

Werk

Titel: An isoperimetric comparison theorem.

Autor: Kleiner, Bruce

Jahr: 1992

PURL: https://resolver.sub.uni-goettingen.de/purl?356556735_0108 | log12

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

An isoperimetric comparison theorem

Bruce Kleiner*

University of Pennsylvania, Department of Mathematics, Philadelphia, Pennsylvania 19104, USA

Oblatum 13-II-1991 & 30-IX-1991

1 Introduction

The classical isoperimetric inequality says that if $D \subset E^n$ is a compact domain with smooth boundary ∂D , then

$$\operatorname{area}(\partial D) \ge c_n(\operatorname{vol}(D))^{\frac{n-1}{n}}$$

where $\operatorname{area}(\partial D)$ denotes the n-1 dimensional volume of ∂D , $\operatorname{vol}(D)$ denotes the volume of D, and $c_n = \frac{\operatorname{area}(S^{n-1}(1))}{\operatorname{vol}(B^n(1))^{\frac{n-1}{n}}}$. The following appeared in [Aub, BZ, GLP]:

Conjecture 1 If M^n is a complete, one-connected, Riemannian manifold with nonpositive sectional curvature, then any compact domain $D \subset M^n$ with smooth boundary ∂D satisfies the Euclidean isoperimetric inequality, i.e.

$$(+) \qquad \operatorname{area}(\partial D) \ge c_n(\operatorname{vol}(D))^{\frac{n-1}{n}}.$$

Here is some "evidence" in support of the conjecture:

- 1. If the domain $D \subset M^n$ is a geodesic ball, then the inequality (+) follows from standard comparison theorems.
- 2. If the sectional curvature of M^n satisfies $K_{M^n} \le k < 0$ then $\operatorname{area}(\partial D) \ge (n-1)\sqrt{(-k)}\operatorname{vol}(D)$ (see [BZ, 34.2.6]) which implies $\operatorname{area}(\partial D) \ge c_n(\operatorname{vol}(D))^{\frac{n-1}{n}}$ provided $\operatorname{vol}(D)$ is sufficiently large.
- 3. [HS, Cr2] show that for every *n* there are constants $\bar{c}_n < c_n$ such that $\operatorname{area}(\partial D) \ge \bar{c}_n(\operatorname{vol}(D))^{\frac{n-1}{n}}$.

The two and four dimensional cases of Conjecture 1 were proved in [Weil] and [Cr1] respectively. The goal of this paper is to settle the three dimensional case of the conjecture with:

^{*} Supported by an NSF Postdoctoral Fellowship

Theorem 2 Let M^3 be a complete, one-connected, three-dimensional Riemannian manifold with sectional curvature $K_{M^3} \leq k \leq 0$, and let N_k^3 be the model space with constant sectional curvature k. If $E \subset M^3$ is a compact domain with smooth boundary ∂E , and $\bar{E} \subset N_k^3$ is a geodesic ball with the same volume as E, then

$$area(\partial E) \ge area(\partial \overline{E})$$
.

Moreover, if area (∂E) = area $(\partial \bar{E})$ then E is isometric to \bar{E} .

To indicate the idea of the proof of Theorem 2 we need

Definition 3 (Compare [BP, Gall, GLP]) The isoperimetric profile of a Riemannian manifold M^n is the function I_{M^n} : $[0, vol(M^n)) \to R$ defined by

$$I_{M^n}(V) = \inf \{ \operatorname{area}(\partial E) | E \subset M^n \text{ a compact } \}$$

domain with smooth boundary ∂E , vol(E) = V.

Except for the last sentence, the conclusion of Theorem 2 can be restated as

$$I_{M^3} \ge I_{N_k^3} \big|_{[0, \text{vol}(M^3))}.$$

Observation 4 [Alm, BP, Gall] Let $E_0 \subset M^n$ be a compact domain with smooth boundary ∂E_0 , and let $V = \operatorname{vol}(E_0)$. Suppose $\operatorname{area}(\partial E_0) = I_{M^n}(V)$, i.e. E_0 has least boundary area among domains with volume V. The first variation formulas for volume and area imply that the mean curvature function of ∂E_0 (the trace of the second fundamental form) is everywhere equal to some constant H. We have

$$(D_{-}I)(V) \stackrel{\text{def}}{=} \lim_{\Delta V \to 0^{-}} \frac{I_{M^{n}}(V + \Delta V) - I_{M^{n}}(V)}{\Delta V} \ge H.$$

Proof. Embed E_0 in a smooth family of domains $\{E_t\}$ satisfying $\frac{d}{dt} \operatorname{vol}(E_t)|_{t=0} \neq 0$.

The curve $t \mapsto (\operatorname{vol}(E_t), \operatorname{area}(\partial E_t)) \in \mathbb{R}^2$ lies above the graph of I_{M^n} , and by the first variation formulas for volume and area it has slope H at $(\operatorname{vol}(E_0), \operatorname{area}(\partial E_0))$. \square

To prove (*), we control the left derivate $D_{-}I_{M^3}$ via Observation 4, i.e. by estimating the mean curvature of the boundaries of minimizing domains. In the case that $E_0 \subseteq M^3$ is a domain with smooth boundary ∂E_0 , our estimate for the mean curvature H is:

$$\left[\left(\frac{H}{2} \right)^2 + k \right] \operatorname{area}(\partial E_0) \ge 4\pi .$$

This estimate appears (in slightly disguised form) in proposition 8, and is analogous to the mean curvature estimate in [Alm]. When ∂E_0 is smooth and homeomorphic to S^2 , the proof of this mean curvature estimate simplifies considerably: using the Gauss-Bonnet formula for the induced Riemannian structure on ∂E_0 , the Gauss

equations for the surface $\partial E_0 \subset M^3$, and the inequality between arithmetic and geometric means, we have

$$4\pi = \int_{\partial E_0} (K_{int}) \operatorname{area}_{\partial E_0}$$

$$= \int_{\partial E_0} (GK_{\partial E_0} + K_{amb}) \operatorname{area}_{\partial E_0}$$

$$\leq \int_{\partial E_0} \left[\left(\frac{H}{2} \right)^2 + k \right] \operatorname{area}_{\partial E_0}$$

$$= \left[\left(\frac{H}{2} \right)^2 + k \right] \operatorname{area}_{\partial E_0}$$

where area $_{\partial E_0}$ is the area form for ∂E_0 , $GK_{\partial E_0}$ is the Gauss-Kronecker curvature of $\partial E_0 \subseteq M^3$ (the product of the principal curvatures), and H is the mean curvature of ∂E_0 .

In order to follow through on the approach outlined above, we need to know that for every V>0 there is a domain $E_0\subseteq M^3$ with $\operatorname{vol}(E_0)=V$ and $\operatorname{area}(\partial E_0)=I_{M^3}(V)$. Unfortunately, since M^3 is noncompact such minimizing domains needn't exist. We circumvent this problem by replacing the noncompact manifold M^3 with a compact subset: we work with a geodesic ball $M_1^3\subset M^3$ large enough to contain the domain E. Standard compactness and regularity theorems from Geometric Measure Theory guarantee, for any $V\in(0,\operatorname{vol}(M_1^3))$, the existence of a domain $E_0\subseteq M_1^3$ satisfying $\operatorname{vol}(E_0)=V$, $\operatorname{area}(\partial E_0)=I_{M_1^3}(V)$. There is a snag here: ∂E_0 is (a priori) only $C^{1,\alpha}$ (in fact $C^{1,1}$, see [Whi, Sect. 1]) at points where it touches ∂M_1^3 . This necessitates the use of the weak notion of mean curvature in Definition 7.

Remarks. 1. Theorem 2 may be generalized to the case where M^3 has a smooth boundary ∂M^3 provided the second fundamental form of ∂M^3 with respect to the inward normal has at most one negative eigenvalue at every point (i.e. when ∂M^3 is next-to-convex).

2. The analytic framework for the proof of Theorem 2 works in higher dimensions as well. The only missing ingredient for a proof of Conjecture 1 for every n is an analog of the estimate in Lemma 5. This doesn't seem to follow from the generalized Gauss-Bonnet formula.

2 Preliminaries

Let M^3 be a three dimensional Riemannian manifold, and let $N^2 \subset M^3$ be a $C^{1,1}$ surface homeomorphic to S^2 . By Rademacher's theorem N^2 is twice differentiable almost everywhere, so the Gauss-Kronecker curvature GK_{N^2} of N^2 is a well-defined element of $L^{\infty}(N^2)$.

Lemma 5 If the sectional curvature of M^3 satisfies $K_{M^3} \le k \le 0$ then

$$\int_{N^2} (GK_{N^2} + k) \operatorname{area}_{N^2} \ge 4\pi$$

where $\operatorname{area}_{N^2}$ is the area form of N^2 . Moreover equality holds here only if the sectional curvature of M^3 satisfies $K_{M^3}(\sigma) = k$ for every two-plane σ which is tangent to N^2 .

Proof. When N^2 is smooth the lemma follows immediately from the Gauss-Bonnet formula for the induced Riemannian structure on N^2 and the Gauss equations for the embedding $N^2 \subset M^3$. The general $C^{1,1}$ case follows by regularization. \square

The next two definitions give a substitute for the mean curvature of the boundary of a domain when the boundary isn't twice differentiable.

Definition 6 Let M^n be a Riemannian manifold, and let $E \subset M^n$ be a closed set. A smooth supporting hypersurface for E at $p \in E$ is a smooth, normally oriented hypersurface $S \subset M^n$ such that $S \cap E = p$ and E lies on the same side of E as the oriented normal vector near E. The set of smooth supporting hypersurfaces for E at E will be denoted E be denoted

Definition 7 Let M^n be a connected Riemannian manifold without boundary, and let E be a nonempty, compact, proper subset of M^n . Then $\mathcal{S}(E, q)$ is nonempty for some $q \in E$ and we define the mean curvature of the set E to be

$$H_E = \sup\{H_S(p)|p \in E, S \in \mathcal{S}(E, p)\}$$

where $H_S(p)$ is the mean curvature of the smooth hypersurface $S \in \mathcal{S}(E, p)$ at p with respect to its oriented normal. Hence if E is a compact domain with C^2 boundary then H_E is just the maximum value of the mean curvature on ∂E .

The next proposition is the principal geometric ingredient in Theorem 2.

Proposition 8 Let M^3 be a complete, one-connected, three dimensional Riemannian manifold without boundary and with sectional curvature satisfying $K_{M^3} \leq k \leq 0$. Let $E_0 \subset M^3$ be a compact set with nonempty interior. We define $H_k: (0, \infty) \to (0, \infty)$ by letting $H_k(A)$ be the mean curvature of a geodesic sphere with area A in the model space N_k^3 . Then

$$H_{E_0} \geq H_k(\mathcal{H}^2(\partial E_0))$$
,

where \mathcal{H}^2 denotes two dimensional Hausdorff measure and ∂E_0 is the topological boundary of the set E_0 . Moreover $H_{E_0} = H_k(\mathcal{H}^2(\partial E_0))$ only if E_0 is isometric to a geodesic ball $\bar{E}_0 \subset N_k^3$ with $\operatorname{area}(\partial \bar{E}_0) = \mathcal{H}^2(\partial E_0)$.

Proof. If E_0 is convex and ∂E_0 is C^2 , then the inequality of the proposition follows directly from an application of Lemma 5 and the inequality between arithmetic and geometric means to both ∂E_0 and $\partial \bar{E}_0$, where $\bar{E}_0 \subset N_k^3$ is a geodesic ball with $\operatorname{area}(\partial \bar{E}_0) = \operatorname{area}(\partial E_0)$. We do the general case (following [Alm]) by taking the convex hull of E_0 .

Let D_0 be the closure of the convex hull of E_0 . D_0 is compact and convex since we may find a large geodesic ball containing D_0 , and geodesic balls in M^3 are convex. Let $D_s = \{x \in M^3 | \operatorname{dist}(x, D_0) \leq s\}$, $C_s = \partial D_s$, for all $s \geq 0$. D_s is convex and C_s is $C^{1,1}$ (see appendix B in [Alm2]) for each s > 0. The nearest point retraction $r: M^3 \setminus \operatorname{Interior}(D_0) \to C_0$ is well defined and distance nonincreasing, and we set $r_s = r|_C$.

We claim that if C_s twice differentiable at $p \in C_s$, and $r_s(P) \in C_0 \cap \partial E_0$, then the mean curvature of C_s at p satisfies

$$H_{C_*}(p) \leq H_{E_0} - (\text{Ricci}_-)s$$

where $\operatorname{Ricci}_{-} = \inf \{ \operatorname{Ricci}(X, X) | X \in TM^3|_{D_s}, |X| = 1 \}$. To see this, pick $S \in \mathcal{S}(D_s, p)$ with second fundamental form satisfying $II_{C_s}(p) > II_S(p)$, and let v_S be the unit normal field for S which points into D_s at p. Then

$$\overline{S}_0 = \{ \exp(sv_S(x)) | x \in S \}$$

will contain some $S_0 \in \mathcal{S}(E_0, r_s(p))$ whose mean curvature at $r_s(p)$ satisfies

$$H_{E_0} \ge H_{S_0}(r_s(p)) \ge H_S(p) + (\text{Ricci}_-)s$$

by the Riccati equation. Letting $H_S(p)$ tend to $H_{C_s}(p)$ we get $H_{C_s}(p) \leq H_{E_0}$ (Ricci_)s.

Now, using the fact that C_s is homeomorphic to S^2 , we may apply Lemma 5 and the inequality between arithmetic and geometric means:

$$\begin{split} 4\pi & \leq \int\limits_{C_s} (k + GK_{C_s}) \operatorname{area}_{C_s} \\ & = \int\limits_{r_s^{-1}(\partial E_0)} (k + GK_{C_s}) \operatorname{area}_{C_s} + \int\limits_{C_s \setminus r_s^{-1}(\partial E_0)} (k + GK_{C_s}) \operatorname{area}_{C_s} \\ & \leq \left(k + \left(\frac{H_{E_0} - (\operatorname{Ricci}_{-})s}{2}\right)^2\right) \operatorname{area}(r_s^{-1}(\partial E_0)) \\ & + k(\operatorname{area}(C_s \setminus r_s^{-1}(\partial E_0))) + \int\limits_{C_s \setminus r_s^{-1}(\partial E_0)} GK_{C_s} \operatorname{area}_{C_s}. \end{split}$$

We will show in a moment that $\lim_{s\to 0} \operatorname{area}(r_s^{-1}(\partial E_0)) = \mathcal{H}^2(\partial E_0 \cap C_0)$ and $\lim_{s\to 0} \int_{C_s \setminus r_s^{-1}(\partial E_0)} GK_{C_s} \operatorname{area}_{C_s} = 0$, so by letting $s\to 0$ in the inequality above, we get

$$4\pi \leqq \left(k + \left(\frac{H_{E_0}}{2}\right)^2\right) \mathcal{H}^2(\partial E_0) \; .$$

On the other hand, if $\bar{E}_0 \subset N_k^3$ is a geodesic ball with area $(\partial \bar{E}_0) = \mathcal{H}^2(\partial E_0)$ the same reasoning applies, but this time giving the equation

$$4\pi = \left(k + \left(\frac{H_{\bar{E}_0}}{2}\right)^2\right) \operatorname{area}(\partial \bar{E}_0) = \left(k + \left(\frac{H_k(\mathscr{H}^2(\partial E_0))}{2}\right)^2\right) \mathscr{H}^2(\partial E_0) \ .$$

Hence $H_{E_0} \ge H_k(\mathcal{H}^2(\partial E_0))$. Now suppose $H_{E_0} = H_k(\mathcal{H}^2(\partial E_0)) = H_{\bar{E}_0}$. Retracing steps we get $\mathcal{H}^2(\partial E_0 \cap C_0) = \mathcal{H}^2(\partial E_0)$. Hence $\mathcal{H}^2(\partial E_0 \cap \operatorname{Interior}(D_0)) = 0$, which implies that either $\mathcal{L}^3(E_0) = \mathcal{L}^3(D_0)$, or $\mathcal{L}^3(E_0) = 0$. Since the latter case is impossible we have $E_0 = D_0$ because $E_0 \subseteq D_0$ is a closed set. Now $r_s^{-1}(\partial E_0) = r_s^{-1}(E_0) = C_s$ which implies that the mean curvatures of the C_s 's remain uniformly bounded as $s \rightarrow 0$, and therefore their second fundamental forms remain uniformly bounded when $s \to 0$ as well. It follows that $C_0 = \partial D_0 = \partial E_0$ is $C^{1,1}$. Lemma 5 and the inequality between geometric and arithmetic means may be applied directly to ∂E_0 , yielding:

- 1. The equality case in Lemma 5 holds, so $K_{M^3}(\sigma) = k$ for every two-plane σ tangent to ∂E_0 .
- 2. ∂E_0 has mean curvature $H_{E_0} = H_{\bar{E}_0}$ almost everywhere, so it is a C^{∞} surface by standard elliptic regularity theory.
- 3. ∂E_0 has the same second fundamental form as $\partial \bar{E}_0$ everywhere.

We may therefore cut \bar{E}_0 out of N_k^3 and glue in E_0 in its stead, getting a $C^{1,1}$ metric with sectional curvature $\leq k$ almost everywhere. Applying (the $C^{1,1}$ modified version of) [SZ, Theorem 7] we conclude that E_0 is isometric to \bar{E}_0 .

version of) [SZ, Theorem 7] we conclude that E_0 is isometric to \bar{E}_0 . We now show that $\lim_{s\to 0} \operatorname{area}(r_s^{-1}(\partial E_0)) = \mathscr{H}^2(\partial E_0 \cap C_0)$ and $\lim_{s\to 0} \int_{C_s \setminus r_s^{-1}(\partial E_0)} GK_{C_s} \operatorname{area}_{C_s} = 0$.

Since $r_s|_{r_s^{-1}(\partial E_0)}$ is one-to-one, the area formula for Lipshitz maps [Fed] applied to $r_s: C_s \to C_0 \subset M^3$ gives

$$\int_{s^{-1}(\partial E_0)} \operatorname{Jac}(r_s) \operatorname{area}_{C_s} = \mathcal{H}^2(\partial E_0 \cap C_0)$$

where $\operatorname{Jac}(r_s) = |\Lambda^2 r_{s^*}|$ is the Jacobian of r_s . Now $\operatorname{Jac}(r_s|_{r_s^{-1}(\partial E_0)}) \to 1$ uniformly as $s \to 0$ since $II_{C_s}|_{r_s^{-1}(\partial E_0)}$ is uniformly bounded in s, giving

$$\operatorname{area}(r_s^{-1}(\partial E_0)) = \int\limits_{r_s^{-1}(\partial E_0)} (1)\operatorname{area}_{C_s}$$

$$= \int\limits_{r_s^{-1}(\partial E_0)} \operatorname{Jac}(r_s)\operatorname{area}_{C_s} + \int\limits_{r_s^{-1}(\partial E_0)} (1 - \operatorname{Jac}(r_s))\operatorname{area}_{C_s}$$

$$= \mathcal{H}^2(\partial E_0 \cap C_0) + \int\limits_{r_s^{-1}(\partial E_s)} (1 - \operatorname{Jac}(r_s))\operatorname{area}_{C_s} \to \mathcal{H}^2(\partial E_0 \cap C_0)$$

as $s \to 0$.

We now show that $(++)\lim_{s\to 0}\int_{C_s\setminus r_s^{-1}(\partial E_0)}GK_{C_s}$ are $a_{C_s}=0$. If M^3 is Euclidean space it is easy to check that $GK_{C_s}(p)=0$ for every $p\in C_s\setminus r_s^{-1}(\partial E_0)$ at which GK_{C_s} is defined, so (++) is immediate. For general M^3 , if $C_0=\partial D_0$ is twice differentiable at $q\in C_0\setminus\partial E_0$, then $GK_{C_0}(q)=0$ for otherwise D_0 could be pushed in near q to produce a smaller convex set containing E_0 ; therefore $\lim_{s\to 0}GK_{C_s}(r_s^{-1}(q))=GK_{C_0}(q)=0$. But in general, it needn't be true that $\lim_{s\to 0}GK_{C_s}(r_s^{-1}(q))=0$ when $q\in C_0\setminus\partial E_0$, so we give a more convoluted argument.

To establish (++) we fix $s_0 > 0$, and show that

1.
$$|(r_{s_0s}^* GK_{C_s} \operatorname{area}_{C_s})(p)| \le F(s_0, |K|)$$

2. $\lim_{s\to 0} (r_{s_0s}^* GK_{C_s} \operatorname{area}_{C_s})(p) = 0$

where $0 < s < s_0, r_{s_0s}: C_{s_0} \to C_s$ is the Lipshitz closest point map, $p \in C_{s_0} \setminus r_{s_0}^{-1}(\partial E_0)$, C_s is twice differentiable at p, and $|K| = \sup\{|K_{M^3}(\sigma)|\}$ where σ runs over all two planes in D_{s_0} . From 1 and 2 we have

$$\int_{C_s \setminus r_s^{-1}(\partial E_0)} GK_{C_s} \operatorname{area}_{C_s} = \int_{C_{s_0} \setminus r_{s_0}^{-1}(\partial E_0)} (r_{s_0s}^* GK_{C_s} \operatorname{area}_{C_s})$$

$$\to 0 \text{ as } s \to 0.$$

Let $v: C_{s_0} \to TM^3$ be the inward unit normal field for C_{s_0} , and pick $p \in C_{s_0} \setminus r_{s_0}^{-1}(\partial E_0)$ at which v is differentiable. Let $\gamma: [0, s_0] \to M^3$ be the geodesic segment $\gamma(t) = \exp tv(p)$, and for every $e \in T_pC_{s_0}$ let \bar{e} be the Jacobi field along γ given by $\bar{e}(\gamma(t)) = (\exp \circ (t \cdot v))_* e$.

For $s \in (0, s_0]$ consider the maps $W_{s_0s}: T_pC_{s_0} \to T_{r_{s_0s}(p)}C_s$ given by $e \to V_{\gamma(s_0-s)}\bar{e}$. We claim that the maps W_{s_0s} are bounded above uniformly in terms of s_0 and the geometry of M^3 , while the lower bound on W_{s_0s} , i.e. $\inf\{|W_{s_0s}e||e \in T_pC_{s_0}, |e| = 1\}$, goes to zero as $s \to 0$. To see the former, note that the second fundamental

form of C_{s_0} is bounded above uniformly in terms of s_0 and the geometry of M^3 since C_{s_0} is convex and supported from the inside by a ball of radius s_0 ; consequently the maps W_{s_0s} are bounded above uniformly because they are obtained by solving the Jacobi equation with initial conditions determined by the second fundamental form of C_{s_0} . The latter follows from the factorization $W_{s_0s} = W_s \circ r_{s_0s^*}$, where W_s : $T_{\gamma(s_0-s)}C_s \to T_{\gamma(s_0-s)}C_s$ is the Weingarten map for the inward normal to C_s , and the fact that the lower bound on W_s goes to zero with s since $r_{s_0}(p) = r_s(r_{s_0s}(p)) \in C_0 \setminus \partial E_0$. Now $(r_{s_0s}^* GK_{C_s} \operatorname{area}_{C_s})(p) = (-W_{s_0s})^* \operatorname{area}_{C_s}(r_{s_0s}(p))$ so 1 and 2 follow immediately from the bounds on W_{s_0s} .

We will need the following from Geometric Measure Theory:

Fact 9 (see [Sim]) (Existence, compactness, and regularity of minimizing domains) Let M^3 be a compact Riemannian manifold with smooth boundary ∂M^3 . If $V \in (0, \text{vol}(M^3)]$, then there is a domain $E_0 \subset M^3$ with C^1 boundary ∂E_0 such that $\text{vol}(E_0) = V$ and $\text{area}(\partial E_0) = I_{M_3}(V) = \inf \{ \text{area}(\partial E) | E \subseteq M^3, \text{vol}(E) = V \}$.

Moreover, if $E_1, E_2, \ldots \subseteq M^3$ is a sequence of domains with C^1 boundary with $\text{vol}(E_i) \to V > 0$ and $\text{area}(\partial E_i) = I_{M^3}(\text{vol}(E_i))$ then there is a domain E_0 with C^1 boundary and a subsequence E_0 such that

boundary and a subsequence $\{E_{i_k}\}$ such that

- 1. $\partial E_{i_k} \to \partial E_0$ in the C^1 topology.
- 2. The characteristic functions $\chi_{E_{1k}}$ converge to χ_{E_0} in $L^1(M^3)$.

Lemma 10 Let M^n be a Riemannian manifold. Suppose $E_0 \subset M^n$ is a compact domain with C^1 boundary ∂E_0 , $p \in \partial E_0$, $S \in \mathcal{S}(E_0, p)$ (see Definition 6), and assume the mean curvature of S at p with respect to the inward normal of ∂E_0 , $H_S(p)$, satisfies $H_S(p) > H_0$. Then there is a family of domains with C^1 boundary $\{E_t\}$ such that

- 1 $E_t \subseteq E_0$ for $t \ge 0$
- 2 vol(E_t) and area(∂E_t) are smooth functions of t

$$3. \frac{d}{dt} \operatorname{vol}(E_t)|_{t=0} < 0$$

4.
$$\frac{d}{dt} \operatorname{area}(\partial E_t)|_{t=0} < H_0 \frac{d}{dt} \operatorname{vol}(E_t)|_{t=0}$$
.

Proof. If ∂E_0 is smooth near p, then the mean curvature of ∂E_0 is well defined and satisfies $H_{\partial E_0}(p) \ge H_S(p) > H_0$. In this case the lemma follows by pushing ∂E_0 inward near p and applying the first variation formulas for area and volume. We now turn to the general case.

Fix $H \in (H_0, H_S(p))$. Choose $\bar{S} \subset S \subset M^n$ a compact, connected, hypersurface with smooth boundary, and $\varepsilon > 0$ such that

- (i) $p \in \overline{S}$
- (ii) The normal exponential map $v\bar{S} \to M^n$ is well defined and one-to-one on $v_{\varepsilon}\bar{S} = \{\xi \in v\bar{S} | |\xi| < \varepsilon\} \subset v\bar{S}$. For the rest of the proof this map $v_{\varepsilon}\bar{S} \to M^n$ will be denoted simply exp.
- (iii) $\exp(v_{\varepsilon}\bar{S}|_{\partial\bar{S}}) \cap E_0 = \emptyset$
- (iv) Let $v: \overline{S} \to v\overline{S}$ be the unit normal vector field restricted from S, and let $N^n = \exp(\nu_{\varepsilon} \overline{S}) \subset M^n$. Define $s \in C^{\infty}(N^n)$ by $(s \circ \exp)(\xi) = \langle \xi, \nu \rangle$ for $\xi \in \nu_{\varepsilon} \overline{S}$, in other words s is the signed distance function from \bar{S} . We want $\varepsilon > 0$ small enough that ∇s points inward (i.e. toward E_0) along $\partial E_0 \cap N^n$.

(v) The mean curvature of the hypersurface with boundary $s^{-1}(\lambda)$ with respect to the unit normal field ∇s is $\geq H$ for every $\lambda \in (-\varepsilon, \varepsilon)$.

The family of domains $\{E_t\}$ will be produced by "squeezing" the box N^n , i.e. by applying the flow Φ_t of a vector field $X = (f \circ s) \nabla s$, for suitably chosen f, to $E_0 \cap N^n$. By taking $f \in C^{\infty}(-\varepsilon, \varepsilon)$ with $f \ge 0$ and support $(f) \subset (-\varepsilon, \delta]$, $0 < \delta < \varepsilon$, we will get a family of domains with C^1 boundary $\{E_t\}$ such that conditions 1 and 2 are satisfied.

Let C be the maximum value of |k| where k runs over all the principal curvatures of the hypersurfaces $s^{-1}(\lambda)$, $\lambda \in (-\varepsilon, \delta)$. Find $\lambda_0 \in (0, \delta)$ such that $\operatorname{area}(\partial E_0 \cap s^{-1}((\lambda_0 - \sigma, \lambda_0 + \sigma))) \to 0$ as $\sigma \to 0$. Fix $\sigma > 0$ and choose $f \in C^{\infty}(-\varepsilon, \varepsilon)$ such that $f \ge 0$, support $(f) \subset (-\varepsilon, \lambda_0 + \sigma)$, $f(x) \ge 1$ for $x \in (-\varepsilon, \lambda_0]$, $f(x) \le 1$ for $x \in [\lambda_0, \lambda_0 + \sigma]$, $f' \le 0$, and finally $f'(x) < -(\max(H, 0) + (n-2)C)$ when $x \in (-\varepsilon, \lambda_0]$. We have

$$\frac{d}{dt}\operatorname{area}(\partial E_t)\big|_{t=0} = \frac{d}{dt}\operatorname{area}(\Phi_t(\partial E_0 \cap N^n))\big|_{t=0}$$
$$= \int_{\partial E_0 \cap N^n} \frac{d}{dt}(\operatorname{Jac}_{\partial E_0} \Phi_t)\big|_{t=0}$$

where $\operatorname{Jac}_{\partial E_0} \Phi_t = |A^{n-1} (\Phi_t|_{\partial E_0})_*|$, and

$$\frac{d}{dt}\operatorname{vol}(E_t)\big|_{t=0} = \int_{\partial E_0 \cap N''} \langle X, v_{\partial E_0} \rangle < 0$$

so 3 holds.

Pick $q \in s^{-1}(\lambda) \cap \partial E_0$. Let $e_1, \ldots, e_{n-1} \in T_q(s^{-1}(\lambda))$ be an orthonormal basis of principal directions for the hypersurfaces $s^{-1}(\lambda)$, and let k_1, \ldots, k_{n-1} be the corresponding principal curvatures with respect to the normal direction ∇s . Set $e_n = \nabla s$, and $k_n = -f'(s(q))$. Calculation shows that if $v_{\partial E_0}(q) = \sum_{i=1}^n \alpha_i e_i$, then

$$\frac{d}{dt} \left(\operatorname{Jac}_{\partial E_0} \Phi_t \right) (q) \Big|_{t=0} = -f(s(q)) \left(\sum_{i=1}^n \alpha_i^2 \left(\sum_{j=1}^n k_j \right) \right)$$

which is

$$\leq f(s(q))(n-1)C$$
.

If $q \in \partial E_0 \cap s^{-1}((-\varepsilon, \lambda_0))$, then

$$\frac{d}{dt} \left(\operatorname{Jac}_{\partial E_0} \Phi_t \right) (q) \Big|_{t=0} = -f(s(q)) \left(H_{s^{-1}(\lambda)}(q) \alpha_n^2 + \sum_{i=1}^{n-1} \alpha_i^2 \left(\sum_{j \neq i} k_j \right) \right)$$

$$\leq -f(s(q)) \left(H \alpha_n^2 + \sum_{i=1}^{n-1} \alpha_i^2 \left(\sum_{j \neq i} k_j \right) \right)$$

$$\leq -f(s(q)) \left(H \alpha_n^2 + \sum_{i=1}^{n-1} \alpha_i^2 \left(\max(H, 0) \right) \right)$$

$$= -f(s(q)) (H \alpha_n^2 + (1 - \alpha_n^2) (\max(H, 0)))$$

$$\leq f(s(q)) H \alpha_n = H \langle X(q), v_{\partial E_0} \rangle$$

since
$$-1 \leq \alpha_n = \langle e_n, v_{\partial E_0} \rangle = \langle \nabla s, v_{\partial E_0} \rangle < 0.$$

Now
$$\frac{d}{dt} \operatorname{area}(\partial E_t) \Big|_{t=0} = \int_{\partial E_0 \cap N^n} \frac{d}{dt} (\operatorname{Jac}_{\partial E_0} \Phi_t)(q) \Big|_{t=0}$$

$$= \int_{\partial E_0 \cap s^{-1}(-\varepsilon,\lambda_0)} \frac{d}{dt} (\operatorname{Jac}_{\partial E_0} \Phi_t)(q) \Big|_{t=0} + \int_{\partial E_0 \cap s^{-1}(\lambda_0,\lambda_0+\sigma)} \frac{d}{dt} (\operatorname{Jac}_{\partial E_0} \Phi_t)(q) \Big|_{t=0}$$

$$\leq H \int_{\partial E_0 \cap s^{-1}(-\varepsilon,\lambda_0)} \langle X, v_{\partial E_0} \rangle + (n-1)C \operatorname{area}(\partial E_0 \cap s^{-1}(\lambda_0,\lambda_0+\sigma))$$

$$= H \frac{d}{dt} \operatorname{vol}(E_t) \Big|_{t=0} - \int_{\partial E_0 \cap s^{-1}(\lambda_0,\lambda_0+\sigma)} \langle X, v_{\partial E_0} \rangle$$

$$+ (n-1)C \operatorname{area}(\partial E_0 \cap s^{-1}(\lambda_0,\lambda_0+\sigma))$$

$$\leq H \frac{d}{dt} \operatorname{vol}(E_t) \Big|_{t=0} + ((n-1)C+1) \operatorname{area}(\partial E_0 \cap s^{-1}(\lambda_0,\lambda_0+\sigma)).$$

Hence by letting $\sigma \to 0$ we will get condition 4 of the lemma satisfied since $\frac{d}{dt} \operatorname{vol}(E_t)$ stays bounded away from zero.

3 The proof of Theorem 2

Pick a geodesic ball which contains the domain $E \subset M^3$, and call it M_1^3 . M_1^3 is a compact domain with smooth boundary ∂M_1^3 . We will show that (see Definition 3) $I_{M_1^3} \ge I_{N_k^3}^{ball}|_{[0, \text{vol}(M_1^3)]}$ where $I_{N_k^3}^{ball}: [0, \infty) \to [0, \infty)$ is the geodesic ball profile of the model space N_k^3 with constant sectional curvature k, i.e.

$$I_{N_{\bullet}^{\bullet}}^{ball}(V) = \operatorname{area}(\partial(Ball))$$

where $Ball \subset N_k^3$ is a geodesic ball with volume V. First note that by Fact 9, $I_{M_1^3}$: $[0, \operatorname{vol}(M_1^3)] \to R$ is continuous. Fix $V \in (0, \operatorname{vol}(M_1^3))$ and let $E_0 \subset M_1^3$ be a domain with C^1 boundary ∂E_0 satisfying $\operatorname{vol}(E_0) = V$, $\operatorname{area}(\partial E_0) = I_{M_1^3}(V)$; the existence of such a domain is guaranteed by Fact 9. By Lemma 8

$$H_{E_0} = \sup \{ H_S(p) | p \in E_0, S \in \mathcal{S}(E_0, p) \}$$

$$\geq H_k(\operatorname{area}(\partial E_0))$$

$$= H_k(I_{M^3}(V))$$

where, as before, $H_k(A)$ is the mean curvature of a geodesic sphere in N_k^3 with surface area A. By Lemma 10, for every $H < H_{E_0}$ there is a family of domains with

46 H. Kleiner

 C^1 boundary $\{E_t\}$ such that

- 1. $E_t \subset E_0, t \ge 0$. 2. $\operatorname{vol}(E_t)$ and $\operatorname{area}(\partial E_0)$ are smooth functions of t.

$$3. \frac{d}{dt} \operatorname{vol}(E_t)|_{t=0} < 0.$$

4.
$$\frac{d}{dt}\operatorname{area}(\partial E_t)|_{t=0} < H\frac{d}{dt}\operatorname{vol}(E_t)|_{t=0}$$
.

From the fact that the curve $t \mapsto (\operatorname{vol}(E_t), \operatorname{area}(\partial E_t))$ lies above the graph of $I_{M_t^3}$ we may conclude that

$$\begin{split} (D_{-}I_{M_{1}^{3}})(V) &= \lim_{\Delta V \to 0^{-}} \inf \frac{I_{M_{1}^{3}}(V + \Delta V) - I_{M_{1}^{3}}(V)}{\Delta V} \\ &\geq H_{E_{0}} \geq H_{k}(I_{M_{1}^{3}}(V)) > 0 \; . \end{split}$$

We will use this to deduce that $I_{M_1^3} \geq I_{N_k^3}^{ball}|_{[0,\operatorname{vol}(M_1^3)]}$. Foliate the upper half plane using the graph of $I_{N_k^3}^{ball}$ and all its translates $\{(\bar{V},I_{N_k^3}^{ball}(\bar{V}-V_0))|\ \bar{V}\in [V_0,\ \infty)\}$. Since $(I_{N_k^3}^{ball})'(\bar{V}) = H_k(I_{N_k^3}^{ball}(\bar{V}))$ for all $\bar{V} \in (0, \infty)$, the graph of $I_{M_1^3}$ crosses this foliation monotonically. It follows that $I_{M_k^3} \ge I_{N_k^3}^{ball}|_{[0, \text{vol}(M_1^3)]}$ because $I_{M_1^3}(0) = I_{N_k^3}(0) = 0$. Now suppose $\text{area}(\partial E) = I_{N_k^3}^{ball}(\text{vol}(E))$. Then we get $\text{area}(\partial E) = I_{M_1^3}(\text{vol}(E)) = I_{M_1^3}(\text{vol}(E))$

 $I_{N_k^3}^{ball}(\operatorname{vol}(E))$ which forces $I_{M_1^3} = I_{N_k^3}^{ball}|_{[0,\operatorname{vol}(E)]}$. In particular, $H_E \leq (D_- I_{M_1^3})(\operatorname{vol}(E)) = (I_{N_k^3}^{ball})'(\operatorname{vol}(E)) = H_k(\operatorname{area}(\partial E))$. By proposition 8, this implies that E is isometric to a geodesic ball in N_k^3 .

Acknowledgements. I would like to thank Chris Croke, Lisa Haner, and Hsueh-ling Huynh for their influence on the evolution of this paper. I would also like to thank the referee for bringing [Whi] to my attention.

References

- [Alm] Almgren, F.: Optimal Isoperimetric Inequalities. Bull. Am. Math. Soc. 13 (no. 2) (1985)
- [Alm2] Almgren, F.: Optimal Isoperimetric Inequalities. Indiana Univ. Math. J. 35 (no. 3) (1986)
- Aubin, T.: Problèmes isopérimétriques et espaces de sobolev. J. Differ. Geom. 11, 573-598
- [BGS] Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. Boston Basel Stuttgart: Birkhäuser 1985
- Bavard, C., Pansu, P.: Sur le volume minimal de R². Ann. Sci. Éc. Norm. Super., IV. Ser. [BP] **19** (1986)
- Burago, Yu. D., Zalgaller, V.A.: Geometric Inequalities. Berlin Heidelberg New York: Springer 1988
- [Cr1] Croke, C.: A sharp four dimensional isoperimetric inequality. Comment. Math. Helv. 59, 187-192 (1984)
- [Cr2] Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Éc. Norm. Supér. IV. Ser., 13, 419-435 (1980)
- Federer, H.: Geometric Measure Theory. Berlin Heidelberg New York: Springer 1969 [Fed]
- [Gall] Gallot, S.: Inegalitiés isopérimétriques et analytiques sur les variétés Riemanniennes. (Astérisque, vols. 163-164, pp. 31-91) Paris: Soc. Math. France 1988

- [GLP] Gromov, M., Lafontaine, J., Pansu, P.: Structures métriques pour les variétés Riemanniennes. Paris: Cedic/Fernand Nathan 1981
- [HS] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds, Commun. Pure Appl. Math. 27, 715–727 (1974)
- [SZ] Schroeder, V., Ziller, W.: Local rigidity of symmetric spaces. Trans. Am. Math. Soc. 320 (no. 1) (1990)
- [Sim] Simon, L.: Lectures on Geometric Measure Theory. (Proc. Cent. Math. Anal., Aust. Natl. Univ. vol. 3) Canberra: Cent. Math. Anal. 1983
- [Weil] Weil, A.: Sur les surfaces a courbure negative. C.R. Acad. Sci., Paris 182, 1069–1071 (1926)
- [Whi] White, B.: Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on 3-manifolds. J. Differ. Geom. 33 (no. 2) 413-443 (1991)

