* be a positive function defined on A'. Assume that these functions
satisfy (14) where F and F* are real-valued strictly increasing functions. If k*
reduces to a constant then the solution of (14) can be obtained from Theorem 1.
If k* does not reduce to a constant then we have

m*(a) = aef™@ +y,
n*(b) = aef"® 4 y,
k*(a) = 6ef™@,

F*(t) = F(%log(l + -(—S&t—)>,

with appropriate constants «, i, y, d.

(i1i) Here we have to solve the functional equation

n®)=m@)\ _ o (1*)—m*(a) e
F( k(a) >—F<———k*(a) ) F(0)=F*0)=1/2. (20)
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We introduce again u, v, @, g by (9) and (15) and also f by
f=km . 1)

The equation (20) is transformed into

@ (z_y> ~2@-4l) - pg)=0, yze<C,Dy.

f gy
Once more, u(z) = v(z) follows by putting y = z. So we have
@ ( ;{5) - "(z;?y‘)’(y) ., y,z€{C,D). (22)

Since v is strictly increasing it has a finite derivative almost everywhere. We
shall prove that v and @ are differentiable everywhere in corresponding intervals.
Let & be an interior point of {C,D) such that v is differentiable at &. Put y = ¢

in (22):
¢<Z—é)= U(Z)-U(é) . (23)

f©) g9(9)

The right hand side in (23) is differentiable as a function of z at z = £. Hence,
the left hand side is also differentiable at z = £. This means that @'(0) exists and
is finite. Let now n € {C,D) be arbitrary. Replace y by 5 in (22):
z=n _ v(@)—v()
? ( f () ) gm 49
Now, the left hand side in (24) is differentiable at z = . We deduce that the right
hand side, i.e. v, is differentiable at z = . Hence, v is differentiable in {C,D).
The equation (22) implies that also @ is differentiable in the interval where it is
defined.
Concerning f and g we suppose that they are positive and differentiable in
{C,D).
Let us differentiate (22) with respect to z and y:

(z=y\ 1 _ v
? (f(y))f(y) =90)" 23)
,p,(z—y)f(y =3 1'0) _ vY0)g0) + ©@)—v0)g )
1) f ) g(y)* '

By eliminating @’ we get
Y@L + =0 01 - L [ 0)g0) + 0@ -r0)g ()] = 0.

We can write this as follows [AczEL 1961]

, ') S0 g g0 _ o=
v(z)[l—yf(y)]+zv<z>f() ~og L2 [(y) L v(y)] 0. (9
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Consider the vectors

{v'(2),z0'(2), —v(2),1}, ze{(C,D), 27)
(i L0 020 ) s

The vectors (27) span a subspace V, in the four dimensional Euclidean space,
and the vectors (28) span a subspace V,. By (26) these subspaces are orthogonal
to each other. We have dim V, > 2 since v(z) is not a constant. On the other
hand dim ¥, > 1 since the first two components of (28) cannot vanish simulta-
neously. Hence, we have only two possibilities: dim V, = 2 or 3.

Case 1. dim V, = 2. The projections of V, onto the coordinate hyperplanes
have at most dimension 2. Therefore there exist relations of linear dependence

p1V'(2) + .2V (2) + 1y =0,
p20'(2) + g2V’ (2)—ryv(z) = 0,
P3v'(z)—qsv(z) + r3 = 0.

The first two equations imply that v is of the form

oz + f
yZ+ 90

v(z) =

Taking this into account the third relation implies that v(z) = az + B. The
equation (26) reduces to

f»gy)—f»Mg'(y») =0

so that g(y) = yf (y) where 7y is some constant. We obtain the following solution:

m*(a) = am(a) + B,
n*(b) = an(b) + B,
k*(a) = 7k(a),

x(p) = F(XL
o -r(2)

Case 2. dim ¥, = 3 and consequently dim V, = 1. The projection of ¥} on any
coordinate plane is at most a one dimensional subspace. Therefore there exist
constants p, g, not both zero, such that

W) S ')

l-y——|4+q==0.
p[ YTor | T T

If p = Othen f = constant and we are in the case (ii). If p # 0 let us write § = —gq/p.

Since f (y) is positive we infer that f(y) = a(y + ff). For the same reason

J@)=ny)= ¥
gy fy y+p°

(29)

which implies

gy) =ély + Bl.
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Since f(y) > 0 for all ye {(C,D)> we must have B ¢ <(C,D). The equation (26)
reduces to

z + P (2)—yo(z) = (y + Bv' () —yv(y).
If y = 0 then g = constant and we are in the case (ii). If y # 0 we infer that

(z + Pv'(2)—yv(z) = —ye,
v'iiz) oy

viz)—e z4+pB°
v(z) = Az + B + ¢.

Now from (22) we find that
&(x) =5(|1 + ax|['—1).

Finally we obtain

m*(a) = Alm(a) + B|" + e,

n*(b) = Aln(d) + B|’ + ¢,

k*(a) = 6|m(a) + B|", (30)
k(a) = a(m(a) + B),

F(x) = F*(3(1 + ax|"—1)).

Hence, we have proved the following:

Theorem 3

Let m and n be strictly increasing functions defined on A’ and B’, respectively,
having the same real interval as range. Let m* and n* be another such pair of
functions. Let k and k* be positive functions defined on A'. Assume that the func-
tions f = km~! and g = k*m~! are differentiable. Finally, assume that these
functions satisfy (20) with F and F* real-valued strictly increasing functions.
If k or k* reduces to a constant the solution of (20) is supplied by Theorem 2.
If k and k* do not reduce to a constant then the solution of (20) is given by (29)
or (30) with appropriate constants a, §, y, J, &, .
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