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Introduction

Let X be a regular Noetherian scheme. A recent prevailing trend is to seek the
motivic cohomology theory on X, that is a reasonable cohomology theory on X
which should play a universal role in the geometric and arithmetic aspects on X. In
[Be] Beilinson conjectured the existence of certain complexes of Zariski sheaves on
X, whose cohomology groups are related to the algebraic K-theory of X in the
same way as classical cohomology groups are to the topological K-theory. On the
other hand Lichtenbaum [L-1] predicted the existence of certain complexes of etale
sheaves on X. When X is an arithmetic scheme, namely a scheme of finite type over
Spec(Z), he expected that the cohomology groups arising from these complexes
should play a central role to describe special values of the zeta function of X.
Together with some complements given later by Milne [M-2], precise conjectures
are formulated when X is a proper smooth scheme over a finite field. In honor of
this fact, he called this hoped-for cohomology theory the arithmetic cohomology
theory and conjectured that it coincides with the cohomology theory arising from
the Beilinson’s conjectured complexes. He also expected that it satisfies an appro-
priate duality theorem. In the case that X is faithfully flat over Spec(Z), it should
compensate the lacking of a satisfactory duality of Poincare type for I-adic etale
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cohomology on X by the fact that any prime number can have ramification on X.
In this respect some results are obtained in [Sa-4] in the case that dim(X) = 2 by
using the wight-two arithmetic cohomology constructed in [L-2]. Candidates for
the hoped-for cohomology theory are given in [B1] and [B-M-S] though it is not
verified that they satisfy all of desired properties. In [B-M-S] it is named the motivic
cohomology theory following Grothendieck who looked for a cohomology theory
with certain universal properties.

In this paper we will observe how the notion of motivic cohomology gives a
wide overview of classical arithmetic theories for a number field or a function field
of one variable over a finite field, such as the class field theory, the theory of Brauer
groups and the reciprocity uniqueness theorem, and their generalizations to higher
dimensional global fields. We establish a formalism which exercise general and
systematic control over all these theories in terms of a duality between motivic
cohomology groups of an arithmetic scheme and its idele class groups constructed
by using the algebraic K-theory of X. Also we will investigate its relation with
certain arithmetic theories such as the Brauer-Grothendieck group of an arithmetic
surface (cf. [T-1]), a Tate’s conjecture on algebraic cycles on a variety over a finite
field (cf. [T-2]) and a Hasse principle for a variety over a global field.

To be more precise, fix an integral scheme X of dimension d which is proper
over Spec(Z) and let K be its function field. Note that in the case d =1, K is a
number field or a function field in one variable over a finite field which is called a
classical global field. We assume that X has no R-valued point. In general case all
statements hold true modulo two torsions. Now our fundamental implement is the
following general reciprocity homomorphism

Py :H' " (K, Z(i)) > lim Hom(C] (X), Q/Z).
ITc(y

First, for an integer i > — 1, H'*? (K, Z(i)) is a motivic cohomology group of K
whose precise definition will be given in §1. By definition

H'(K,Z(~ 1)) =Hom(u(K),Q/Z),
H*(K, Z(0)) = H'(K, Q/Z) ~ Hom,,,, (Gal(K”/K), Q/Z)
H*(K,Z(1)) = H*(K, G,,) ~ Br(K),
where u(K) is the group of all roots of unity in K, K* is the maximal abelian
extension of K and Br(K) is the Brauer group of K. Secondly, for an integer j = 0

and for an ideal I = Oy, CJ(X) s the j-th idele class group of X with the modulus I
which is defined by

Cf(X) = Hd(XNis’ K}Al(@Xa I)) )

where Xy, is a certain Grothendieck topology on X introduced by Nisnevich [ N]
and K¥(0y, I)is a relative version of the sheaf of the Milnor K-group on Xy;,. The
precise definitions are given in §2. We will see that C}(X) has an explicit presenta-
tion by symbols in the j-th Milnor K-groups of various henselizations of K. In
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particular, in the case that dim(X) =1 and X is regular, we get

Ci(X) ~ Coker(Kj."(K) - P (K}‘(&.)/U"’K}"(Cﬂ,)) .

reXo

Here X, denotes the set of all closed points of X. For ve X,,, K, denotes the
henselization of K at v and 0, is its ring of integers. Finally K¥(#) denotes the
Milnor K-group and U'*K ¥((,) denotes the I -th unit group, where I, = 1€, (For
precise definitions, see Notations below.) Thus the main results of the classical
arithmetic theories such as the theory of Br(K), the class field theory of K and the
reciprocity uniqueness theorem, are rephrased that ®% is an isomorphism for i = 1,
0 and — 1 respectively. (cf. §4)

The map ®% is constructed in the same way as @2, which is given in [ K-S, §3].
We will give its brief review in §6. In §4 and §S the lower dimensional cases
(dim(X) = 1 and 2) are treated, which may help to understand the general higher
dimensional case which is treated in §6. In §3 we also explain a philosophical idea
for the existence of ®% from motivic cohomological point of view.

Now the main results known so far are the followings (see §7 for more details).

Theorem(0-1). (1) The map ® is an isomorphism.

(2) The map &g is an isomorphism.

(3) Assume that X is regular of dimension two. The map ®% is an isomorphism.

(4) Assume that X is regular of dimension two. The kernel of the map @} is equal
to the Brauer-Grothendieck group Br(X) of X (cf. [G, 1]). For any prime number I,
Coker(@%)(1) = 0 if and only if Br(X)(l) is finite.

(5) Assume that X is a proper smooth scheme of dimension d over a finite field of
characteristic p. Fix a prime number | % p and for an integer i = 0, let

pi:CH(X)®Z, » H*(X, Z,(i))

be the cycle map where CH'(X ) denotes the Chow group of cycles of codimension i on
X (cf. SGA4L Cycles). Then, if p? ~ ! is surjective, Coker(®L)(l) = 0.

(0-1)(1) is the higher dimensional global class field theory established in [K-S]
and (0-1)(2) is the higher dimensional version of the reciprocity uniqueness theorem
which is also proved in [K-S]. (0-1)(3) is a rephrasing of a certain Hasse principle
for the motivic cohomology H*(K,Z(2)) of a two-dimensional global field K which
is due to K. Kato [K-5]. (0-1)(4) is proved in [Sa-4] and the proof of (0-1)(5) will be
given in §7 of this paper. Note that (0-1)(4) and (5) are related to a work of Tate
[T-1], where he proved the equivalence of the finiteness of Br(X)(I) and the
surjectivity of p! in case that X is a proper smooth surface over a finite field. It
should be noted also that a well-known conjecture by Tate [T-2] implies that p} is
surjective modulo torsion.

In the last section we consider the following problem. Let k be a classical global
field which is assumed to have no real place. Let P be the set of all places of k. Let X
be a proper smooth geometrically connected scheme over k. For ve P, let k, be the
henselization of k at v and put X, = X x, k,. Consider the following statement.



374 S. Saito

(H*) Assume that there exists a 0-cycle of degree 1 on X, for every ve P. Then
there exists a O-cycle of degree 1 on X.

Here, for a scheme Z, a zero cycle on Z is a formal finite sum ¢ = X n,(z) with
n, € Z, where z ranges over all closed points of Z and if Z is geometrically connected
over a field k, its degree is X n,[k(z):k]. There have been found some cases where
(H*) is true and fails to be true (cf. [Sal], [San] and [C-S-S]). In fact, following
Manin [Ma], for each collection ¢ = (c,),.p of O-cycles c, of degree 1 on X, and for
each weBr(X), we introduce a certain element w(c)e Q/Z which satisfies the
following conditions.

(a) If there exists a 0-cycle on X which gives rise to ¢, on each X,, then w(c) = 0
for any w e Br(X). In other words, if for any given ¢ as above we can find w € Br(X)
such that w(c) + 0, then (H*) fails to be true. In this sense w(c) can be viewed as an
obstruction for (H*).

(b) If e lies in the image of 1: Br(k) — Br(X), then w(c) = 0. In other words w(c)
depends only on the class of w in Coker(z).

Now our question is whether w(c) is the only obstruction for (H*). Namely, is
the following true?

(M*) If there exists ¢ as above such that w(c) = 0 for any we Br(X), then there
exists a 0-cycle on X of degree 1.

Concerning this, we give the following results (0-2) and (0-3). Put S = Spec(0,)
if k is a number field and O, is its ring of integers and let S be the proper smooth
model if k is a function field. Fix a normal model Z over S of X /k, namely & is a
connected normal scheme which is proper flat over S and such that
Z xgSpec(k) ~ X. Assume that dim(X ) = d so that dim(%Z') = d + 1. Let K be the
function field of X. For a prime number [, we consider the following condition.

(P,) The natural map

Br(X)(l)—»Ker(Br(K)(l)a ) Br(Ky)/Br(@y))
yeX!

is surjective. Here X' denotes the set of all points of X of codimension one and @, is
the henselization of the local ring of X at y and K| is its quotient field.

(P,) is conjectured to hold in general and known to be true in the case that
dim(X) < 2 (cf. [G-11, §2] and [Sa-4, (7-3)]).

Theorem(0-2). Assume that there exists ¢ as above such that w(c) =0 for any
weBr(X). Let | be a prime number and assume (P)). If the image of the map

oL :Br(K) - lim Hom(C{(Z), Q/Z)
IcOy
contains all homomorphism of order I, then there exists a 0-cyle on X whose degree is

prime to l.
As a corollary of (0-1)(4), (0-1)(5) and (0-2), we get the following

Theorem(0-3). Let X and & be as before. Assume that there exists ¢ as above such
that w(c) = 0 for any we Br(X).
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(1) Assume that d =-1 and Z is regular. Then, if Br(Z')(l) is finite, there exist
a 0-cycle on X whose degree is prime to l. In particular, if Br(Z') is finite, (M*) holds
true.

(2) Assume that k is a function field and that & is a proper smooth scheme over a
field ¥,. Let | be a prime number different from ch(F,) and assume (P,). Then, if the
cycle map

CHYZ)®Z,» H*(Z, Z,(d))
is surjective, there exist a O-cycle on X whose degree is prime to I.

This work was supported by University of California, Berkeley while the author was a Miller
Fellow. I would like to thank Professors S. Bloch, S. Lichtenbaum, D. Ramakrishnan and W.
Raskind for helpful conversations. I would also like to thank Professor J.-L. Colliot-Théléne and
the referee of this paper for their useful remarks. Finally I would like to express my special thank
to Professor K. Kato. Most of the basic ideas in this work have arisen in the course of my studies
with him on higher dimensional class field theory.

Notations

For an abelian group M, we put M¥ = Hom(M, Q/Z). For an integer n = 0, M,,

and M/n denote the kernel and the cokernel of M SM respectively. For a prime
number [, we put

M()= |J My, T\M =Hom(Q/Z,M) and M®Z, = lim M/I".

v20

For a scheme X, Br(X) denotes the Brauer-Grothendieck group of X (cf.
[G-I]). If dim(X) <1 or X is regular of dimension <2, we have Br(X)~
H*(X, G,,) (cf. [G-II Cor. (2-2)]). For xe X, Oy, denotes the local ring of X at x.
For an integer i >0, X' (resp. X;) denotes the set of all points xe X such that

dim(0y, ,) = i, (resp. dim({x} ) = i, where {x} is the closure of x in X.)

D®(X,,) denotes the derived category of complexes of etale sheaves of X,, with
bounded cohomology sheaves (cf. [SGA44, C.D.]).

Unless indicated otherwise, all cohomology groups are taken over etale
topology.

For a field F, F (resp. F*) denotes the separable closure (resp. the maximal
abelian extension) of F. For an integer i = 0, K ¥(F ) denotes the Milnor K-group
of F.

Let R be a discrete valuation ring with the quotient field F. For i > 0, KM(R)
denotes the subgroup of K ¥(F ) generated by all symbols {x,, . . ., x;} with x, € R*
for 1 <pu<i. For an ideal I < R(I # R), U'KM(R) denotes the subgroup
of KM(R) generated by all symbols {x,, ..., x;} with x,eR* for | < u <i and
x,€l + I. For I = R we put U'KM(R) = KM(R) by convention. We also define

Z ifl=R,

1M -
UKo(R) = {0 otherwise.
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For a positive integer n invertible on X, u, denotes the sheaf of n-th roots of
unity and for an integer i, we put Z/nZ(i) = u2'. If X is a scheme over F,, v,(i)
denotes the additive subsheaf of the de Rham-Witt complex W,Q} F, generated by
all logarithmic differentials (cf. [I]) and Z/p"Z(i) = v,(i)[ — i]. If Z/I"Z(i) is defined
on X for a prime number /, we put

H/(X, Q)/Z,(i)) = lim H/(X,Z/I'Z())) and HI(X, Z,(i)) = lim H(X, Z/I'Z(i)) .

§1. Motivic cohomology

In this section, we introduce a formalism of motivic cohomology theory following
Lichtenbaum [L-1]. Let X be a Noetherian regular scheme. For each non-negative
integer i, he postulated the existence of an object Z (i) of D®(X,,) which satisfies the
following Axioms.

(A-0) Z(0)= Z and Z(1) = G,,[ — 1].

(A-1) For i % 0, Z(i) is acyclic outside [1, i].

(A-2) If X = Spec(F), where F is a field, then H'* }(F, Z(i)) = 0.

(A-3) (1) For any positive integer n which is invertible on X, there exists a triangle

Z(i) 5 Z(i)> Z/nZ(i)— Z»O)[1] . (cf. Notations)

(2) (This is given later in [M-2, §27].) Assume that X is an essentially smooth scheme
over a perfect field of characteristic p # 0. Then for any positive integer n, there
exists a triangle

Z(i) 5 2Z(i)-Z/p"Z>G)—~ Z)[1] . (cf. Notations)
(A-4) There is a product map
L
LOSQLN-Zi+)).

(A-5) If F is a field, we have a canonical isomorphism
H(F,Z(i)) ~ KM(F).
The following is easy to see.

Lemma(1-1). Let K be a field. Assume that there is Z(i) in D*(Spec(K),,) satisfying
(A-1) and (A-3).
(1) H(K, Z(i)) is a torsion group for j =i + 1.
(2) Let i and j be integers such that j = i + 2 and let | be any prime number. Then
we have
HI(K, Z(i))() ~ H = Y(K, Q,;/Z,(i)) . (cf. Notations)

(3) Let | be a prime number. If cd(K)=r < oo, then H/(K, Z(i))() =0 for
jZmax{r+2,i+2}.
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By (1-1)(2) we are naturally led to propose the following

Definition(1-2). Let K be a field and let i, j be integers such that i > — 1 and
j 2 i+ 2. Then we define H/(K, Z(i)) to be the torsion group whose I-primary part
is given as in (1-1)(2). By definition we have

H'(K, Z(- 1)) = Hom(u(K), Q/Z), (1-2-1)
HZ(K’ Z(O)) = HZ(K, Z) & Homconl(Gal(Kab/K)7 Q/Z) > (1'2'2)
H3(K, Z(1)) = H*(K, G,,) ~ Br(K) , (1-2-3)

where 4(K) denotes the group of all roots of unity in K.

Lemma(1-3). Let i, j and h be integers such that i 2 — 1,j 2 i+ 2 and h 2 0. Then
there exists a canonical pairing

H/(K, Z(i)) x KM(K)—> H *"(K, Z(i + h)) .
Proof. Let | be a prime number. If |  ch(K), we have Galois symbols by Tate [T-3]
KM(K)— H"K,Z/I"Z(h)) .
If I = ch(K), we have differential symbols (cf. [I] and [K-1, IT])
K}!(K) = H(K, v,(h) = H*K, Z/p"Z(h)) .

Now the above pairing is obtained by the cup product on the Galois cohomology
together with the product map for Z/I"Z(i) and Z/p"Z(i). Note that if we admit
(A-5), the pairing should come from the product structure (A-4).

Now we give an important result on the arithmetic cohomology of a discrete
valuation field.

Theorem(1-4). ([K-1, II] and [K-2]) Assume that K is an excellent henselian
discrete valuation field with residue field F. Let | be a prime number.

(1) Let i and j be integers such that j =i+ 2. If | & ch(F), there exists a
canonical exact sequence

0 — H/(F, Z(i)() » H/(K, Z()() » H' = '(F, Z(i = 1))() = 0.
(2) Assume that | =p:=ch(F) and [F:F?] =p" < oo. Then there exists a
canonical isomorphism
H XK, Z(r)(p) ~ H"* ' (F, Z(r — 1))(p) .

Corollary(1-5). Assume that K is a henselian higher local field of dimension d, that is,
there exists a sequence of fields,

ko kyy ... kg=K

such that ko is a finite field ¥, and that k;, , is an excellent henselian discrete
valuation field with residue field k; for 0 < i < d — 1. Then there exists a canonical
isomorphism

HY**(K,Z(d))~Q/Z.
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Proof. By (1-4) and (1-1)(3) we get isomorphisms
H**%(K,Z(d) ~H** Y(k;_ ,,Z(d — 1)) ~ ...~ H*(ko, Z(0)) .
Hence the desired isomorphism is obtained by the natural isomorphism (cf. (1-2-2))
H?(ko, Z(0)) ~ Hom(Gal(F*/F,), Q/Z) ~ Q/Z; x — x(f) ,

where f'is the Frobenius element over F,.
Let K be a henselian higher local field of dimension d. By (1-5) and (1-3) we get a
canonical pairing

o HPP K, ZG3) x K& (K)—> H " 2(K, 2(d)) = Q/Z . (1-6)

Theorem(1-7). ([K-1, IT] and [K-3]) (1) Let ce H'* 2 (K, Z(i)) and let L/K be a
finite separable extension such that the image of ¢ in H'* 2(L, Z(i)) is trivial. Let

NL/k:Kzliw-—i(L) - Kj"i(K)

be the norm map for Milnor K-groups for fields (cf. [B-T] and [K-1, II]). Then we
have

(e, Npx(@) ;=0 for any ae K} (L) .

(2) The pairing <, »; induces a canonical homomorphism

®%:H'*2(K, Z(7)) - lim Hom(K}_ ,(K)/U'K¥_ (R), Q/2) ,
IR
where R is the ring of integers of K and I ranges over all ideals of R. (By definition K is
a discrete valuation field.)
(3) The map @, is injective.

Remark (1-8). (1-7)(2) follows from (1-7)(1) together with the fact that if we take a
sufficiently small ideal I < R, then 1 + I < N x(L*).

§2. Idele class groups

Let X be a Noetherian scheme. In this section we introduce the idele class groups of
X and review its fundamental properties. All details and proofs of results in this
section are in [K-S]. First we introduce a certain Grothendieck topology Xy;, on X
introduced by Nisnevich [N]. As a site it is defined as follows; as a category, X y;, is
the same as the small etale site over X. A family of morphisms (f,: U, = U), in Xy
is a covering if and only if for any x e U, there exists an index x and a point ye U,
such that

L) =x and k()= k().

By definition, X y;, is an intermediate topology between X,,, and X ,. For xe X the
localization of X at x in this topology is nothing other than the henselization of X
at x. First we recall some basic properties of X;,.
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Fact (2-1). Letf:Y — X be a finite morphism between Noetherian schemes. Then
the direct image functor

Jo: Ynis = Xnis
is exact

Fact (2-2). Let # be an abelian sheaf on Xy;,. The theory of supports exists for
Xnis and we have a spectral sequence

EFi= @ H2 9 Xyiy F )= H*(Xpiso F ) - (2-2-1)
xeXP

For each point xe X, let X, be the henselization of X at x. We have an
isomorphism

H ™Y ( X, — X)nissy F ) > Hi(Xnis F) foriz2, (2-2-2)
and an exact sequence
HO((X)niss F ) = HU((X = Iniey F ) = Hi (X iy ) 2 0. (2:2-3)
By the induction on dim(X) we can see
EP4=0 forg>0orp>dim(X), (2-2-4)
H(Xnis, ) =0 fori> dim(X). (2-2-5)

Fact (2-3). Assume that X is integral of dimension d. Let %, % be abelian sheaves
on Xyj- Then we have an isomorphism

Hd(XNiw '97) = Hd(XNis’ g)

under the following conditions. For a point xe X, let &, %, denote their stalks
at x.

(1) There exists an isomorphism ¢: %, ~ %, where A is the generic point of X.
(2) For each point e X! put

F\n) = Im(F, > F,) and %) = Im(%, > %,) .
Then ¢ induces an isomorphism % (1) ~ %,(n) for each ne X'

(2-3) follows from (2-2) and will be used in the next section.
Now we can introduce our idele class groups of X.

Definition (2-4). Let d = dim(X). For an integer i = 0 and for an ideal I = Oy, the
i-th idele class group of X with modulus I is
Ci(X) = H (X5, KM(Ox, 1)) .
Here, for any scheme Z, we put
i times
f__—);—\
KM, =Z and KM0,)=0}® ... R®0%J fori>0,

where J is the subgroup generated by all local sections of the forms x; ® . .. ® x;
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such that x, + x, = 1 for some 1 < u # v <i. For i > 0 we put
K¥(Ox, I) = Ker(K{(Ox) » K¥(Ox/1)) .
For i = 0 we put
K§(0x, 1) =jZ,
where j: U g X is the complement of Supp(Cy/I) in X and j; denotes the extension

by zero outside U.

Remark (2-5). The choice of the above notations is rather confusing. For the stalks
of the sheaves KM (0y) and KM(0y, I) do not necessarily coincide with the usual
notations for the Milnor K-groups of rings and its relative version. This in-
consistency is remedied by (2-3) and (2-7) below.

In what follows, we give some basic results known for Ci(X).

Fact (2-6). (Transition maps) For J < I < (U, the natural map
K¥(Ox,J) = KM(Ox, 1)
induces surjective homomorphisms
Ci(X)- Ci(X).
In fact this follows at once from (2-2-5).

Fact (2-7). Assume that X is integral of dimension d and let K be its function field.
For anideal I c Oy, let KM (4, I) be the image of K ™((y, I) in the constant sheaf
KM(K). Then we have an isomorphism

Ci(X) =~ HY( Xy, KM(Ox, I).
This follows at once from (2-3).

Fact (2-8). (Natural maps) Let f: Y — X be a finite morphism of integral schemes.
Let K (resp. L) be the function field of X (resp. Y). Let I ¢ O and put J = IOy.
Then the natural map K¥(K)— K¥(L) induces a natural map

K¥(Ox, 1) > KM (0y,J)
and we get a canonical map
R:Ciy(X)— Ci(Y).
Fact (2-9). (Norm maps) Let the assumptions be as in (2-8). Let
N:KM(L)— K¥(K)

be the norm map for Milnor K-groups of fields (cf. [B-T] and [K-1, IT]). Then, for
any I < Oy, if we take a sufficiently small J = @y, N induces

S K¥ (O, J) = KM(Ox, ) .
Thus, by (2-1) we get a norm map
N:Ci(Y)- Ci(X).
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We can see that the composite map

: : R . N . .

lim C}(X) ~ lim C}(X) - lim C}(X)

IcOy Jc oy [cOy
coincides with the multiplication by [L:K].

Fact (2-10). The idele class group C(X ) has an explicit presentation by symbols in
the i-th Milnor K-groups of various henselizations of K. The general description
will be given in §6.

§3. Reciprocity maps and motivic interpretation

Let X be an integral scheme which is proper over Spec(Z). Let K be its function
field. We assume that X has no R-valued point. The following theorem plays a
fundamental role in this paper.

Theorem (3-1). Let d = dim(X). For an integer — 1 < i < d, there exists a canonical
homomorphism

@i H'" (K, Z(i) > lim Hom(C7™'(X).Q/Z) .
IcOy

Remark (3-2). (1) By [Se-1, Ch. II Pr. 11 and Pr. 14], we know that ¢cd(K) =d + 1.
Hence, by (1-1-3) we have

H**(K,Z(i))=0 forizd+1.

(2) Let f: Y — X be a finite morphism and let L be the function field of Y. Then we
have commutative diagrams

H* (K, Z(i)) > lim Hom(C?~(X), Q/2)
Ic@y

lResKJ,_ le
H*2(L, Z(,'))ﬁ_,li_m Hom(C5~/(Y),Q/Z),
JcCy
H* (L, Z(i))—i h_rq Hom(C§™(Y), Q/Z)
lcorLsx i l R¥
Hi* (K, Z(i))—?i’EE} Hom(C{ (X),Q/Z) .
Ilc@y

The construction of @ is essentially the same as that of ®% given in [K-S]. Its
outline will be given in §6. In this section we will explain its philosophical idea from
motivic cohomological point of view, which is not really necessary for under-
standing the rest of the paper.
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First assume the following

Assumption (3-3). For a sufficiently small dense regular open subscheme U g X
and for each integer i = 0, there exists Z(i) in D*(U,,) which satisfies (A-0) and (A-1)
and satisfies (A-3) and (A-5) at its generic point.

We should have

H " %(K, Z(i)) ~ m H*2(U, Z(j)),
UcX

where U ranges over all dense regular open subschemes of X. Hence we are reduced
to construct a homomorphism

H'* (U, Z(i)) > lim Hom(C7 ™ (X), Q/Z), (3-4)
leSy

where £, denotes the set of all ideals I = Oy such that 10, = O,,.

Theorem (3-5). Let j: U g X be a dense open regular subscheme and assume (3-3).
Then there exists a canonical homomorphism
0:H**2(X,j!Z(d)) > Q/Z .

In [Sa-4] the canonical map 6 is constructed and proved to be an isomorphism
in the case that d = 2 by using Z(2) defined by [L-2]. The construction of 6 in
general case is essentially similar to this case but much more complicate. When X is
a proper integral scheme over a finite field F,, 6 can be constructed also by using
(A-3) and the trace map for etale cohomology, at least neglecting the p-part (cf.
[M-2]).

Now (3-5) gives a canonical pairing

H P 2(U, ZG) x H¥ (X, jiZ(d — 1)) > H**2(X,j,Z(d)) > Q/Z

which induces a canonical homomorphism
H'**(U, Z(i)) » Hom (H** ~{(X, i Z(d — 1)), Q/Z) . (3-6)
Next we assume the following

Assumption (3-7). Let R be an excellent discrete valuation ring with the quotient
field L. Then, for each ideal I = R (I #+ R) and for each non-negative integer i, there
exists an object Z(i); in D*(Spec(R/I),,) which satisfies the following

(0) For I=(0), Z(i); = Z(i) conjectured by [L-1] (cf. §1).
(1) Z(0); = Z on Spec(R/I),, and Z(1); = G, g, [— 1].
(2) There exists a canonical isomorphism

H'(R, Z(i);) ~ K¥(R)/U'K¥(R) .
(3) There are natural maps

10 L)) = Z(i), and 1, ;:Z(i); = Z(i),,
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where J = I = R. These maps should satisfy the obvious compatibility. Also they
are compatible with the isomorphism in (2) in an evident sense.

Fix a non-zero ideal I = Uy. For ne X' let R, be the local ring of X at # and put
I, =10y. Let X | be the subset of X' consisting of all 7€ Supp(0x/I). By (2-9) we
may replace X by its normalization for the construction of @%. Thus we may
assume that R, is a discrete valuation ring for all 7€ X*. Then (3-7) gives an object

Zi);: = @ Z(y, in D”(( 11 Spec(R,,/I,,))e,>.

nexj neXj
~—_
Let Z(i), = t*Z(i); be its extension by the natural morphism
] [,ex: Spec(R,/1,) = X. Finally we put

JrZi) = Ker(Z() - Z(i))
For J = I = Oy, we have natural maps
W) = jyZG) = j, Z(i)
which induce the natural maps
H* (X, JZ() - H* 74X, j,Z(0)) » H* 7 (X, j, Z()) -

Assumption (3-8). The map (3-6) factors through a canonical homomorphism

H'*2(U, Z(i)) - lim Hom(H*'~'(X, j, Z(d — 1)), Q/Z) .

le sy
Now (3-8) reduces the construction of the map (3-6) to that of a canonical map
HX) > H (X0, i Z(j)) forjz0. (3-9)

Let 7: X,, — Xy;s be the natural morphism of sites and put # = Rin * j, Z(j) and
% = K¥(0Ox, I). Let A be the generic point of X and let ne X*. Then, by (3-3)
and (3-7)(2), we have (cf. (2-3))

Fa~KY(K)~9%, and F,(n)~ Ul K¥(R,)~%,\n).
Hence (2-3) gives an isomorphism
CH(X) = H'(Xyis, K} (Ox, 1)) = HY (X i, Ry j1 Z()))- (3-10)

Now the desired homomorphism (3-9) is obtained as the composite of (3-10) and
the edge homomorphism

HY(X e, RIMji Z(j)) > H* (X oy, j1 Z()))
in view of (2-2-5).

§4. One dimensional case

In this section we assume that X is a one-dimensional regular scheme which is
proper over Spec(Z). Let K be its function field. We assume that X has no
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embedding into R. For ve X, let (), be the henselization of the local ring of X at v
and let K, be its quotient field. We have the following explicit description of our
idele class group.

Lemma(4-1). For any integer i = 0, there exists a canonical isomorphism

Ci(X) ~ C0k6r<K?’(K)—‘ @ K?‘(Ku)/U’l-K?'(m.,)>,

veXo

where I, = 10,

Proof. By (2-2) we have an exact sequence

K¥(K) = H°(Spec(K)nis, KM(Ox, D)) > @ H;(Xnis, K¥(Ox, 1)) - Ci(X) -0

ve Xo
and for ve X,
H;(Xnis, K¥(Ox, I) = Coker(H(Spec(U,)nis, K¥(Cx, 1))
— HO(Spec(K,)nis, KM (O, 1))
~ KM(K,)/ULKM(0,) .
This proves our assertion. Note that in the case i = 0 we get

C?(X) ~ Coker (Z - P Z) -

veZ,

where Y ; denotes the subset of X, consisting of all ve Supp(Cy/I).
By (1-5) we have a canonical isomorphism for each ve X,

0,: H*(K,, Z(1)) ~ Q/Z .

Noting (1-2-3), this is nothing but the classical isomorphism for the Brauer group of
a local field (cf. [Se-2, XII]). Furthermore, by (1-6) and (1-7), we have a canonical
pairing for — 1 <i <1,

H'*(K,, Z(i)) x K{_(K,) > Q/Z
which induces a canonical homomorphism

@, H'* (K, Z(i)) - lim Hom(K{_(K,)/UK{_(0,), Q/Z).
I,c0,

From classical arithmetic theories, we get the following results.

Fact (4-2). In view of (1-2-3) the map @} gives an homomorphism
H*(K,,Z(1)) » Q/Z.

It is nothing but the map 6, and it is an isomorphism.

Fact (4-3). In view of (1-2-2) the map @ gives

H'(K,,Q/Z) - lim Hom(K}/U, Q/Z),

1,0,
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where Ul is the I,-th unit subgroup in O*. It is nothing other than the dual of the
classical reciprocity map for K, (cf. [Se-2]) and it is an isomorphism.

Fact (4-4). In view of (1-2-1) the dual of @, ! gives
d,: K¥(K,) = u(K,) .
It is nothing other than the classical Hilbert symbol and it is an isomorphism. In
fact let K, be the completion of K, and let
S, K¥(K,) - p(K,) = n(K,)
be the Hilbert symbol for K,. Moore proved that 5, is surjective and Ker(d,) is

A

divisible (cf. [Mi, Appendix]). Tate [T-4] and Merkurjev [Me] proved that Ker(d,)
has no torsion so that it is uniquely divisible. Finally, by [Su, Cor. 3-12],

K¥ (K)o KEK )i -

This proves our assertion. In particular, we can see that ULK¥(K,) =0 for a
sufficiently small I, < 0.
Finally our fundamental homomorphism

@i H'* (K, Z(i)) - lim Hom(C} ~(X), Q/Z)
Ic Oy

is obtained from all maps ®! for ve X, together with the following classical result.

Theorem (4-5). (Reciprocity law). For ce H*(K, Z(1)) ~ Br(K), its image c, in
H3(K,,Z(1)) ~ Br(K,) is trivial for almost all ve X,. Moreover we have

Y. 6,(c,)=0.
veXo
By the classical arithmetic theories, we have the following results.

Fact (4-6). The map ®% is an isomorphism, which is equivalent to say that the
following sequence is exact.

0 - Br(K) > @ Q/Z5Q/2 -0,

where ¢ is the addition map and
l(w) = {ev(wv)}ve){o ‘

Here for w e Br(K), w, denotes its image in Br(K,).
Fact (4-7). The map @2 gives

H'(K,Q/Z) - lim Hom(C}(X), Q/Z) .
IOy
By (4-1) C}(X)is the finite part of the classical idele class group with the modulus I
and the map is nothing but the dual of the classical reciprocity map of the global
class field theory. Thus it is an isomorphism.
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Fact (4-8). The map @ ! is an isomorphism, or more precisely we have a canonical
isomorphism

CHX) = u(K)
for a sufficiently small I = Oy. In view of (4-4) this is equivalent to say that the

following sequence is exact, which is known as the reciprocity uniqueness theorem
due to C. Moore (cf. [Mi, §16]).

K,(K) > @ u(K,) S uK)—0.

veXo

Here the map 1 is given by
l(a) = {5u(au)}vexo s
where a, is the image of ae K,(K) in K,(K,). The map p is given by

p({(v}vexo)= l_I '3”,

veXo

where d, = [u(K,): p(K)].

§5. Two dimensional case

In this section we assume that X is a two-dimensional normal scheme which is
proper over Spec(Z) with the function field K and give the construction of our
fundamental homomorphism ®%. For this we introduce some conventions. For
xe X, (resp. ne X,), O, (resp. 0,) denotes the henselization of the local ring of X at
x (resp. n7), K, (resp. K,) denotes its field of fractions, and x(x) (resp. x(17)) denotes
its residue field. For a fixed x € X, put P, = Spec(?,),. For € X, , denotes the
set of all xe X, which lie on the closure of # in X. Put

PX)={0=(x,n)|xeX,,neX,xen,} .

For § = (x, n)e P(X), let P; denote the subset of P, consisting of all 1€ P, which lie
overn. Forafixedne X, put P, = L[xe,,o P, - Itis in one-to-one correspondence
with the set of all finite places of k(n). For 1€ P, let O, denotes the henselization of
0, at A, x(4) the residue field of A and K, denotes the field of fractions of ¢;. By
definition, there are natural maps

i.;,:K,— K, forxeX,and ieP,,
1.2:K, = K, fordé=(x,n)eP(X)and 1€P;.
Lemma(5-1). For an integer i 2 0 and an ideal I = Oy, we have a canonical

isomorphism

Ci(X) z( D D KH(K/U K?’(%))/A )

deP(X) AeP,

where I, = 10, and A is the subgroup generated by all elements (a,), of either of the
following types.
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(1) There exists xe X, and b, e KM(K,) such that
a, = lx,/l(bx) lf'J“EPx’
70 otherwise.
(2) There exist ne X, and b,e K} (K,) such that
g = 1, 1(b,) if ke P,
270 otherwise.
Proof. Put # = KM(0Oy, I). By (2-2) we get an exact sequence
@ H;Xni F)=» @ Hi(Xyis, F) - Ci(X) -0, (5-1-1)

neX, xeXo
and a surjective homomorphism
KM(K,) = H°(Spec(K,nis» # ) = H) (Xniss F ) (5-1-2)
and an isomorphism
Hi(Xnie» ) = HY((Xx — X)niss F) -
Applying (2-2) to the one-dimensional scheme X, — x, we get an exact sequence

K:W(Kx) = HO(Spec(Kx)Nis’ F ) = @ H}.((Xx - x)Nis’ '97)

AePx
- H'((X; — X)niss F )0
and an isomorphism
H (X, — X)niss F ) = Coker(H®(Spec(Uz)nis, # ) > H®(Spec(K)nis, £ )
~ K¥(K,)/ULKM(0,) .
Hence we get an isomorphism
H(Xnis, F) Coker<K?‘(Kx) - 1@;» K?’(K;)/U’*K?‘(%)> .

This together with (5-1-1) and (5-1-2) proves our assertion.
Now we give the construction of our fundamental homomorphism

Py :H'* (K, Z(i)) > lim Hom(C} ~'(X), Q/Z) .
IOy
Let ce H' * 2(K, Z(i)) and let L/K be a separable extension such that the image of ¢
in H'* 2(L, Z(i)) is trivial. By definition, for € P(X) and A€ P;, K, is a henselian
local field of dimension two in the sense of (1-5). Hence (1-5) gives a canonical
isomorphism

0,:H*(K;, Z(2) ~Q/Z
and (1-6) and (1-7) give a homomorphism
®i(c):KY_i(K;) > Q/Z,
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where ¢, is the image of ¢ in H'* 2(K,, Z(i)). Moreover, if we take a sufficiently
small I = Oy, then it satisfies the following condition for any A: If the extension
LK /K, is unramified with respect to the discrete valuation of ¢, then 10, = 0,. If
it ramifies, then the subgroup 1 + 10, of % is contained in the image of the norm
map (LK,)* — K*. Then, by (1-7)(1) the collection of the homomorphisms ®(c;)
for all 4 gives a canonical homomorphism

Pi(c): @ P KY_(K,)/ULKY_ (0,)-Q/Z,
3eP(X) JeP,

where I, = 10,. Finally, in view of (5-1), ®i(c) induces the desired homomorphism
Pi(0):Ci (X)) ~>Q/Z
by the following two reciprocity laws in the two-dimensional context.

Theorem (5-2). (cf. [Sa-1, Ch. I]) For ce H*(K,, Z(2)), its image c; in H*K,, Z(2))
is trivial for almost all € P,. Moreover we have

Z QA(CA) = 0 .
AePy

Theorem (5-3). Assume that k(1) has no embedding into R. For ce H*(K,, Z(2)), its
image c, in H*(K,, Z(2)) is trivial for almost all 1€ P,. Moreover we have

Z 0;(c;)=0.
leP,
In view of the isomorphism (cf. (1-3-2) and (1-2-3))
H*(K,, Z(2)) ~ H*(x(n), Z(1)) =~ Br(x(1)) ,

(5-3) follows at once from the classical reciprocity law for x(x).

§6. Higher dimensional case

In this section we treat the general dimensional case. First we must recall the
following (cf. [K-S, §1])

Definition (6-1). Let X be a Noetherian integral scheme of dimension d.
(1) A chain on X is a sequence é = (p,, - . . , p,) of points p; of X such that

{po} c{pi} = ... ={n}.

(2) Let P(X) denote the set of all chains é = (p,, . - . , pg) on X such that p;e X;.
(3) For 0 £ 5 £ d, let Q,(X) denote the set of all chains 3 = (g, . ..,q4-;)on X
such that g;eX;for0<i<s—land qeX;,,fors<i<d—- 1
(4) For 9€ Q,(X), let S(9) denote the set of all xe X such that

S(X):=(QO9 DR 1qs—1sx7qs! LR ’qd—l)eP(X)

Definition (6-2). Let X be as in (6-1) and let 6 = (py, . . ., P,) be a chain on X.
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(1) We define the ring O; as follows. If r = 0, let ()5 be the henselization of the local
ring of X at p,. Assume that r = 1 and put 6’ = (p,, . . . , P, - ;). By induction we
have defined the ring R = (/.. Let T be the set of all prime ideals of R which lie over
p,. For ne T let R, be the henselization of R at n. We define

0,=[1R,-
neT

(2) For e P(X), let P; denote the set of all minimal points of Spec(¢/;). Then we
have

(06= I_I Kl

A€P,

where K; is the localization of @5 at 4 and it is a field.
(3) For e Q,(X) with 0 £ s < d — 1, let Py denote the set of all minimal points of
Spec(@y). We have

0y = [1 K,
veP

where K, is the localization of ¢y at v and it is a field.
(4) If € Q,(X), S(9) consists of the unique generic point A of X and if X is normal
we have

0s=T1 0,.

A€P;

Here 6 = 9(A) and for Ae P; (0, is the localization of (/4 at the unique minimal point
of Spec((y) which lies under Ae P;. 1If 8 = (po, . . ., ps— 1), U3 is a henselian discrete
valuation ring which dominates the discrete valuation ring Ox , = and K; is the
quotient field of ;.

Now we have the following explicit presentation of idele class groups. Here, for
a product of fields, its Milnor K-group denotes the product of the Milnor K-group
of each field.

Theorem(6-3). ([K-S, §1]). Let X be an integral normal Noetherian scheme of
dimension d and let K be its function field. Let I = Oy be an ideal. For any integer
i 2 0, there exists a canonical isomorphism

Ci(X) 2( @ D K?’(KA)/U’*K?'(GA))/A ,

3eP(X) jeP,

where I, = 10, and A is the subgroup generated by all elements (a,); of the following
type: There exists an integer 0 < s <d — 1, e Q,(X) and an element bye KM (0Og)
such that

85 = (@)icp. = 19.9(x)(bs) if & = 9(x) for some x € S(9),
R (U otherwise,
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where
19,800 KM (Og) » KM (Og(x))

is the natural map.

Now we return to the case where X is an arithmetic scheme, namely an integral
scheme which is proper over Spec(Z). We assume that X has no R-valued point.
For the definition of our fundamental homomorphism

@y H'* (K, Z(i)) - lim Hom(C{ ~'(X), Q/Z),
IcOy

we may assume that X is normal by (2-9). By [K-S, §3],for e P(X) and Ae P, K
is naturally endowed with a structure of a henselian local field of dimension d in the
sense of (1-5). Hence (1-5) gives a canonical isomorphism

0,:H*%(K,,Z(d))~Q/Z.

Now the rest of the argument is exactly the same as that of the case of dimension
two except that we need the following reciprocity law in this higher dimensional
context instead of (5-2) and (5-3).

Theorem(6-4). ([K-S, §3]). Let 3€Q,(X) with0 < s <d — 1. For any element

CEHd+2((99, Z(d):= l—l Hd+2(Kv’ Z.(d))

VEP9
its image cyy) in
H'* 2Oy, Z(d):= [] H***(K;, Z(d))
).EP;;(K)
is trivial for almost all x € S(8). Moreover we have

Y. Oy(cyny) =0.
xeS(9)

Here Oy, is the composite map

Hi* 20y, Z@d) > [] Q/Z>Q/Z,

A€Py(x)

where a = [ |icp,,, 01 and o is the addition map.
Definition (6-5). Let X and K be as before. Then we put
DiX)= () Ker(H‘+ 2K, Z() -~ [] H'*2(K,, Z(i))).
deP(X) AePy
By the definition of @ and the injectivity of ®% (cf. (1-7)(3)), we get the following
Theorem (6-6). Ker(®%) = Di(X).

In other words ce H' * 2(K, Z(i)) lies in Ker(®%) if and only if ¢ trivialized under
all henselizations of K attached to de P(X) in (6-2).
Finally we consider the following problem.
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(*) Let U be a nonempty open subscheme of X. Then, can one tell if an element
we H'*2(K, Z(i)) belongs to the image of H' * 2(U, Z(i)) (though it is not defined in
general) in terms of @i ().

Concerning this, we have the following results.

Proposition (6-7). Assume that U is regular. Then we H*(K, Z(0)) ~ H'(K, Q/Z)
belongs to the subgroup H'(U, Q/Z) if and only if there exists a coherent ideal
J < Oy such that JO, = Oy and that

Py (w)e Hom(CH(X), Q/Z) .

Proposition (6-8). Assume that U is regular and put

yeU!

Br(U) = Ker(Br(K)a ) Br(Ky)/Br((Oy)>.

Here, for ye X', O, is the henselization of the local ring of X at y and K, is its
quotient field. Then we H*(K, Z(1)) ~ Br(K) belongs to the subgroup Br(U) if and
only if there exists a coherent ideal J = 'y such that JO, = O, and that

Pk(w)eHom(Cj™ '(X), Q/Z).

Remark (6-9). Clearly we have Br(U) G/I;I{(U). It is conjectured that it is an
isomorphism and it is true if dim(X) < 2.
Note that by [SGAL1, X (3.1)] we have

HY(U,Q/Z) ~ Ker(H‘(K, Q/Z) -~ 6—) Hl(Ky, Q/Z)/H‘((Qy, Q/Z)).
yeU!

Thus (6-7) and (6-8) follow from the following local theory in codimension one: Fix
yeX'. Let v denote 0 or 1. Then there exists a projective system of abelian groups

{C:'I.E "W s>
where i ranges over all integers = 1 and J ranges over all ideals of ¢y such that
J, = Oy, ,. We put
C!™¥(y) =lim C{7°(y) -
iJ
We have the following facts.

Fact(a). There exists a canonical homomorphism
@y:C*7M(y) - lim C7 (X)),
cly
where I ranges over all non-zero coherent ideal of ¢y. For a fixed I = Oy, the
composite map C?~¥(y) - C§~*(X) factors through C{7"(y) for some i and J.

Fact(b). Let T be a finite subset of X'. Let I and J be non-zero ideals of ¢y such
thatI = J,I,=J, forany ye X' — Tand that J, = O , for any ye T. Then ¢, for
yeT yield an exact sequence

@C (- Ci(X) > Ci7Y(X) >0,

yeT
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Fact(c). There exists canonical homomorphism

®):H'(K,, Q/Z)/H"(0,, Q/Z) - lim Hom(C{ ,(y), Q/Z) ,
i,J

@, :Br(K,)/Br(¢,) - lim Hom(C{; '(y), Q/Z) .
iJ
These maps are isomorphisms and are compatible with @ and @} with respect to
the maps ¢, and the natural maps

H'(K,Q/Z)- H'(K,,Q/Z)/H'(0,,Q/Z),
Br(K) — Br(K,)/Br(0,) .
In [K-S, §8] it is proved that the above theory exists for the case v = 0. The

other case is obtained in the similar way. The two-dimensional case is given in
[Sa-4].

§7. Results and conjectures

Let X and K be as the beginning of §3. In this section we state main results known
concerning our fundamental map (3-1) and give some conjectures.

Theorem (7-1). ([K-S]) (Higher dimensional class field theory) Assume that
dim(X) = d. Then

&y :H'(K, Q/Z) - lim Hom(C{(X), Q/Z)
IcOy

is an isomorphism.

Corollary (7-2). Let X be as (7-1) and let U be a nonempty regular open subscheme.
(1) The map ®% induces an isomorphism

@) H' (U,Q/Z) ~ lim Hom(C¥(X), Q/Z) .
Iesy

Here ¥, denotes the set of all non-zero coherent ideals I — Oy such that 10, = O.
(2) Assume that X is proper and smooth over a finite field of characteristic p. Fix an
integer n > 0 which is prime to p. Then, for any 1.9, such that Supp(Ox/I) =
X — U, @9 induces an isomorphism

H'(U, Z/nZ) ~ Hom(C4(X), Z/nZ) .

Proof. (7-2)(1) follows from (7-1) and (6-7). (7-2)(2) follows from (7-2)(1) together
with the fact that if I = J = 0y such that Supp(Q@x/I) = Supp(C@y/J), then

Ker(C{(X) - C3(X))
is killed by some power of p (cf. Fact(b) in §6 and [K-S, §8]).
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Theorem (7-3). ([K-S,§7]). (Higher dimensional version of Moore’s reciprocity
uniqueness theorem) Assume that dim(X) = d. Then & ! is an isomorphism. More
strongly, for a sufficiently small I = Oy, we have an isomorphism

CiHH(X) > u(K) .

Theorem (7-4). ([K-5]) Assume that X is regular of dimension two. The map ® % is an
isomorphism. In other words the following sequence is exact (cf. §5)

0-HK,ZQ)> @ @ QZ> ( ® Q/Z) @< ® Q/Z).

deP(X) LePy nex, xeX,

Here 1 is obtained from the composite maps
H*(K, Z(2) » H*(K,, Z(2) —> Q/Z

and

o({a:}iep, serx)) = {{bn}nex,, {bx}xex,}
where
=Ya and b= a;.
ieP, JeP,

Theorem (7-5). ([Sa-4]) Assume that X is regular of dimension two. The kernel of
the map ®% is equal to the Brauer-Grothendieck group Br(X) of X. For any prime
number I, we have a canonical isomorphism

Coker(@%)(l) ~ Hom(T,Br(X), Q/Z) .
In particular, Coker(® %)() = 0 if and only if Br(X)(]) is finite.

Finally we give the following result. Let X be a proper smooth scheme over a
finite field of characteristic p. Fix a prime number ! & p. For an integer i = 0, let

pi:CH(X) ® Z, » H* (X, Z,(i))

be the cycle map, where CH'(X ) denotes the Chow group of cycles of codimension i
on X. Put

Trans{(X) = Coker(p}) (the group of transcendental cycles) .
Theorem (7-6). Assume that dim(X) = d + 1. Then there exists a canonical surjec-
tive homomorphism
Trans?(X) — Coker(®@L)())" ,
where the right hand side denotes the dual of the I-part of the cokernel of

@k H3(K, Z(1)) ~ Br(K) - lim Hom(C4(X), Q/Z) .
IOy

In particular, if p is surjective, then Coker(®L)(l) = 0.
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The proof of (7-6) will be given later. In view of the above results we propose the
following conjectures. Assume that dim(X) = d and let

@i H Y 2(K, Z(i) > M Hom(C{™/(X),Q/Z)
IcCy

be our fundamental homomorphism.

Conjecture (7-7). (cf. (7-4)) Assume that X is regular. Then @% is an isomorphism.
In other words the following sequence is exact.
0-H' K ZW)> @ DQUZ> @ @ Q/Z,
SeP(X) AP, 0<s<d—19eQ,(X)
where 1 is obtained from the composite maps

HY* (K, Z(d) » HY* (K, Z(d)) = Q/Z

and
o({a,}iep, sepix) = {{bs}se0,x)}oss<d—1

where
b9 = Z Z a‘. "
xeS(9) AePy(y)

The conjecture (7-7) is essentially equivalent to the conjecture (0.3) in Kato
[K-5] which involves a certain complex of Bloch-Ogus type on X.

Conjecture (7-8). (cf. (7-5)) Assume that X is regular. Then
(1) DY(X) ~ Br(X).
(2) The map @ is surjective. .
By (6-8), (7-8)(1) is equivalent to the fact that Br(X ) ~ Br(X).

Conjecture(7-9). (cf. (6-6)) Ker(®%) = D(X) is finite.

The conjecture (7-9) can be viewed as a generalization of a conjecture on the
finiteness of the Brauer-Grothendieck group of an arithmetic surface by Artin and
Tate.

The rest of this section is devoted to the proof of (7-6). First we need the
following facts.

Proposition(7-10). Let X be a connected proper smooth scheme of dimension d + 1
over a finite field of characteristic p. Let n be an integer prime to p. Let I = Oy be a
non-trivial ideal and put Y = Supp(Oy/I) with reduced scheme structure. Then there
exists canonical isomorphisms

@ H'(Ynis, K§'(Ox/D)/n >~ H*(Y,,, Z/nZ(d)) ,
Y H Yy, K& 1(Ox/D)/n ~H** (Yo, Z/nZ(d + 1)) .

Proposition (7-11). Let X be a smooth scheme over a field. Then, for any integer
0 < r< dim(X), there exists a canonical homomorphism

T, H'(Xnie, K} (0x) —— CH'(X) .
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Moreover t, is an isomorphism for r = dim(X) and it is surjective for
r=dim(X) — 1.

First, assuming (7-10) and (7-11) we finish the proof of (7-6). Let X be as in (7-6).
For each closed subscheme Y < X with reduced scheme structure, let I, = Oy be
the ideal of definition. Note that for any I = @y such that Supp(Cy/I) = Y and for
any integer n >0 prime to p, we have C§(X)/n~ C$(X)/n (cf. the proof of
(7-2)(2)). Thus we have the following commutative diagram

Br(K)(l) —» @Hi}(x, Q,/Z\(1)) —» H*(X,Q,/Z,(1))
Loy eXous s
0 — lim Ci X)) - li_m,H"( Ynis» K¥Y(Ox/1y))Y () > HY Xy, KX (Ox)V (),
YcX YcX

where Y ranges over all closed subschemes of X with reduced scheme structure.
The upper horizontal sequence comes from the localization theory on X and the
lower horizontal sequence comes from the exact sequence of sheaves

0K (Ox, Iy) = K (Ox) » K (Ox/1y) - 0.
By the Poincare duality for etale cohomology we have isomorphisms (cf. [M-1])

g9::HY(X, Q/Z\(1)) = H*(Y, Z,(d))" ,
9, H3(X, Q/Z,(1)) ~ H*(X, Z,(d))” .

Then we have put
fi=¢Y°g, and fy=17°(p{)"°g,.

Here ¢ (resp. 7,) is the map in (7-10) (resp. (7-11)) and p{ is the cycle map. The map
f1 1s an isomorphism by (7-10) and we have

Ker(f;) = (Trans{(X))"
since 1, is surjective by (7-11). Now (7-6) follows by an easy diagram chasing.

Proof of (7-10). First, to define the map ¢ and ¢, let n: Y,, - Yy;, be the natural
morphism of sites. Then, for any integer i = 0, we have a natural map of sheaves

KM(0x/I) - R'n, Z/nZ(i),
by taking the cup product of the natural map
(Ox/D* > R'n, Z/nZ(1)
which is obtained from the Kummer theory on Y. Then it induces the desired maps
H'(Yniss K (Ox/1)) = HY(Yyie, R, Z/nZ(d)) > H*(Y,,, Z/nZ(d))
HY (Y, K% 1(Ox/1) > HY(Ynis, R ', Z/nZ(d + 1))
> H**Y(Y,,Z/nZ(d + 1)),

where the last maps are the edge homomorphisms in view of (2-2-5).
To prove that ¢ and  are isomorphisms, we may assume that Y is reduced and
may replace I by the ideal of definition of Y in which case Oy/I = O0y. Indeed the
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etale cohomology groups are not affected by such replacement. Let W = Supp(Y)
with reduced subscheme structure. Let J = (4 be the ideal of the definition of W in
X. By definition we have an exact sequence

HY(Yyier #7) = HY(Ynis KM(Ox /1)) > HY( Wy KM(Cx/J) >0,

where ;= Ker(KM(Oy/I) > KM((O/J)). It is easy to see that HY(Yy,, #;) is
killed by some power of p for i = 1 and this proves our claim. Let J = (y be a
sufficiently small ideal such that Z = Supp((’y/J) contains the set of all singular
points on Y. Let U= Y\Z and let {U,|AieA} be the set of all irreducible
components of dimension d of U. Let Y be the closure of U ; in Y for each A€ A and
put J, = JOy,. Then we have the following commutative diagrams

HY™ Y (Zyio. Ki'(Oy[I))/n = H (Y, K (Cy, D)/n SHA Yo Ki(Cy))/n =0
e K le (7-10-1)
B
H*~\(Z,Z/nZ(d)) > HX(U,Z/nZ(d)~  H*(Y,Z/nZ(d)-0,

HY( Yy K, ((Oy, J))/n > HY( Yy, KM, (04))/n >0
Lu Ly (7-10-2)
H2* WU, Z/nZd + 1) ~ H** (Y, Z/nZ(d + 1)) .

Here ¢ is defined for Z by the same way as . The surjectivity of « and y follows
from (2-2-5). The surjectivity of f and the isomorphism in (7-10-2) follows from [A,
Cor. 4.3.]. Moreover we have isomorphisms

Hd( Yiss K.’iw(@’y’ J)) = @ Hd(( Y )Nis» K‘};’(@y‘, J:),

A€EA
HY(Yyio, K3 1Oy, J)) = @Hd(( Fidksr K3 1607, 7)) -
Also we have isomorphisms

H2(U,Z/nZ(d)) ~ @ HX(U;, Z/nZ(d)) .

A€ A
H2* YU, Z/nZ(d + 1) ~ @ H? " '(U,,Z/nZ(d + 1)) .
A€ A
Here we used again (2-2-5) and [A, Cor. 4.3.]. Moreover, by the Poincare duality
for etale cohomology we have isomorphisms (cf. [M-1])
H}(U;, Z/nZ(d)) ~ H'(U;, Z/nZ)" ,
HZ WU, Z/nZ(d + 1) = p,(Uy) -

Thus the maps v and u come from (7-2)(2) and (7-3) respectively and they are
isomorphisms. Hence (7-10-2) shows that i is an isomorphism. Applying this to the
map ¢ for Z, (7-10-1) implies that ¢ is an isomorphism. This completes the proof of
(7-10).
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Proof of (7-11). The proofis due to K. Kato. By [K-4], for any Noetherian scheme
X and for any integer n = 0, we have a complex of sheaves on Xy;,

K¥(Ox)~ @ K¥ ()~ @ KM () >...> @ KM (k) >...

xeX0 xeX! xeX'

where if j <0 K} (x(x))=0 by convention. The boundary maps are given
essentially by the tame symbols for discrete valuation fields. For each xe X' this
gives a canonical homomorphism

Hi(Xnig KM(Ox) > KX (k(x)) . (7-11-1)
Theorem (7-11-2). Assume that X is smooth over a field or a Dedekind domain.
(1) If n 2 i, (7-11-1) is an isomorphism.
() If n < i, Hi(X i K2'(0x)) = 0.
We prove (7-11-2) by the induction on the codimension i of x in X (X and x may
vary). Let @, be the henselization of the local ring of X at x. By the assumption it is

a regular local ring of dimension i. If i = 0 (7-11-2) is trivial. If i = 1 it follows from
(2-2-3) and the well-known exact sequence

KM (0,) > KM(K,)— KM ,(k(x))—0,
where K, is the quotient field of @,. Assume that i > 1. By (2-2-2), for any sheaf #
on Xy; we have
Hi(Xnip )= H ™ Y (Yniss F )

where Y = Spec((’,) — x. Nothing that dim(Y) =i — 1, we apply (2-2-1), (2-2-4)
and (2-2-5) for the computation of H' ~!( Yy;., & ). We get an exact sequence

@ H (o F)> @ Hy (Yo F) o H ™ (Y, )20
yey ~2 yeyi=!
By the induction hypothesis we have canonical isomorphisms

H;_Z(YNis’ K,',”((OX)) ~ Ky a(x(y) for ye Y2,
H;_I(YNis’Kr((OX)):K:{—i-#l(’c(y)) foryeyi_l-

Thus (7-11-2) follows from the following

Theorem (7-11-3). (cf. [K-4]) Let A be a local domain which is essentially etale over a

ring smooth over a field or a Dedekind domain. Let k be the residue field of A and put

Y =Spec(A) — x where x = Spec(k) is the closed point. Assume that dim(A) = 2.
(1) For any integer m = 0, we have an exact sequence

El;) Koy 2(k(y)) > E@ Kous1(k(y) = Kl(k) - 0.
zeX Yero
(2) The boundary map

P - Pz

veYy yeYo

Is surjective.
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Now we return to the proof of (7-11). Consider the spectral sequence (cf. (2-2-1))

Ep? = @ H£+q(XNis’Kiw((gx)):H*(XNisaK:w(@X))'

xeXP
By (2-2-4) and (7-11-2), we have
EP?%=0 forq>0 and E?°=0 forp>r

and we have an isomorphism

E}°~ @ KM ,(k(x)) forOLp<r.

xeXP

From this we get an edge homomorphism

H' (X, Ki"wx))»Coker( D *@*—> @ Z) ~ CH'(X)
xeX ! xeX’
which is an isomorphism if r = dim(X) and surjective if r = dim(X) — 1. This
completes the proof of (7-11).

§8. Relation with Hasse principle

Let k be a classical global field, namely it is either a number field or a function field
in one variable over a finite field. Put S = Spec(¢,) in the former case and let S be
the proper smooth model in the latter case. We assume that k has no real place. For
ve S, let k, be the henselization of k at v. Let X be a proper smooth geometrically
connected scheme over k. For each veS,, we put X, = X x;k,.

The classical Hasse principle says

(H) Assume that X has a k,-rational point for all ve S,. Then X has a k-rational
point.

It is known that (H) is not true in general. On the other hand Manin ([Ma])
introduced the following obstruction for (H). For a collection x = (x,),.s, Of
k,-rational points of X and for weBr(X), put

w(x) = Zs 0,(w ®xK(x,)),

where 6,:Br(k,) ~ Q/Z is the classical isomorphism (cf. §4 and [Se-2, XII]). The
well-definedness, namely the fact that the sum is a finite sum, follows from (8-2)(1)
below. If x comes from a single k-rational point x of X, we must have w(x) = 0 by
the classical reciprocity law for k(x). In this sense w(x) can be viewed as an
obstruction for (H). Now the question is whether it is the only obstruction or not,
namely is the following true?

(M) Assume that w(x) =0 for any weBr(X). Then there exists a k-rational
point of X.

(M) is verified in certain special cases (cf. [San] and [C-S-S]). In this section we
consider the following modified version of (H).
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(H*) Assume that there exists ¢, € Z,(X,) of degree 1 for each ve S,,. Then there
exists ce Z,(X) of degree 1.

Here, for a smooth geometrically connected scheme Y over a field k, Z,(Y)
denotes the group of all O-cycles ¢ = Zyeyo n,(y) on Y, where n, = 0 for almost all
yeY,. Let CHy(Y) be the Chow group of O-cycles on Y and we put

deg:CHy(Y)>Z:c= Y n(y)— Y n[x(y):k]

yeYo yeYo

the degree map. Certain cases were found where (H*) is true and fails to be true (cf.
[Sal], [San] and [C-S-S]). Following Manin we introduce the following obstruc-
tions for (H*) as (8-2) below. For each ve§, let

<50t Br(X,) x Zo(X,) » Q/Z
be the pairing which is defined for ¢ = er(xv)o n.(x)eZ,(X,) and weBr(X,), by

<CU, C>v = Z Ry glr(Nx(x)/kv(w ®XK(x))) )

xe(Xv)o

where N,k : Br(x(x)) = Br(k,) is the norm map.

Lemma(8-1). The above pairing induces
{,>p:Br(X,) x CHy(X,) > Q/Z .

Proof. We have to prove that if ce Z,(X,) is rationally equivalent to 0, then
{w, ¢y, = 0 for any we Br(X,). We may assume that there exists a proper smooth
curve C over k,, a non-trivial map f:C — X, and ae Z,(C) which is rationally
equivalent to 0 and such that f, (a) = c. Then {w, ¢}, = { f*(w), a)¢, where {, )¢ is
the pairing defined for C by the same way as before. This reduces the proof to the
case where dim(X,) = 1, in which case (8-1) is proved in [L-3] and [Sa-2].

Lemma (8-2). (1) We have a well-defined pairing

Br(X) X l_:! CHO(XU) = Q/Z’ ((JJ, c= (Cu)ueso) =¥ w(c): = ZS <wv’ Cv)v s
where for we Br(X), w, is the image of w in Br(X,) .
(2) If c lies in the diagonal image of CHy(X), then w(c) = 0.
(3) Let 1:Br(k) - Br(X) be the natural map. Then, for weBr(k) and for
c= (Cv)veSo’

(w)(e) = ZSZ deg(c,)0,(w,) ,
where w, is the image of w in Br(k,). In particular, if deg(c,) =1 for all veS,,
1(w)(c) = 0.

Proof. (8-2)(2) and (3) follow at once from the classical reciprocity law (4-5). The
proof of (8-2)(1) will be given later.
Now we consider the following statement. Let / be a prime number.
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(M }¥) Suppose that there exists ¢ = (c,),.s, such that deg(c,) = 1 for all ve S,
and such that w(c) = 0 for any w € Br(X). Then d:=gcd {[x(x):k]|x€ X} is prime
to l.

Remark(8-3). (1) (M) for every prime number / implies that w(c) for w e Br(X) is
the only obstruction for (H*).

(2) Note that if the natural map i:Br(k) - Br(X) is surjective, the second
condition for ¢ in (M ) is automatically satisfied by (8-2)(3). Thus, in this case (M })
for every prime number ! implies (H*).

Let d = dim(X) and let K be the function field of X. Let f:2 — S be a normal
model of X /k, namely Z is a (d + 1)-dimensional connected normal scheme and f'is
a proper flat morphism such that 2 xgSpec(k) ~ X.

Theorem (8-4). Let | be a prime number and let

@ :Br(K) - lim Hom(C}{(Z), Q/Z)
Ic Oy
be the homomorphism (3-1). Assume that there exists w € S, where f'is smooth and such
that the image of @ contains all homomorphisms

1:CHE) - Z/IZ ,

where J = Oy is the ideal of definition of f~ ' (w) in Z. Assume further (P,) (cf. (0-2)).
Then (M ¥) holds true.

Corollary (8-5). Suppose that dim(X) = 1. If Br(Z)(]) is finite, then (M ¥) is true.

Corollary (8-6). Assume that S is a proper smooth curve over a finite field F, and that
Z is a smooth over F, of dimension d + 1. Then, if the cycle map

pi:CHYZ)® Z, » H*(%, Z,(d))
is surjective for a prime number | % ch(F,) and if (P,) is true, then (M}) is true.

(8-5) (resp. (8-6)) follows from (8-4) together with (7-5) (resp. (7-6)).

For veS, let S, be the henselization of S at v. Put &, =% xS, and
Y, = & xgSpec(k(v)).

First we prove (8-2)(1). We must show that the sum is a finite sum. Note that for
weBr(X) its image w, in Br(X,) lies in the subgroup Br(%',) for almost all ve §,,.
Thus it suffices to show {w,, ¢,>, = 0if w, € Br(Z,). In fact it follows from the fact
that w, ®y k(x) = 0 for xe(X,),. For by the assumption, w, ® x x(x) lies in the
subgroup Br(0,,,) which is trivial, where 0O, ,, is the ring of integers of x(x).

Next we prove (8-4). Let I, = Oy, be an ideal such that Supp(@y /I,) < Y,. By
the localization theory on Z',, we have an exact sequence

Hd((Xv)Nis’ Ky((px,,)) =i H')l’: 1((yv)Nisv Kg{((pil‘g Iv))

= Hd+ ‘((‘Qﬁv)Nis, Kgl((oﬂ”,’ Iv)) g
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Lemma (8-7). (1) H** (X ,nis> K¥(Og,, 1,)) = 0. In particular we get a canonical
surjection

1: CHo(X ) —— H((X nis» KM (O))—— HEH (@ nisr KN (O, 1))

where t is the isomorphism in (7-11).
(2) Assume that %, is smooth over S, and let 1, = O_be the ideal of definition of Y,,.
Then the map

v HA(Y )niss K (Oy,)) = HY (X oniss KT'(Oy,)) = HE (X Dnis> K3 (O, 1))
is an isomorphism, where 1 comes from the exact sequence of sheaves
0- K{(Ug,,1,) > K{'(Og,) > K{(Oy,) >0 .

Moreover the composite map

CHo(X,) = H? (@ i K¥ (O, 1) "H (Y )ier K¥(04,)) > CHo(Y,)

is given by the specialization map defined below.

Definition (8-8). (cf. [Sa-3, (3-9)]) Assume that &, is smooth over S,. We define

sp: CHy(X,) » CH(Y,)
by the formula
Sp( Z nx(x)> = Z nxmx(yx) )
xe(Xv)o xe(Xv)o

where y, is the unique closed point of Y, which lies on the closure C, of x in &, and
m, is the intersection multiplicity of C, and Y,. We have the commutative diagram

CHy(X,)—— CH,(Y,)
| deg | deg
Z = Z

We will give the proof of (8-7) later and return to the proof of (8-4).
Put

U.CHo(X,) = Ker(CHo(X,) > HY T ' (% )nis K (Ox,, 1)) -

It can be viewed as a congruence subgroup of CH (X ,) with respect to the modulus
I,. Let #, be the set of all coherent ideal of @4 such that 10y = Oy. For I € #4, put

CH/(Z) = Coker(CHo(X) - @ CHO(X,,)/U’vCHO(X,,)> ,

veSo

where I, = I0g,. Note that for a fixed I € £y, CHy(X,) = ULCHq(X,) for almost
all v.
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Theorem (8-9). The pairing (8-2)(1) induces a canonical homomorphism

@ :Br(X) - lim Hom(CH,(%), Q/Z) .
le Sy

Proof. By its construction and (6-8), the homomorphism @} induces a canonical
homomorphism

Br(X) - lim Hom(C{(%), Q/Z) .
Ie sy

Thus (8-9) follows from the following

Lemma(8-10). For I € #y, there exists a canonical isomorphism

CHT)~ CHIZ) .
Proof. Let I € #. By the localization theory on Z, we have an exact sequence

Hd(XNis’ K.Ii"((gx)) =* @ H‘)i’:. 1((g‘v)Nis’ Ka[iu((piﬂ”l,’ Iv))

veSo
- CHZ) - H** ' (Xnis, K (Ox))
where we put I, = [0, . By (2-2-5) H** ' (X5, K (O)) = 0, and by (7-11)
Hd(XNiw K,I:w(@x)) ~ CHy(X) .

This finishes the proof of (8-10).

Now we can finish the proof of (8-4). Let ¢ = (c,),s, be asin (M}). Let we S,
and J = 04 be as the assumption of (8-4). In view of (8-10), the assumptions of (8-4)
and (M }) together with (6-8) imply that the image of ¢ in CH (X )/l is trivial. Thus
we get an element ce CHy(X) whose image in @ .5, (CHo(X,)/U’-CHy(X,))/!
coincides with the image of ¢. By (8-7)(2) this implies that the image of c in
CH,(Y,)/! coincides with the image ¢, of c, under the specialization map
CHy(X,,) —» CHy(Y,) Moreover, by the commutative diagram in (8-8), we have

deg(c) = deg(c,,) = deg(c,,) = 1 modulo [ .
This completes the proof of (8-4).

Proof of (8-7). First (8-7)(1) follows from (6-3) and the following fact which is easy
to see.

Lemma(8-11). Let 6 =(pg, .- ., Pa+1)EP(Z,) and assume that p,_,€Y, and
ps# Y, Define § = (qo, ..., 4,)€Q(Z ) asq;=p for0Si<s— land g, =p;,,
fors < i < d. Then the set S(9) is finite. For any non-zero ideal I € .# and any integer
n>0, the natural map

KX (Kg)— [I TI Kx(K)/ULKM(O,)
xeS(9) A€ Py(y
is surjective.
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Secondly (8-7)(2) follows from the following commutative diagram

1
HY (2 niss K&'(O4)) = HY, (X niss K&'(Cy)) > HY (X niss K30, 1))

l l
HU(Z nios Ki'(Og)  HU((Yo)niss Ki'(Cy) f=
I L

sp

HY(X e K¥(Ox)) > CHo(X,)—L>CH,(Y,) <= CHy(X,),

where the left vertical sequence comes from the localization theory on 4, and the
upper horizontal sequence comes from the exact sequence of sheaves in (8-7)(2).
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