

Werk

Titel: A short topological proof for the symmetry of 2 point homogeneous spaces.

Autor: Szabó, Z.I.

Jahr: 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?356556735_0106|log10

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A short topological proof for the symmetry of 2 point homogeneous spaces

Z.I. Szabó*

Department of Analysis, Eötvös University, Múzeum krt. 6-8., Budapest, H-1088 Hungary and City University of New York, Lehmann College, Department of Mathematics and Computer Science, Bedford Park Boulevard West, Bronx, NY 10468-1589, USA

Oblatum 3-III-1991

Two point homogeneous spaces have been studied by G. Birkhoff [2], H. Busemann [3], J. Tits [10], and H.C. Wang [11]. Tits and Wang gave a classification of these spaces; it turned out, just from this list, that these spaces were symmetric.

We say that a connected locally compact metric space (M,d) is two point homogeneous if for every pair of points (p_1,q_1) and (p_2,q_2) with $d(p_1,q_1)=d(p_2,q_2)$, there is an isometry T of M such that $T(p_1)=p_2$ and $T(q_1)=q_2$. If M satisfies this condition, then the transitive isometry group of M is a Lie group; furthermore, the isotropy group J_{x_0} describes a sphere as an indicatrix at any tangent space. Consequently M^n is a Riemannian manifold and we work in that class henceforth.

It was a longstanding problem to find a direct proof that M^n is symmetric. In the non compact case, S. Helgason [6] found an elegant direct proof, but his method did not work in the compact case. Other authors have given proofs using methods which were heavily group theoretic; see for example M. Matsumoto [7], T. Nagano [8], and J. Wolf [12]. Recently, Q.-S. Chi [5] proved the so called Ossermann conjecture if n is odd or if $n \equiv 2 \mod 4$; this also gives a direct proof in these cases. Chi uses vector bundle theory; this is also our approach in this paper. However, there does not exist a simple proof in the literature so far covering all cases.

In this brief note, we give a simple topological proof for this symmetry. The main tool is the following; purely topological, Theorem 1.

Let $S_0^{n-1} \subset \mathbb{R}^n$ be the unit sphere in Euclidean space around the origin 0. We identify the tangent space $T_p S_0^{n-1} = \{v \in \mathbb{R}^n : P \perp v\}$ to provide a natural isomorphism between the tangent spaces at P and the antipodal point -P.

Theorem 1 (a) Let X(P) be a continuous tangent vector field on $S_0^{n-1} \subset \mathbb{R}^n$. Then there exists an antipodal point pair $\pm P_1$ so that $X(P_1) = -X(-P_1)$. (b) In general, let X(P) be a continuous non-zero distribution on S_0^{n-1} . Then there

^{*} Research partially supported by the Max-Planck-Institute für Mathematik Bonn

62 Z.I. Szabó

exists an antipodal point pair $\pm P_1$ such that the subspaces $X(P_1)$ and $X(-P_1)$ are not independent, i.e. $\dim(X(P_1) \cap X(-P_1)) > 0$.

Proof. (a) Let $X_{\text{sym}}(P) = \frac{1}{2}(X(P) + X(-P))$ be the symmetric part of X; we must prove there exists P such that $X_{\text{sym}}(P) = 0$. Suppose the contrary and let

$$f(P) = X_{\text{sym}}(P)/|X_{\text{sym}}(P)|: S^{n-1} \to S^{n-1}$$

be the normalized vector field. Consider the map

$$f_*: H_{n-1}(S^{n-1}, \mathbb{Z}_2) = \mathbb{Z}_2 \to H_{n-1}(S^{n-1}, \mathbb{Z}_2) = \mathbb{Z}_2$$
.

Since $f(P) \perp P$, so $f_{\varepsilon}(P) = \sin(\varepsilon) f(P) + \cos(\varepsilon) P$ is a smooth homotopy from f to the identity map. Therefore $f_*(1) = 1$. Let $RP = S/\{\pm 1\}$ be the real projective space and let $\pi: S \to RP$ be the natural projection. Since for

$$\pi_*: H_{n-1}(S^{n-1}, \mathbb{Z}_2) = \mathbb{Z}_2 \to H_{n-1}(RP^{n-1}, \mathbb{Z}_2) = \mathbb{Z}_2$$

we have $\pi_*(1) = 0$, furthermore $f_* = \tilde{f}_* \circ \pi_*$ therefore $f_*(1) = 0$. This contradiction completes the proof of (a). (Using **Z**-homologies, the following alternative proof can be given: By the homotopy f_{ϵ} , $\deg f = 1$ and by the symmetry f(P) = f(-P), $\deg f$ is even.)

(b) Take an arbitrary continuous vector field v on S tangent to X such that v vanishes only at one point, say at P_0 . There exists such v, because $D = S \setminus P_0$ is contractible and X is trivial over D. Choose a non-zero section w to X on D and let $\Phi: S \to \mathbb{R}$ be a continuous function satisfying $\Phi^{-1}(0) = P_0$. Then $v(P) = \Phi(P)$ w(P) is a suitable vector field. Since $v(-P_0) \neq 0$; there exists a point-pair $\pm P_1$ ($\pm \pm P_0$) such that $v(P_1) = -v(-P_1) \neq 0$, i.e. the subspaces $X(P_1)$ and $X(-P_1)$ are not independent.

Corollary 1 Let $A_P(\cdot)$ be a continuous operator field on S_0^{n-1} (i.e. $P \in S_0^{n-1}$ and

- (1) it is self adjoint: $A_P^*(S_0^{n-1}) \to L_P(S_0^{n-1})$ such that (1) it is self adjoint: $A_P^* = A_P$ and "skew" in the sense: $A_{-P} = -A_P$ furthermore; (2) the eigenvalues $\lambda_1(P) \le \lambda_2(P) \le \ldots \le \lambda_{n-1}(P)$ of A_P are constant along S_0^{n-1} . Then $A_P \equiv 0$ everywhere on S_0^{n-1} .

Proof. We have to prove that every λ is zero. Assume the contrary and let λ be a non-zero eigenvalue. Let $V(\lambda, P)$ be the corresponding continuous eigensubspace distribution on S_0^{n-1} . Since $A_{-P} = -A_P$, so $V(\lambda, P) = V(-\lambda, -P)$. Therefore $V(\lambda, P) \perp V(\lambda, -P)$ for all $P \in S_0^{n-1}$. This is impossible because of Theorem 1(b) which proves the statement completely.

Remark. Property (2) can be replaced by much more weaker assumptions, for instance, by rank A_P = constant or by assuming that the multiplicity of the highest eigenvalue $\lambda_{n-1}(P)$ is constant.

The symmetry of a 2 point homogeneous spaces directly follows from Corollary 1.

Theorem 2 The locally 2 point homogeneous spaces are locally symmetric.

Proof. Apply Corollary 1 to the field $A_X(\cdot) := (\nabla_X R)(\cdot, X)X$ where R is the curvature, ∇ is the covariant derivative and X is a unit vector. Fix a point $p \in M^n$ and consider the unit sphere $S_p^{n-1} \subset T_p(M^n)$. By the Bianchi identities, the $A_X(\cdot)$: $T_X(S_p^{n-1}) \to T_X(S_p^{n-1}); X \in S_p^{n-1};$ is a self-adjoint operator field on S_p^{n-1} satisfying the "skew" property $A_{-X} = -A_X$ as well. Since A_X is invariant under the transitive action of the isotropy group J_p on S_p^{n-1} , it has constant eigenvalues. Therefore $A_X = 0$; $(\nabla_X R)(\cdot, X)X = 0$ at any point p which implies the local symmetry $\nabla R = 0$ easily (see [1, Proposition 2.35]).

Let M^n be a globally 2 point homogeneous space. Since M^n is complete, its universal covering space \tilde{M}^n is globally symmetric. The global symmetry of the base space M^n directly follows from the next stronger statement, where we show that a non-simply-connected globally 2 point homogeneous space has to be a real projective space $\mathbb{R}P^n$ with the elliptic metric.

Theorem 3 (A) The universal covering space \tilde{M}^n is either the euclidean space \mathbf{R}^n or it is a rank 1-symmetric space.

(B) If the covering map $\rho: \tilde{M}^n \to M^n$ is non-trivial, then the base space M^n is the real projective space $\mathbb{R}P^n$ with elliptic metric and \tilde{M}^n is the sphere S^n with round metric.

Proof. (A) Let $\tilde{M}^n = \tilde{M}_0 \times \tilde{M}_1 \times \ldots \times \tilde{M}_k$ be the De Rham decomposition, where \tilde{M}_0 is the euclidean component. Replacing each non-compact component by its compact dual, the rank and the isotropy group remain unaltered; i.e. this new space $\tilde{M}^{*n} = \tilde{M}_0 \times \tilde{M}_1^* \times \ldots \times \tilde{M}_k^*$ is two point homogeneous as well. If there is a nontrivial compact component $\tilde{M}_1^* \times \ldots \times \tilde{M}_k^*$ then choose a closed geodesics γ on a maximal torus determined by the rank of $\tilde{M}_1^* \times \ldots \times \tilde{M}_k^*$. By the existence of such a γ , all geodesics have to be closed on the covering space \tilde{M}^{*n} . Therefore the rank of \tilde{M}^{*n} must be 1; and consequently it is compact and irreducible; because in the opposite case there exist also non-closed geodesics on a maximal torus determined by the rank. This completes the proof of (A).

(B) If the covering $\rho: \tilde{M}^n \to M^n$ is non-trivial then choose two points $\tilde{p} \neq \tilde{q}$ on \tilde{M}^n satisfying $\rho(\tilde{p}) = \rho(\tilde{q}) = P$ and connect these by a geodesics $\tilde{\gamma}(s)$, where $\tilde{\gamma}(0) = \tilde{p}$ and $\gamma(\tilde{L}) = \tilde{q}$. The projected geodesics $\gamma(s) = \rho(\tilde{\gamma}(s))$; $0 \le s \le \tilde{L}$; is closed, since $\gamma(0) = \gamma(\tilde{L})$. We show that it is a smooth simply closed geodesics.

Let Φ_s be a continuous family of global isometries on M^n satisfying $\Phi_s(\gamma(0)) = \gamma(s)$; $\Phi_{s*}(\dot{\gamma}(0)) = \dot{\gamma}(s)$.

The isometries Φ_s map the geodesics γ onto itself, more precisely $\Phi_s(\gamma(t)) = \gamma(t+s)$ is satisfied. If $Q = \gamma(t_0) = \gamma(t_1)$ is an intersection point on γ then

$$\gamma(t_0 + s) = \Phi_s(\gamma(t_0)) = \Phi_s(\gamma(t_1)) = \gamma(t_1 + s)$$

and so $\dot{\gamma}(t_0) = \dot{\gamma}(t_1)$. This exactly means that γ is a simply closed geodesics. By the two point homogeneous property, each geodesics is simply closed with the same length, say ℓ on M^n . Furthermore if $\tilde{\gamma}(s)$ is an arbitrary geodesics on the universal covering space \tilde{M}^n then for any s the points $\tilde{\gamma}(s)$ and $\tilde{\gamma}(s+\ell)$ are mapped to the same point of M^n by ρ . This means that the points of a geodesic sphere with radius ℓ are mapped to the same point of M^n . Since ρ is immersion, the manifold \tilde{M}^n has to be a compact space; which has simply closed geodesics with the same length, say L; and a geodesic sphere $S_{p;\ell}$ with the centre p and radius ℓ has to be 0-dimensional cut locus C(p) regarding the point $p \in \tilde{M}^n$. The cut value on \tilde{M}^n is L/2 regarding every point and every direction, therefore $\ell = L/2$ and the cut locus $C(p) = S_{p;\ell}$

64 Z.I. Szabó

contains only one point. This means, that the space \tilde{M}^n is a sphere topologically, as it is the compactification of an open ball by 1 point. By the symmetry of \tilde{M}^n and by using geodesics variations we get that the Jacobi fields Y(t) satisfying Y(0) = 0; |Y'(0)| = 1 are of the form $(L/2\pi)$ (sin $2\pi t/L$) X(t) on such spaces, where X(t) is a parallel unit vector field along a geodesics. Therefore the space \tilde{M}^n is a round sphere with the constant sectional curvature $(2\pi/L)^2$ and the base space M^n is the real projective space $\mathbb{R}P^n$ with the elliptic metric. This completes the proof of (B).

Theorem 3(B) is proved for compact rank 1-symmetric spaces also in [4, pages 72].

Acknowledgements. I am indebted to P.B. Gilkey for our discussions and his help in preparing of this paper while visiting I.H.E.S. in autumn of 1990. I am also grateful to L. Fehér and A. Szücs for conversations; and to the Max Planck Institute für Mathematik, where the key topological idea was found [9], for the excellent working conditions.

References

- Besse, A.L.: Manifolds all of whose geodesics are closed. Berlin Heidelberg New York: Springer 1978
- 2. Birkhoff, G.: Metric foundation of geometry I. Trans. Am. Math. Soc. 55, 465-492 (1944)
- 3. Busemann, H.: Metrics methods in Finsler geometry and in the foundations of geometry. (Ann. Math. Stud. 8) Princeton: Princeton University Press 1942
- Chavel, I.: Riemannian spaces of rank one. Lecture Notes in Pure and Applied Mathematics; New York: Marcel Dekker, INC. 1972
- Chi, Q.-S.: A curvature characterization of certain locally rank-one symmetric spaces. J. Differ. Geom. 28, 187-202 (1988)
- 6. Helgason, S.: Differential operators on homogeneous spaces. Acta Math. 102, 239-299 (1959)
- Matsumoto, H.: Quelques remarques sur les espaces Riemanniens isotropes. C.R. Acad. Sci., Paris, Ser. I. 272, 316-319 (1971)
- 8. Nagano, T.: Homogeneous sphere bundles. Nagoya Math. J. 15, 29-55 (1959)
- 9. Szabó, Z.I.: Two point homogeneous spaces are symmetric (Short topological proof). Preprint of Max Planck Institut, für Mathematik Bonn, 64 (1989)
- Tits, J.: Sur certaines classes d'espaces homogenes de groupes de Lie. Mém. Cl. Sci., Collect. Octavo, II. Sér., Acad. R. Belg. (1955)
- 11. Wang, H.C.: Two point homogeneous spaces. Ann. Math. 55, 177-191 (1952)
- 12. Wolf, J.A.: Spaces of constant curvature. New York: McGraw-Hill 1961