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Two point homogeneous spaces have been studied by G. Birkhoff [2], H.
Busemann (3], J. Tits [10], and H.C. Wang [11]. Tits and Wang gave a classifica-
tion of these spaces; it turned out, just from this list, that these spaces were
symmetric.

We say that a connected locally compact metric space (M, d) is two point
homogeneous if for every pair of points (py,q;) and (p,,q,) with
d(p1,q1) =d(pa2,q2), there is an isometry T of M such that T'(p,) = p, and
T(q1) = q,. If M satisifies this condition, then the transitive isometry group of M is
a Lie group; furthermore, the isotropy group J,, describes a sphere as an indicatrix
at any tangent space. Consequently M" is a Riemannian manifold and we work in
that class henceforth.

It was a longstanding problem to find a direct proof that M" is symmetric. In
the non compact case, S. Helgason [6] found an elegant direct proof, but his
method did not work in the compact case. Other authors have given proofs using
methods which were heavily group theoretic; see for example M. Matsumoto [7],
T. Nagano [8], and J. Wolf [12]. Recently, Q.-S. Chi [5] proved the so called
Ossermann conjecture if n is odd or if n = 2 mod 4; this also gives a direct proof in
these cases. Chi uses vector bundle theory; this is also our approach in this paper.
However, there does not exist a simple proof in the literature so far covering all
cases.

In this brief note, we give a simple topological proof for this symmetry. The
main tool is the following; purely topological, Theorem 1.

Let S2~! = R" be the unit sphere in Euclidean space around the origin 0. We
identify the tangent space 7,5§ "' = {veR": P Lv} to provide a natural isomor-
phism between the tangent spaces at P and the antipodal point — P.

Theorem 1 (a) Let X (P) be a continuous tangent vector field on S&~* = R". Then
there exists an antipodal point pair + Py so that X (P,)=—X(—P,).
(b) In general, let X (P) be a continuous non-zero distribution on S§™*. Then there
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exists an antipodal point pair + P, such that the subspaces X (P,) and X (—P,) are
not independent, i.e. dim(X (Py)n X(—P,)) > 0.

Proof. (a) Let X ,,,(P) = 3(X (P) + X (— P)) be the symmetric part of X ; we must
prove there exists P such that X,,,(P) = 0. Suppose the contrary and let

f(P) = Xoyu(P)/|Xsym(P)|: 8" 1 > 571
be the normalized vector field. Consider the map
St Hooi(S" N Zy) =2, > H,o(S"7 L, Z) =2, .

Since f(P) L P, so f;(P) = sin(e) f(P) + cos(¢) P is a smooth homotopy from f to
the identity map. Therefore f, (1) = 1. Let RP = S/{ + 1} be the real projective
space and let 7:S — RP be the natural projection. Since for

Tf*:Hn—l(S"_l, 7,)=17, —’Hn—1(RP"_1, 7,)=1,

we have 7,(1) = 0, furthermore f, = f; o 7, therefore f, (1) = 0. This contradiction
completes the proof of (a). (Using Z-homologies, the following alternative proof
can be given: By the homotopy f;, deg f = 1 and by the symmetry f(P) = f(—P),
deg f is even.)

(b) Take an arbitrary continuous vector field v on S tangent to X such that
v vanishes only at one point, say at P,. There exists such v, because D = S\ P, is
contractible and X is trivial over D. Choose a non-zero section w to X on D and let
@:S - R be a continuous function satisfying @ ~!(0) = P,. Then v(P) = ®(P)
w(P) is a suitable vector field. Since v(—P,) #+ 0; there exists a point-pair
+Pi( #+ +Py) such that v(P,)=—v(—P,) *+ 0, ie. the subspaces X (P;) and
X (—P,) are not independent. O

Corollary 1 Let Ap(*) be a continuous operator field on S§~* (i.e. PeS8~ ! and
Ap(): Tp(SE8™ 1) > Tp(S271)) such that
(1) it is self adjoint: AF = Ap and “skew” in the sense. A_p= — Ap furthermore;
(2) the eigenvalues A, (P) £ A,(P)=<...Z< A,—1(P) of Ap are constant along
S&~1. Then Ap = 0 everywhere on S§™'.

Proof. We have to prove that every 4 is zero. Assume the contrary and let 4 be
a non-zero eigenvalue. Let V' (4, P) be the corresponding continuous eigensubspace
distribution on S5~ !. Since A_p=—Ap, so V (4, P) = V(—A, —P). Therefore
V(4, P) LV (4, —P) for all PeS§~!. This is impossible because of Theorem 1(b)
which proves the statement completely. O

Remark. Property (2) can be replaced by much more weaker assumptions, for
instance, by rank Ap = constant or by assuming that the multiplicity of the highest
eigenvalue A,_(P) is constant.

The symmetry of a 2 point homogeneous spaces directly follows from
Corollary 1.

Theorem 2 The locally 2 point homogeneous spaces are locally symmetric.

Proof. Apply Corollary 1 to the field Ax(*):=(VxR)(*, X)X where R is the
curvature, V is the covariant derivative and X is a unit vector. Fix a point pe M"
and consider the unit sphere S3~! = T,(M"). By the Bianchi identities, the Ax(*):
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Tx(S;~') > Tx(S;™'); X €Sy~ is a self-adjoint operator field on S}~ ! satisfying
the “skew” property A_x = — Ay as well. Since Ay is invariant under the transitive
action of the isotropy group J, on S;~!, it has constant eigenvalues. Therefore
Ax =0; (VxR)(*, X)X =0 at any point p which implies the local symmetry
VR = 0 easily (see [1, Proposition 2.35]). a

Let M" be a globally 2 point homogeneous space. Since M" is complete, its
universal covering space M" is globally symmetric. The global symmetry of the
base space M" directly follows from the next stronger statement, where we show
that a non-simply-connected globally 2 point homogeneous space has to be a real
projective space RP” with the elliptic metric.

Theorem 3 (A) The universal covering space M" is either the euclidean space R" or
it is a rank 1-symmetric space.

(B) If the covering map p: M" — M" is non-trivial, then the base space M" is the real
projective space R P" with elliptic metric and M" is the sphere S™ with round metric.

Proof. (A) Let M"=M oX M, x...x M, be the De Rham decomposition, where
M, is the euclidean component. Replacing each non-compact component by its
compact dual, the rank and the isotropy group remain unaltered; i.e. this new space
M*" = Mox M x...x M is two point homogeneous as well. If there is a non-
trivial compact component M x. . .x M then choose a closed geodesics y on
a maximal torus determined by the rank of M{ x...x M;*. By the existence of
such a v, all geodesics have to be closed on the covering space M *". Therefore the
rank of M *" must be 1; and consequently it is compact and irreducible; because in
the opposite case there exist also non-closed geodesics on a maximal torus deter-
mined by the rank. This completes the proof of (A).

_ (B) If the covering p: M" — M " is non-trivial then choose two points p + 4 on
M" satisfying p(p) = p(4) = P and connect these by a geodesics j(s), where
7(0) = pand y(L) = 4. The projected geodesics y(s) = p(7(s)); 0 < s < L; is closed,
since p(0) = y(L). We show that it is a smooth simply closed geodesics.

Let &, be a continuous family of global isometries on M" satisfying
D5(7(0)) = (s); Do (¥(0)) = ¥(5).

The isometries @, map the geodesics y onto itself, more precisely
D,(y(t)) = y(t + s) is satisfied. If Q = y(to) = y(¢,) is an intersection point on
y then

Pt + 5) = Ds(7(t0)) = Ps(y(t1)) = y(t1 +5)

and so j(to) = y(t,). This exactly means that y is a simply closed geodesics. By the
two point homogeneous property, each geodesics is simply closed with the same
length, say £ on M". Furthermore if j(s) is an arbitrary geodesics on the universal
covering space M" then for any s the points 7(s) and y(s + /) are mapped to the
same point of M" by p. This means that the points of a geodesic sphere with radius
¢ are mapped to the same point of M. Since p is immersion, the manifold M" has
to be a compact space; which has simply closed geodesics with the same length, say
L;and a geodesic sphere S, , with the centre p and radius # has to be 0-dimensional
cut locus C(p) regarding the point peM?”. The cut value on M"is L/2 regardmg
every point and every direction, therefore / = L/2 and the cut locus C(p) = §,,,,
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contains only one point. This means, that the space M"isa sphere topologically, as
it is the compactification of an open ball by 1 point. By the symmetry of M " and by
using geodesics variations we get that the Jacobi fields Y (¢) satisfying Y (0) = 0;
[Y'(0)| = 1 are of the form (L/2x) (sin 2nt/L) X (t) on such spaces, where X (¢) is
a parallel unit vector field along a geodesics. Therefore the space M" is a round
sphere with the constant sectional curvature (2r/L)* and the base space M" is the
real projective space RP" with the elliptic metric. This completes the proof of (B).

d

Theorem 3(B) is proved for compact rank 1-symmetric spaces also in [4, pages 72].
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