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1 Introduction

The classical isoperimetric inequality says that if D < E" is a compact domain with
smooth boundary 0D, then

area(dD) Z ¢,(vol(D)) ™
where area(0D) denotes the n — 1 dimensional volume of dD, vol(D) denotes the

n—1 1
= 2eal® ) 1y fottowing appeared in [Aub, BZ, GLPY:
vol(B"(1)) =

Conjecture 1 If M" is a complete, one-connected, Riemannian manifold with nonposi-
tive sectional curvature, then any compact domain D < M" with smooth boundary 0D
satisfies the Euclidean isoperimetric inequality, i.e.

volume of D, and ¢,

(+) area(dD) = c,,(vol(D))%
Here is some “evidence” in support of the conjecture:

1. If the domain D = M" is a geodesic ball, then the inequality ( + ) follows from
standard comparison theorems.
2. If the sectional curvature of M" satisfies Kyn < k <0 then area(dD) = >

n—1)J/(— )vol(D) (see [BZ, 34.2.6]) which implies area(dD) = c,,(vol(D))
provided vol(D) is sufficiently large.
3. [HS, Cr2] show that for every n there are constants ¢, <c, such that

area(dD) = c,,(vol(D))

The two and four dimensional cases of Conjecture 1 were proved in [Weil] and
[Cr1] respectively. The goal of this paper is to settle the three dimensional case of
the conjecture with:

* Supported by an NSF Postdoctoral Fellowship
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Theorem 2 Let M3 be a complete, one-connected, three-dimensional Riemannian
manifold with sectional curvature Kys <k <0, and let N} be the model
space with constant sectional curvature k. If E < M?® is a compact domain
with smooth boundary 0E, and E = N} is a geodesic ball with the same volume
as E, then

area(0E) = area(0F) .
Moreover, if area(0E) = area(0E) then E is isometric to E.
To indicate the idea of the proof of Theorem 2 we need

Definition 3 (Compare [BP, Gall, GLP]) The isoperimetric profile of a Riemannian
manifold M" is the function I.: [0, vol(M")) — R defined by

Iyn(V) = inf {area(0E)|E = M" a compact
domain with smooth boundary JE, vol(E) = V'} .
Except for the last sentence, the conclusion of Theorem 2 can be restated as

(%) Ins 2 Iy l[o.vol(.w)) .
Observation 4 [Alm, BP, Gall] Let E,; < M" be a compact domain with
smooth boundary O0E,, and let V = vol(E,). Suppose area(0Ey) = Iyn(V),
i.e. Ey has least boundary area among domains with volume V. The first variation
formulas for volume and area imply that the mean curvature function of 0E, (the
trace of the second fundamental form) is everywhere equal to some constant H.
We have

et Ln(V + AV) = Lyn(V
O_HV) = fim e AI} (V)
AV -0~

H.

v

d
Proof. Embed E, in a smooth family of domains {E,} satisfying I vol(E,)|;=o + 0.

The curve t+s(vol(E,), area(dE,))e R? lies above the graph of Iyn, and by
the first variation formulas for volume and area it has slope H at (vol(E,),
area(0E;)). O

To prove (), we control the left derivate D_I,s via Observation 4, i.e. by
estimating the mean curvature of the boundaries of minimizing domains. In the
case that E, = M3 is a domain with smooth boundary 0E,, our estimate for the

mean curvature H is:
H 2
[(3) + k:I area(0Eg) = 4r .

This estimate appears (in slightly disguised form) in proposition 8, and is analogous
to the mean curvature estimate in [Alm]. When 0E, is smooth and homeomorphic
to S, the proof of this mean curvature estimate simplifies considerably: using the
Gauss-Bonnet formula for the induced Riemannian structure on JE,, the Gauss
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equations for the surface dE, = M3, and the inequality between arithmetic and
geometric means, we have

4n = [ (Kin)area,

CEq

= I (GK("'E,, -t Kamb)areaf‘En

CE,

H 2
é I |:(§‘> + k:|area(w£0
CEy
H 2
= I:(?> + k:|area\;Eu

where area,;, is the area form for 0E,, GKg, is the Gauss-Kronecker curvature
of 0E, = M3 (the product of the principal curvatures), and H is the mean curvature
of GE,.

In order to follow through on the approach outlined above, we need to know
that for every ¥V >0 there is a domain E, < M3 with vol(Ey) =V and
area(0E,) = I3(V). Unfortunately, since M> is noncompact such minimizing
domains needn’t exist. We circumvent this problem by replacing the noncompact
manifold M? with a compact subset: we work with a geodesic ball M3 = M? large
enough to contain the domain E. Standard compactness and regularity theorems
from Geometric Measure Theory guarantee, for any ¥ e(0, vol(M })), the existence
of a domain E, € M3 satisfying vol(E,) = V, area(0Ey) = Ip3(V). There is a snag
here: 0E, is (a priori) only C** (in fact C!'!, see [Whi, Sect. 1]) at points where it
touches dM3. This necessitates the use of the weak notion of mean curvature in
Definition 7.

Remarks. 1. Theorem 2 may be generalized to the case where M? has a smooth
boundary dM? provided the second fundamental form of dM?> with respect to the
inward normal has at most one negative eigenvalue at every point (i.e. when dM? is
next-to-convex).

2. The analytic framework for the proof of Theorem 2 works in higher dimensions
as well. The only missing ingredient for a proof of Conjecture 1 for every n is an
analog of the estimate in Lemma 5. This doesn’t seem to follow from the generaliz-
ed Gauss-Bonnet formula.

2 Preliminaries

Let M3 be a three dimensional Riemannian manifold, and let N> « M3 be a C!'!
surface homeomorphic to S2. By Rademacher’s theorem N? is twice differentiable
almost everywhere, so the Gauss-Kronecker curvature GKy: of N2 is a well-
defined element of L®(N?).

Lemma 5 If the sectional curvature of M? satisfies K s < k < 0 then

j (GKNZ + k)areaNz = 4n
N2
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where areay: is the area form of N2. Moreover equality holds here only if the sectional
curvature of M? satisfies Kys(o) = k for every two-plane a which is tangent to N2.

Proof. When N? is smooth the lemma follows immediately from the Gauss-Bonnet
formula for the induced Riemannian structure on N? and the Gauss equations for
the embedding N? = M3, The general C!'! case follows by regularization. [J

The next two definitions give a substitute for the mean curvature of the
boundary of a domain when the boundary isn’t twice differentiable.

Definition 6 Let M" be a Riemannian manifold, and let E = M" be a closed set.
A smooth supporting hypersurface for E at peE is a smooth, normally oriented
hypersurface S = M" such that S N E = p and E lies on the same side of S as the
oriented normal vector near p. The set of smooth supporting hypersurfaces for E at
p will be denoted & (E, p).

Definition 7 Let M" be a connected Riemannian manifold without boundary, and
let E be a nonempty, compact, proper subset of M". Then & (E, g) is nonempty for
some g€ E and we define the mean curvature of the set E to be

Hg=sup{Hs(p)lpeE, Se€ L(E,p)}

where Hg(p) is the mean curvature of the smooth hypersurface S € ¥ (E, p) at p with
respect to its oriented normal. Hence if E is a compact domain with C? boundary
then Hg is just the maximum value of the mean curvature on JE.

The next proposition is the principal geometric ingredient in Theorem 2.

Proposition 8 Let M3 be a complete, one-connected, three dimensional Riemannian
manifold without boundary and with sectional curvature satisfying Ky < k < 0. Let
Eo = M3 be a compact set with nonempty interior. We define H,: (0, o) — (0, o0)
by letting H\(A) be the mean curvature of a geodesic sphere with area A in the model
space Nj. Then

Hg, 2 Hy(#7(0E)) ,

where #? denotes two dimensional Hausdorff measure and OE, is the topological
boundary of the set Eo. Moreover Hg, = H(#*(0E,)) only if E, is isometric to
a geodesic ball E, = N} with area(0E,) = #*(0E,).

Proof. If E, is convex and 0E, is C?, then the inequality of the proposition follows
directly from an application of Lemma S and the inequality between arithmetic and
geometric means to both dE, and 0E,, where E, = N} is a geodesic ball with
area(0E,) = area(dE,). We do the general case (following [Alm]) by taking the
convex hull of E,.

Let D, be the closure of the convex hull of E,. D, is compact and convex since
we may find a large geodesic ball containing Dy, and geodesic balls in M* are
convex. Let D, = {x € M3|dist(x, Do) < s}, C; = 0Dy, forall s = 0. D, is convex and
C,is C''! (see appendix B in [Alm2]) for each s > 0. The nearest point retraction
r: M3\ Interior(Dy) — C, is well defined and distance nonincreasing, and we set
rs=rlc,-

We claim that if C, twice differentiable at p € C,, and r((P) € Cy N 0E,, then the
mean curvature of C; at p satisfies

He,(p) < Hg, — (Ricci )s
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where Ricci_ = inf{Ricci(X, X)|X € TM:‘IDS, |X|=1}. To see this, pick
S € ¥ (D, p) with second fundamental form satisfying I1¢c_(p) > II5(p), and let vs be
the unit normal field for S which points into D, at p. Then

So = {exp(svs(x))|x € S}
will contain some S, € (Ey, rs(p)) whose mean curvature at ry(p) satisfies

Hg, 2 Hs (ri(p)) 2 Hs(p) + (Ricci-)s

by the Riccati equation. Letting Hs(p) tend to H¢ (p) we get He (p) £ Hg, —
(Ricci-)s.

Now, using the fact that C, is homeomorphic to S?, we may apply Lemma 5 and
the inequality between arithmetic and geometric means:

4n < [ (k + GK )areac,
Cs

= | (k+ GKc)areac, + [  (k+ GKc )areac,

r Y(0E) Ci\r; 0E)
He — (Ricdi_)s\?
< <k + (—E—"——(ZI—CCI£> )area(r;‘(&Eo))
+ k(area(C,\ry '(GEy))) + [ GKc,areac,.
Ca\ry H(OEo)

We will show in a moment that lim,.,area(r; '(0E,)) = #2(0E, n Cy) and
limg_, ¢ .[Cs\,s-:(an)GKcsareaCs = 0, so by letting s — 0 in the inequality above, we get

4n < <k + (%)2)%’2(6&,) \

On the other hand, if E, = N} is a geodesic ball with area(0E,) = #%(0E,) the
same reasoning applies, but this time giving the equation

_ 2
= (1 (22) Yo = (5 (DY,

Hence Hg, = H(#*(0E,)).

Now suppose Hg = H\(#?*0E,)) = H;,. Retracing steps we get
H?(0Eo N Co) = #2(0E,). Hence #%(0E, n Interior(D,)) = 0, which implies
that either #3(Eq) = £3(D,), or L3(E,) = 0. Since the latter case is impossible we
have E, = D, because E, = D, is a closed set. Now r; 1(0E,) = r; *(Eq) = C;
which implies that the mean curvatures of the C,'s remain uniformly bounded as
s — 0, and therefore their second fundamental forms remain uniformly bounded
when s — 0 as well. It follows that Cy, = dDy = 0E, is C''!. Lemma 5 and the
inequality between geometric and arithmetic means may be applied directly to dE,,
yielding:

1. The equality case in Lemma 5 holds, so Ky:(0) =k for every two-plane
o tangent to 0E,.

2. OE, has mean curvature Hy = Hp, almost everywhere, so it is a C* surface by
standard elliptic regularity theory. _

3. 0E, has the same second fundamental form as JE, everywhere.
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We may therefore cut E, out of N and glue in E, in its stead, getting a C' ' metric
with sectional curvature < k almost everywhere. Applying (the C!'' modified
version of) [SZ, Theorem 7] we conclude that E, is isometric to E,.

We now show that lim,.area(r; '(0Ey)) = #*(0E, N C;) and
lims_ [c,.,-1@e,) GKc,areac, = 0.

Since ry|,-1(3g,) is one-to-one, the area formula for Lipshitz maps [Fed] applied
to r,:C;— Co = M3 gives

| Jac(ryareac, = #*(0E, N Co)
ry Y(GE,)

where Jac(r,) = |A%r| is the Jacobian of r,. Now Jac(ryl,-1(5g,)) = 1 uniformly as
s — 0 since Il¢ |, 1 (g, is uniformly bounded in s, giving

area(r; 1(0E,)) [ (areac,

r '(0E,)

= | Jac(rareac,+ [ (1 —Jac(r,))areac,
ry l(an) re ! (GEy)

=#20Eyn Co)+ [ (1 —Jac(r,))areac, —» #2(0E, N Co)
r;l(an)
as s —0.

We now show that (+ +) lim,o [ \,- 1k, GKc,areac, = 0. If M is Euclidean
space it is easy to check that GK¢ (p) = O for every p € C,\r; ' (OE,) at which GK,
is defined, so (+ +) is immediate. For general M3, if C, = 0D, is twice differenti-
ableat g € Co\0E,, then GK¢,(q) = 0 for otherwise D, could be pushed in near q to
produce a smaller convex set contaning E,; therefore lim,.,GKc (r; '(g))=
GK¢,(q) = 0. But in general, it needn’t be true that lim,., GK¢ (ry 1(g)) = 0 when
qe Co\0Ey, so we give a more convoluted argument.

To establish (+ +) we fix s, > 0, and show that

L |(r$sGKc areac )(p)| £ F(so, |K])
2. limg_o(rGKc_ areac )(p) =0

where 0 < s < s, r5,5: C5, = Cs s the Lipshitz closest point map, p € C; \ 1y ' (0Eo),
C, is twice differentiable at p, and |K| = sup {|Kys:(0)|} where o runs over all two
planes in D, . From 1 and 2 we have

| GKc,areac, = | (r¥,GKc,areac)
C,\r; H(OEo) Cy,\ "' (OE,)

—0ass—0.

Let v:C,,» TM 3 be the inward unit normal field for C,,, and pick
pe Cso\rsj,l(an) at which v is differentiable. Let y:[0, so] — M> be the geodesic
segment y(t) = exp tv(p), and for every e e T,C,, let & be the Jacobi field along
y given by &(y(1)) = (expo(t+v))ye.

For s € (0, so] consider the maps W, ;:T,C,, — T, (»Cs given by e - Vi, _ye.
We claim that the maps W ; are bounded above uniformly in terms of s, and the
geometry of M3, while the lower bound on W, i€ inf {|W; ce||e € T,C;,,
le| = 1}, goes to zero as s — 0. To see the former, note that the second fundamental
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form of C,, is bounded above uniformly in terms of s, and the geometry of M? since
C,, is convex and supported from the inside by a ball of radius s,; consequently the
maps W, , are bounded above uniformly because they are obtained by solving the
Jacobi equation with initial conditions determined by the second fundamental
form of C,. The latter follows from the factorization W, ; = Wor, ., where Wj:
T, (s0-5)Cs = Tyso-5Cs is the Weingarten map for the inward normal to Cy, and the
fact that the lower bound on W goes to zero with s since ry (p) = ry(ry,s(p)) €
Co\OE,. Now (rf,GKc areac)(p) = (— W, )*areac (rs,s(p)) so 1 and 2 follow
immediately from the bounds on W, ,. [

We will need the following from Geometric Measure Theory:

Fact 9 (see [Sim]) (Existence, compactness, and regularity of minimizing domains)
Let M? be a compact Riemannian manifold with smooth boundary oM3. If
V e (0,vol(M?3)], then there is a domain E, = M? with C* boundary 0E such that
VOl(Eo) = V and area(0E,) = Iy,(V) = inf {area(0E)|E = M?, vol(E) = V}.

Moreover, if E{, E,, ... < M3 is a sequence of domains with C* boundary with
VvOl(E;) » V > 0 and area(0E;) = I:(vol(E;)) then there is a domain E, with C!
boundary and a subsequence {E, } such that

1. 0E; — 0E, in the C' topology.
2. The characteristic functions yg, converge to yg, in L'(M?).

Lemma 10 Let M" be a Riemannian manifold. Suppose E, = M" is a compact
domain with C* boundary 0E,, p € 0E,, S € & (E,, p) (see Definition 6), and assume
the mean curvature of S at p with respect to the inward normal of 0E,, Hs(p), satisfies
Hg(p) > Hy. Then there is a family of domains with C* boundary {E,} such that

1 E,Egfort=0
2 vol(E,) and area(0E,) are smooth functions of t

d
3. E VOl(E,)l,:o <0

d d
4. o’ area(0E,)|,=o < Hg % vol(E,)|,=o0-

Proof. If 0E, is smooth near p, then the mean curvature of 0E, is well defined and
satisfies Hg (p) =2 Hs(p) > Hop. In this case the lemma follows by pushing 0E,
inward near p and applying the first variation formulas for area and volume. We
now turn to the general case.

Fix H € (Ho, Hs(p)). Choose S = § = M" a compact, connected, hypersurface
with smooth boundary, and ¢ > 0 such that

(i) peS

(i) The normal exponential map vS — M" is well defined and one-to-one on
v,S = {& eS| |¢| < &} = vS. For the rest of the proof this map v,S - M" will
be denoted simply exp.

(iii) exp(veSlas) N Eo = &

(iv) Let v:S — vS be the unit normal vector field restricted from S, and let
N" = exp(v,S) = M". Define s € C*(N") by (scexp)(&) = (&, v) for é €v,S, in
other words s is the signed distance function from S. We want ¢ > 0 small
enough that Vs points inward (i.e. toward E,;) along dE, n N".
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(v) The mean curvature of the hypersurface with boundary s~*(4) with respect to
the unit normal field Vs is = H for every Ae( — ¢, ¢).

The family of domains {E,} will be produced by “squeezing” the box N", i.e. by
applying the flow @, of a vector field X = (f<s)Vs, for suitably chosen f, to
Eyn N". By taking feC*(—e¢¢) with f=0 and support(f) = (—¢ 6],
0<d<e we will get a family of domains with C! boundary {E,} such that
conditions 1 and 2 are satisfied.

Let C be the maximum value of |k| where k runs over all the principal
curvatures of the hypersurfaces s~ !(1), Ae(—¢, ). Find Ao e(0,d) such that
area(0Eo N s (Ao — 0,40+ 0))) >0 as ¢—-0. Fix o¢>0 and choose
feC®(—¢¢€ such that f>=0, support(f)c=(—¢ 4o +0), f(x)=1 for
xe(—¢giol, f(x)Z1 for x€e[Ag,4o+ 0], =0, and finally f'(x) <
—(max(H, 0) + (n — 2)C) when x € (— ¢, 4o]. We have

= 4 area(®,(0E, n N"™)|

d
o area({iE,)L=0 pr

t=0

d
= [ g Uaca®)_,
0Eg N N"

where Jacz, @, = | A" 1 (P,|5,)s |, and

) ‘
ZVOl(E)], o= | (Xve)<0

0E; n N"
so 3 holds.
Pick ges™'(4) n JE,. Let ey, . . ., e,—1 € T,(s~*(4)) be an orthonormal basis
of principal directions for the hypersurfaces s~ *(4), and let k4, . .., k,— be the

corresponding principal curvatures with respect to the normal direction Vs. Set
e, = Vs, and k, = — f'(s(g)). Calculation shows that if vsg (q) = Y, we;, then

d n
7 (JaCaEO‘p)(Q)L o= —fls(@) < > af(Z ki>>

i=1 j*1

which is

IIA

fis(@)mn—1C.
If ge 0Eg n s~ 1 (( — ¢, Ao)), then

—fs@)| Hs-1n(@)on + Z of (Z ki))

(o
~sta (i + 5, o (Ei )

—fls(q ))(Hotn + Z o (max(H, 0)))

i=1

d
E (JaCan (Dr)(q) I, =0

IIA

lIA

— f(s(@))(Hez + (1 — o7)(max(H, 0)))
< f(s(q))Ho, = H<X(q), vor,»



An isoperimetric comparison theorem 45
since — 1 = o, = ey, vag,) = V5, vz, > <O.
Now

d d
Earea(@E,)L=0 = E(Jacazodjx)(‘l)lgo
2o\ N”

d d
- | g Tace, )@l + f 7 Vacee, 20,

0Eq N s™(—&4g) O0Eq N 5™ Y(hgy Ao + 0)

<H | (X, va,» + (n— 1)Carea(3Ey N s~ (o, Ao + 0))

O0Eq N s~ —g4o)

d
= H 2 vol(E)|,_, — f (X, Vor,)

0Ey N s Yo Ao + 0)

+ (n— 1)Carea(0Ey N s~ (Ao, Ao + 0))

< H%vol(E,)L=0 + ((n — 1)C + l)area(OEq N s~ (Ao, Ao + 0)) .

. .. . .d
Hence by letting o — 0 we will get condition 4 of the lemma satisfied since I vol(E,)

stays bounded away from zero. [J

3 The proof of Theorem 2

Pick a geodesic ball which contains the domain E ¢ M3, and call it M3. M3} is

a compact domain with smooth boundary dM3. We will show that (see Definition

3) gy 2 133 10,votnr2yy Where I35 [0, c0) — [0, 00) is the geodesic ball profile of the

model space N} with constant sectional curvature k, i.e.
I%3(V) = area(d(Ball))
where Ball = N} is a geodesic ball with volume V.

First note that by Fact 9, I,:: [0, vol(M )1 - R is continuous.

Fix V €(0,vol(M3)) and let E, =« M3 be a domain with C' boundary 0E,
satisfying vol(E,) = V, area(0Ey) = I m2(V); the existence of such a domain is
guaranteed by Fact 9. By Lemma 8

Hg, = sup {Hs(p)|p € Eo, S € #(Eo, p)}
2 Hy(area(dE,))
= H(Iy;(V))

where, as before, Hy(4) is the mean curvature of a geodesic sphere in N} with
surface area 4. By Lemma 10, for every H < Hg, there is a family of domains with
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C! boundary {E,} such that
1. Et = Eo,t;O
2. vol(E,) and area(JE,) are smooth functions of ¢.

d
3. T VOl(E)|;=¢ <O.

d d
4. g area(0E,)|;-=o < H e VvOl(E,)|;=0-

From the fact that the curve t — (vol(E,), area(dE,)) lies above the graph of 1,3 we
may conclude that

det Lpa(V + 4V) = La(V)

D_I,)(V) = lim inf
(D-Ip)(V) Aylft-m Y%

2 Hy, 2 Hy(ly3(V)) > 0 .

We will use this to deduce that I3 = I3%¥10 o a3+ Foliate the upper half plane
using the graph of I3'and all its translates {(V, I¥*(V — V,))|V € [Vo, o)}. Since
(IR (V) = Hi (I35(V)) for all ¥ € (0, o), the graph of I crosses this foliation
monotonically. It follows that Iy;s = I3 voins)) because I3(0) = Iy:(0) = 0.

Now suppose area(9E) = I3} (vol(E)). Then we get area(0E) = I,3(vol(E))=
13 (vol(E)) which forces I3 = I3¥ |10, yoiz))- In particular, Hg < (D - Iy3)(vol(E)) =
(I3 (vol(E)) = Hy(area(0E)). By proposition 8, this implies that E is isometric to
a geodesic ball in N}. O
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