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Tannaka-Krein duality for compact matrix pseudogroups.
Twisted SU(N) groups

S.L. Woronowicz *
Instituut voor Theoretische Fysica, Universitiat Leuven, B-3030 Leuven, Belgium

Summary. The notion of concrete monoidal W*-category is introduced and
investigated. A generalization of the Tannaka-Krein duality theorem is
proved. It leads to new examples of compact matrix pseudogroups. Among
them we have twisted SU(N) groups denoted by S, U(N). It is shown that
the representation theory for S,U(N) is similar to that of SU(N): irreducible
representations are labeled by Young diagrams and formulae for dimensions
and multiplicity are the same as in the classical case.

0. Introduction

Two notions play the central role in this paper. The first one is the notion
of compact matrix pseudogroup investigated in [8], the second introduced later
in the next Section is the notion of concrete monoidal W*-category. The two
notions are linked in the following way. For any compact matrix pseudogroup
G, the category of all unitary representations of G endowed with its natural
structure is a concrete monoidal W*-category. It satisfies certain conditions.
All concrete monoidal W*-categories satisfying these conditions can be obtained
in this way. The last statement is a generalization of the Tannaka-Krein duality
theorem. In special cases this result combined with Prop 2.4 and Theorem 1.5
of [8] gives the classical Tannaka-Krein theorem.

The generalized Tannaka-Krein duality gives us a large class of examples
of compact matrix pseudogroups. The point is that there exists a procedure
producing concrete monoidal W*-categories which corresponds to the well
known from the elementary algebra method of construction of semigroups
(monoid) starting with given generators and relations. We shall describe this
procedure in a special case leading to twisted SU(N) groups.

The paper is organized in the following way. In Sect. 1 we remind the defini-
tion of compact matrix pseudogroup, list the properties of unitary representa-
tions and introduce the notion of concrete monoidal W*-category. Then we
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formulate the duality theorem and give some applications. At this moment
twisted SU(N) groups are introduced. The proof of the duality theorem is pre-
sented in Sect. 3. Section 2 contains elementary facts concerning concrete mono-
idal W*-categories that are used in the main proof. In Sect.4 we investigate
twisted SU(N) groups and prove that their representation theory is fully similar
to that of SU(N) .

Working with categories in a not completely trivial way one meets the logical
problems related to the fact that there is no set containing all the objects of
the category. In the context of the present paper these problems seem not to
be serious. The objects related to any fixed Hilbert space form a set and we
can restrict our considerations to Hilbert spaces belonging to some Hilbert
Space Universe (i.e. to a set of Hilbert spaces containing all € and closed
under direct sum, tensor product and passing to a subspace operations, cf. the
Grothendieck notion of universal set [1]).

In the paper we use O and @ products introduced in [7] and [8]. Let
A be an algebra and K, L be f—d. (finite dimensional) complex vector spaces.
We remind that

D: (B(K)®4) x (B(K)®A) > B(K)®A® A
D: (B(K)®4) x(B(L)®A4)~>B(KQL)®A

are bilinear mappings such that

(m; ®a)© (m,®b)=m;m,®a®b
(m®a) D(n®b)=m@n®ab
for any m,, m,, me B(K), ne B(L) and a, be A.
Assume that A is unital and that v and w belonging to B(L)® 4 and B(K)® A4
resp. are invertible. One can easily check that v D w is invertible and

Ow) l=id)(w 'Dv™?Y) (0.1)

where t: B(K®L)— B(L®K) is the C*-isomorphism such that t(m®n)=n®@m
for any me B(K) and ne B(L).

1. Definitions and main results

Let A be a C*-algebra with unity. The set My(4) of all N x N matrices with
entries belonging to A will be identified with B(CY)®A. Let u=(u)i1=1.2,...n
be such a matrix. We remind (cf. [8]) that the pair G=(4,u) is said to be
a compact matrix pseudogroup if the following three conditions are satisfied.

CMPI. The *-subalgebra &/ generated by matrix elements of u is dense in
A.

CMP II. There exists C*-algebra homomorphism
¢: A ARA
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such that
([d®P)u=uQu. (1.1)

CMP II1. u is invertible and there exists linear antimultiplicative mapping
K: oA >
such that x(x(a*)*)=a for all ae.«/ and
([dRKr)u=u"1.

It is known that ¢ and « (called comultiplication and coinverse associated with
G) are uniquely determined.

Any compact matrix pseudogroup G =(A4, u) gives rise to an interesting cate-
gory denoted by Rep G. Objects of this category are finite-dimensional unitary
representations of G, morphisms are intertwining operators. Let us remind that
v is called a unitary representation of G acting on a f—d. Hilbert space H,
if v is a unitary element of the C*-algebra B(H,)® A such that

([d®¢)v=vDv. (1.2)

In this case we write veRep G.

Comparing (1.1) and (1.2) we see that ueRep G (in general u is not a unitary
element of My(A), however in virtue of Theorem 5.2 of [8] one can always
modify the scalar product in €" in such a way that u becomes a unitary element
of B(CY)® A). We say that u is the fundamental representation of G. Another
example of unitary representation acting on a f—d. Hilbert space H we get
by setting v=1Ip,®1. Clearly condition (1.2) is satisfied. In this case v is called
the trivial representation.

For any v, weRep G, the set of intertwining operators is introduced by the
formula

Mor (v, w)={te B(H,, H,): w(t®I)=(t®I) v}. (1.3)

Clearly, Mor(v, w) is a linear subspace of B(H,, H,). Moreover, taking into
account the results of [8] one can easily see that R=Rep G has the following
properties:

CMW* 1. For any reR, the identity operator acting on H, (denoted later by
I,) belongs to Mor(r, r).

CMWH*I1. For any r,7,r’eR, acB(H,, H,) and beB(H,, H,.)

aeMor(r,7)
M : ' .
(bEMOr(’./’ r,,))=>(b ae Or(r # ))

CMWH*I11. For any r, seR and ae B(H,, Hy)
(aeMor(r, s))=>(a*eMor(s, 1)).

CMW*1V. For any r,seR

H,=H
( P )=>(r=s).
I.eMor(r, s)
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CMW*V. For any reR and any unitary V mapping H, onto a Hilbert space
K there exists se R such that H,=K and VeMor(r, s). We say that s is equivalent
tor.

CMW* VI. For any reR and any orthogonal projection pe Mor(r, r) there exists
seR such that H,=p H, and ie Mor (s, r), where i denotes the embedding H,— H,.
We say that s is a subobject of r.

CMW*VIIL For any r,7€R there exists seR such that H.=H,®H,. and the
canonical embeddings H,—» H,®H, and H, — H,®H,. belong to Mor(r, s) and
Mor(r, s) resp. We say that s is a direct sum of r and r': s=r®r’.

If v and w are unitary representations of G acting on f—d. Hilbert spaces
H, and H,, then v@Dw is a unitary representation of G acting on H,®H,,.
This is the tensor product of representations introduced in [8]. Therefore
R=Rep G is equipped with the binary operation

R x R3(v, w)—+vwd=fuCDweR.

In virtue of [8] this operation has the following properties.

CMWH* VIIL For any r,seR, H,,=H,®H,. If aecMor(r,r') and beMor(s,s')
(where r, 5,7, s'€R) then a®beMor(rs,r's’).

CMW*IX. For any p,r,seR: (pr)s=p(rs) (we always identify (H,®H,)®H,
with H,®(H,®H)).

CMW* X. There exists 1eR such that Hy=C and r=rl=r for any reR
(we always identify C® H, and H,®C with H,).

One can easily see that 1 is uniquely determined. Clearly, it coincides with
the trivial representation acting on C.

The properties listed above play the important role in our theory. We shall
consider the following structure:

R=(R,{H,},cr, {Mor(r, 5)}, scr)

where R is a class (members of R will be called objects), {H,},.x is a family
of f—d. Hilbert spaces indexed by R and for any r,seR, Mor(r, s) is a linear
subspace of B(H,, H,).

R is called a concrete W*-category if conditions CMW* I-IV are fulfilled.
If in addition conditions CMW* V-VII hold then R is said to be complete.
One can prove the following

Proposition 1.1. A concrete W*-category (R, {H,},.xr, {Mor(r, s)},.scr) is complete
if and only if the following condition is satisfied :

For any f—d. Hilbert space H and any finite family {b,},., of linear mappings:
byeB(H, , H) where r,eR, ke A such that b} b, belong to Mor(r,, r) for all k,leA
and ) b, bf =1y, there exists seR such that Hy=H and b,eMor(r,, s) for all

k

keA.
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A concrete monoidal W*-category is a concrete W*-category R endowed
with a binary operation

R x R>(r,s)>rseR

satisfying the conditions CMW* VIII-X.

The notions of W*-category and monoidal W*-category in the most general
version were introduced by J. Roberts (see e.g. [3]). We refer to this paper
for the most elementary properties of W*-categories. The adjective “concrete”
is added in order to stress that each object of R is related to some concrete
Hilbert space. In general these Hilbert spaces may be infinite-dimensional (and
then Mor(r,s) have to be weakly closed, cf. [6]), in this paper however we
always assume that dim H, < oo for all reR.

Let H and H' be f—d. Hilbert spaces, dim H=dim H' and j: H—>H' be
an invertible antilinear mapping. Any such mapping defines in a canonical way
two linear mappings

t; C>HRH' (14)
i HQH-C (1.5)

that will play the important role throughout this paper.
The mapping ¢; is determined uniquely by its value at the point 1eC. We
set

tj(1)=zei®j(ei) (1.6)

where (e;) is an orthonormal basis in H (notice that the right hand side of
(1.6) is independent of the particular choice of the basis).

In order to introduce t; we notice that the mapping H'®H>3(x', x)
—-(j~'(x)|x)eC is bilinear. Therefore there exists a unique functional (1.5) such
that

£(x'®@x)=(""(x)|x) (L.7)

for any x'e H' and xeH.
Assume that

R=(R, {Hr}rER’ {MOI’(I‘, s)}r,ssR’ ') (18)

is a concrete monoidal W*-category (the dot - denotes the binary operation).
Let r, Fe R. We say that 7 is a complex conjugation of r if there exists an invertible
antilinear mapping j: H,— H, such that

tieMor(1,r ) (1.9)
t;eMor(7r, 1). (1.10)

and

Ft is not difficult to show that a complex conjugation of any object of R (if
It exists) is uniquely determined (up to equivalence). For details see Sect.2.
Moreover, one can easily check that t;-,=(t)* and t;-.=(t)*. Therefore, the
relation “to be a complex conjugation of” is symmetric.

In Sect. 2, we shall prove that for the category Rep G (where G is a compact
Matrix pseudogroup) the complex conjugation introduced above essentially coin-
Cides with the complex conjugation considered in [8].
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Assume again that (1.8) is a concrete monoidal W*-category. Let Q be a
finite subset of R. We say that Q generates R if for any seR there exists a
finite family {b,} of morphisms: byeMor (r;, s) where r, is a product of a sequence
of elements of Q such that ) b, b¥=1I,.

k

It is known (cf. [8]) that any unitary representation of a compact matrix
pseudogroup G can be decomposed into the direct sum of irreducible representa-
tions. On the other hand any irreducible representation is contained in the
tensor product of sufficiently many copies of the fundamental representation
f and its complex conjugation f. Therefore {f, f} generates Rep G.

Summarizing we have the following theorem (it is essentially contained in

[8D:

Theorem 1.2. Let G be a compact matrix pseudogroup. Then the class of all
finite-dimensional unitary representations Rep G endowed with its natural structure
(morphisms are intertwining operators, the binary operation is the tensor product)
is a complete concrete monoidal W*-category. For any reRep G there exists the
complex conjugation FeRep G. The fundamental representation f is the distin-
guished object of Rep G. {f, f} generate Rep G.

The main result of this paper states that any complete concrete monoidal
W*-category R containing a distinguished object f such that a complex conjuga-
tion f exists and {f, f} generates R is isomorphic to Rep G, where G is a compact
matrix pseudogroup. To formulate this result in a more concrete and precise
way we have to introduce a few notions.

Let R=(R, {H,},cx, {Mor(r,s)}, sr> *»f) be a concrete monoidal W*-catego-
ry with the distinguished object fe R. We always assume that the Hilbert space
H; is one of the arithmetic spaces €" (although the scalar product in H, need
not to coincide with the canonical one).

We shall consider pairs of the form M =(B, {v"},.g) where B is a C *-algebra
with unity I and {v"},. is a family of unitaries: for each reR, v"'e B(H,)® B.

We say that M is a model of R if

v =v"Ov° (1.11)
IR =(®I) v* (1.12)

for any r, seR and teMor(s, r).

Assume that f exists and that {f, f} generates R. Then (cf. Sect. 2) any model
M =(B, {v"},g) is uniquely determined by B and v/. This fact leads to the follow-
ing notion.

Let (B, v) be a pair such that B is a C*-algebra with unity and v is a unitary
element of B(H;)® B. We say that (B,v) is a R-admissible pair if there exists
a model M =(B, {v'},g) of R such that v/ =v.

We say that (4, u) is a universal R-admissible pair if the following conditions
are satisfied

1. A is the smallest C *-algebra containing the matrix elements of u.

2. (A, u) is R-admissible.
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3. For any R-admissible pair (B, v) there exists C*-homomorphism
@: A—>B

such that (id®¢@)u=v.

Clearly the universal R-admissible pair is defined uniquely (up to the identity
relation introduced in [8]). The existence of the universal R-admissible pair
can easily be established. Indeed, let C[t] be the free (non-commutative) *-
algebra generated by N? elements 1, (k,[=1,2, ..., N). A *-representation n of
C|[z] acting on a Hilbert space H is said to be admissible if v=(r(ty)).1=1,2, ...
is a unitary element of B(H;)®B(H) and (B(H),v) is a R-admissible pair. For
any aeC[t] we set

lall =sup |z (a)]| (1.13)

where n runs over the set of all admissible representations of C[z]. Clearly
lal is finite for any aeC[[z] and |- | is a C*-seminorm.
Therefore the set

N={aeC[r]: |la| =0}

is a two-sided ideal in C[z] and the seminorm (1.13) produces a C*-norm on
the quotient algebra

o =C[z]/N.

Let A be the completion of o/ with respect to this norm, ¢ be the canonical
mapping C[7] -« =C[z]/N and u=(n(t,)).i=1.2,.. ~- Then (4, u) is the uni-
versal R-admissible pair. Another construction of the universal R-admissible
pair can be found in Sect. 3.

The main result of the paper is contained in the following theorem

Theorem 1.3. Let R=(R, {H,},cg, {Mor1(r,s)}, scr» ", f) be a concrete monoidal
W*-category with the distinguished object feR. Assume that [ exists and that
{f, I} generates R.

Let G=(A, u) be the universal R-admissible pair and (A, {u"},.g) be the model
of R such that u' =u. Then

1. G is a compact matrix pseudogroup.

2. For any reR, u" is a unitary representation of G acting on H,. If R is
complete then any f—d. unitary representation of G can be obtained in this way.

3. For any r,seR and teB(H,,H): (t®Du"=u*(t®I) if and only if
teMor(r, s).

4. For any r,seR

w=u Qu.

E_ =(Ei..i1....,i,,)i,,iz,...,i~=1,2,...,1v (1-14)

be NV _clement array of complex numbers. Fixing a number ke{1,2,...,N}
and inserting in (1.14) i; =k we obtain a NV~ !-element array denoted by E, _.
_W € say that (1.14) is left non-degenerate if arrays E; _,E,_, ..., Ey_ are linearly
independent. Similarly inserting in (1.14) iy=k we get an NV~ !-clement array
denoted by E_,. (1.14) is right non-degenerate if the arrays E_,,E_,,...,E_y
are linearly independent.

Let
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Using our main theorem we shall prove

Theorem 1.4. Let A be the universal C*-algebra generated by N? elements uy,
(k,1=1,2, ..., N) such that

Y Uiy U =01 1 (1.15)
k
Y Ui U= Oy I (1.16)
k

Z ullkl ul;kz "'ulNkNEklkz...kN=Ehlz...lNI (1‘17)

ki,k2,....kn

where ILm,l,....Iy=1,2,...,.N and 6,, is the Kronecker symbol. Let u
=(eki=1,2,...N-

Assume that E _ is left and right non-degenerate. Then G=(A, u) is a compact
matrix pseudogroup.

Equations (1.15) and (1.16) say that u is unitary. The relation (1.17) is called
the twisted unimodularity condition.

Unfortunately, unless E_ is chosen in a very special way, the pseudogroup
G introduced in Theorem 1.4 is very small (in the generic case A4 is an N-
dimensional commutative C*-algebra and G reduces to the N-element cyclic

group).
However (cf. [2], formulae (16)+19)), fixing a number p€]0, 1] and putting

Ei1,l'2...i1v={0 if i, =i, for some k, [ (1.18)

(—p)f@ri2iv) otherwise

where I(i;,i,,...,iy) denotes the number of inversed pairs in the sequence
(iy, i3, .--, iy), we obtain an interesting pseudogroup. It will be denoted by S, U(N)
and called the twisted SU(N) group. For N=2 and 3 we obtain S,U(2) and
S, U(3) considered in [7] and [8]. For u=1, S, U(N) coincides with the classical
SU(N) group.

In [7] we proved that the representation theory for S, U(2) is very similar
to that of SU(2). The following theorem generalizes this result:

Theorem 1.5. Irreducible representations of S, U(N) are labeled by Young diagrams
consisting at most of N rows. Let u, be the irreducible representation corresponding
to the Young diagram d. Any irreducible representation of S,U(N) is equivalent
to one of the u,. u, is equivalent to u, if and only if d' can be obtained from
d by adding (or subtracting) a number of full (i.e. consisting of N boxes) columns.
The one box Young diagram corresponds to the fundamental representation of
S,U(N). The dimension of u,; and the multiplicity of u, in uyz Quy,. are given
by the same formulae as in the classical (i.e. SU(N)—) case.

2. Concrete monoidal W *-categories

In this section we collect the results concerning concrete monoidal W*-categories
that will be used in the proof of our main theorem. We mainly deal with the
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notion of complex conjugate object. Throughout this section

R=(R, {Hr}reR’ {Mor(ra S)}r.seRs *)
is a concrete monoidal W*-category. We start with the following

Proposition 2.1. Let r,seR; 7, § be their complex conjugations and j,: H,— H,,
js: Hy—Hg be the corresponding invertible antilinear mappings. Then for any
aeMor(r, s)

jsajteMor(F, 3). (2.1)

Proof. One can easily check (the details are left to the reader) that for any
aeB(H,,H)):

Js ajr_l =(t—j,®ls) ;®@a*®1Iy) (Ir®tjs) (2.2)
and for ae Mor(r, s) we immediately get (2.1). O

Two objects r, seR are said to be equivalent if dim H,=dim H, and Mor(r, s)
contains an invertible element (this is the case if and only if Mor(r, s) contains
a unitary element). Proposition 2.1 shows that the complex conjugations of
equivalent objects are equivalent. In particular complex conjugation of any
object is unique up to equivalence.

In the following Proposition we denote by R, the subclass of objects that
admit complex conjugation. For any reR,., ¥ will denote a complex conjugation
of r. The corresponding invertible antilinear mapping will be denoted by j,.
It maps H, onto H,.

Proposition 2.2. Assume that R is complete. Then

1. R, is closed under the binary operation: for any r,seR., SF is a complex
conjugation of rs.

2. R, is closed under direct sum: for any r,seR,., F@®5 is a complex conjuga-
tion of r@®s.

3. If reR,,, s€R and there exists be Mor(r, s) such that bb* =1 then seR,..

Proof. Ad 1. Assume that r,seR,.. Let 6: H;® H;— H;® H; be unitary mapping
such that o(x®y)=y®x for all xeH; and yeH, and j=0(j,®j,). Clearly, j:
H,— Hg; is an invertible antilinear mapping. One can easily check (the details
are left to the reader) that

t;=(,®t; ®I,) t; eMor(1,rs57)
=1, (,®1, ®1,)eMor(§7rs, 1).

Therefore 57 is a complex conjugation of rs.

Ad 2. Assume that r,seR,.. We denote by i, and i, the canonical embeddings
of H, and H, into H,®H,. Similarly, i, and i; will denote the canonical embed-
dings of H, and H, into H,®H,. We know (cf. CMW* VII) that i,e Mor(r, r®s),
i.eMor (s, r@s), i,eMor (7, 7@®35) and i;e Mor (5, F®3).

Let j=j,®j,. Clearly, j: H,g,— H,q;5 is an invertible antilinear mapping. One
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can easily check that

t=(i,®iy) t; +(i,®is) t; eMor (1, (r®s) (F®3))
=1, (i Qi) + 1, (i Qi*)eMor (F®3) (r@s), 1).

Therefore F@5 is a complex conjugation of rPs.

Ad 3. Let K=j,b*(H,). Clearly K is a subspace of H,and j,b* bj ! is a projection
(not necessarily orthogonal) onto K. Let pe B(H,) be the orthogonal projection
onto K and i: K — H; be the embedding. We assumed that be Mor(r, s). Therefore
b*beMor(r,r) and (cf. Prop. 2.1) j,b*bj,” ! eMor(F, 7).

Since Mor (7, 7) is a W*-algebra, we get pe Mor (7, 7). In virtue of CMW* VI
there exists s’eR such that H,=K and ieMor(s', 7). Let j=i*j,b*. Then j: H
— H,, is an invertible antilinear mapping. One can easily check that

t;j=(b®i*)t; eMor(1,ss’)
=1, (i®b*)eMor(s's, 1)

(to prove the second equality one has to notice that j~'=bj, 'i). Therefore
' is a complex conjugation of s. [J

Now we can prove

Proposition 2.3. Let feR. Assume that R is complete, f (the complex conjugation
of f) exists and that the pair {f, f} generates R. Then for any object of R a
complex conjugation exists.

Proof. Let se R. Remembering that {f, /} generates R we can find a finite family
{b} of morphisms: b,eMor(r,s), where r, is a product of a certain number
of f and f such that

Y bobr=I,. 2.3)
k

Let r=@n, H,=@H,, and i, be the canonical embeddings of H,, into H,.
k k

We know that i e Mor(r, ). Therefore

b=) b, ifeMor(r,s).
k

Taking into account (2.3) one immediately checks that bb*=1I,. The existence
of the complex conjugation of s follows now from Prop. 2.2. [

Let e R. We say that « is irreducible if
Mor(x, 0)={A1,: AeC}. (24)

One can easily check that any object equivalent to an irreducible one is
irreducible.

The proof presented in Sect. 3 is mainly based on the following properties
of irreducible objects.
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Proposition 2.4. Let R, be a complete set of mutually non-equivalent irreducible
objects of R (the adjective complete means that any irreducible object of R is
equivalent to an object belonging to R;..). Then

1. For any a, BeR,,,

CIl, fora=p
{0}  for a=p.

2. Complex conjugation of any irreducible object (if it exists) is irreducible.
3. Let o, f, xeR,,,. Assume that & is a complex conjugation of «. Then

Mor(a, B)= (2.5)

Ct;, for f=«

{0}  for B (26)

Mor(1, &) ={

4. If R is complete then for any reR there exists a finite family {p,} of
morphisms: p,e Mor (o, r), € R;,, such that Z ppr=1,.
k

Proof. Ad1l. For a=f formula (2.5) coincides with (2.4). Let a<p and
geMor(a, f). Then g*geMor(a, @), g g*eMor(f, f) and using (2.4) we have g*q
=11, and qq*=A"Ij;. Clearly A=2". Assume that g=0. Then 1>0 and g is
invertible (3! =4~ ! g*). On the other hand Mor (e, ) does not contain invertible
elements (« is not equivalent to f). This contradiction shows that g=0.

Ad 2. Inserting in (2.1) r=s=a and taking into account (2.4) we get
Jjs Mor (&, @) j; ' =Mor(x, ) =C1,.
Therefore Mor (&, @) =@ I, and & is irreducible.

Ad 3. Let teMor(1, f&). Then (I;®t;)(t®I,) belongs to Mor(x, f) and using
(2.5) we get

_ _(Al, for B=a
AT IARS e

where 1e €. Tensoring both sides from the right by I, we get

Al,; for B=a

0 for f+a. &

(1,®F,®1,) (t®1a¢)={

Inserting in (2.2) r=s=a and a=1, we get
(t—j,®1a) (Ia®tj,) = Iaz-

Therefore multiplying both sides of (2.7) by t;, from the right and using the
obvious relation (t®1,,) t;, =t®t; = (I;,®t; )t we get

- At for B=a
0 for f+a.
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Ad4. Let reR. We know that Mor(r,r) is a finite-dimensional W*-algebra.

Therefore I,=) q,, where g, are minimal projections in Mor(r,r). In virtue
k

of CMW* VI, for each k there exists 5,eR such that H; =g, H, and the embed-

ding i,: H, — H, belongs to Mor(s, 7). Since g, is minimal, s, is irreducible

and one can find o,eR,, equivalent to s,. Let O, be a unitary element of

Mor(o,s) and py=i,O,. Then p,eMor(o,r) and Y p.pF=Y i if=) g,
k k k

=I,. O

If H and K are f—d. Hilbert spaces (dim H=dim K) and j: H—K is an
invertible antilinear mapping then for any me B(H) we set

mimjmj~t. R

Clearly, me B(K) and the mapping B(H)>m —m/e B(K) is antilinear and multi-
plicative.

Proposition 2.5. Let H, K be f—d. Hilbert spaces, dim H=dimK, j: H—K be
an invertible antilinear mapping and t;: C-H®K and t_J K®H—-C be linear
mappings related to j in the way described in Sect. 1.

Moreover, let A be an algebra with unity I, x: A— A be an antilinear map
(the %-image of an element acA will be denoted by a*), veB(H)®A and
weB(K)® A.

Then any two of the following conditions imply the third one:

L. v is invertible and v~ ! =v*®*,
II. w=0/®*,

L wOw) ;@D =t;®I and (t;@1) (w Dv)=t;®1.

Proof. Let
v=3 m,@v,,

w= Z nb®Wb,
b

where m,€ B(H); n,e B(K); v,, wy€ A; a and b run over finite sets. For any ne B(K)
we set

t)=0""nj*.

Clearly 7: B(K)— B(H) is an invertible linear map. Applying t®id to both
sides of the relation w=1/®* we see that the Condition II is equivalent to
the equation w=0v*®* where

w=(t®id)w
=Z(j_1 1 J)* @w,. (29
b

The first equation of Condition III means that

Z m,e,®n, j(e)®v, w,= Z e®j(e)®1

abl 1
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where (¢;) is an orthonormal basis in H. It holds if and only if

Z (k|nyj(e)) m,e,®@v, wy= Z (klj(e)) e,®1

abl

for all ke K. Replacing k by (j*) ™ (h) (where he H) we see that the first equation
of Condition III is satisfied if and only if

2 G )* ()| ny j(e) mye®v, wb—Z((l D*()]j(e) e®1 (2.10)
abl
for all he H. We remind that for an antllmear operator j the relation between
j and its hermitian conjugate j* is described by the formula (j*(k)|h)=(j(h)|k).
Using this formula (with j replaced by j~!) and remembering that (e) is an
orthonormal basis in H we have

Z G~ 1)* (h) | nyj(e)) m, e
1
=ZU_1 nyje | h)m, e

—Zm et(et|(l nyj)*h)y=m,(j~ "b])
Similarly, one can check that

LG ie) e=
1

Inserting these data into (2.10), making use of the freedom of h and comparing
with (2.9) we see that the first equation of Condition III is equivalent to the
relation v W= Ip e 4-

The second equation of Condition III means that

2 G k) [ my by wyv,= (i~ (k) [ h) I
ab

for all keK and he H. Replacing k by j(h') where h'e H we see that the second
equation of Condition III is satisfied if and only if

Y G i [ myh) wyo,=(H [ W)
ab

for all h, W'eH. Clearly, (j~"nyj ' |m,h)=(h'|(j~ * ny j)* m, h).

Inserting this data into the above equation, making use of the freedom of
hand k" and comparing with (2.9) we see that the second equation of Condition
Il is equivalent to the relation wo =1, @4 This way we proved that Condition
IIT means that v is invertible and v~ ! = W. Summarizing we have

I< v is invertible and v~ ! =v*®*,
II< p*®* =,
I <> v is invertible and v~ ' =W.

Now the statement of Prop. 2.5 is obvious. [
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Remark. In the applications of Prop. 2.5 considered in this section, A equipped
with the #-operation is a *-algebra. In this case *®* is usually denoted by
* and Condition I means that u is unitary.

Let G=(A, u) be a compact matrix pseudogroup and ve B(H)® A be a unitary
representation of G acting on a f—d. Hilbert space H. We remind the construc-
tion of the complex conjugate representation given in [8]. # acts on a vector
space K related to H by an antilinear invertible map j: H—K and is given
by the formula #=0'®*, Next one introduces a scalar product on K such that
K becomes a Hilbert space and & becomes a unitary element of B(K)® A.

Now using the (I and II)=III)-part of Prop. 2.5 we see that ¢; and ¢; are
intertwining operators: t;eMor(1,v(D ) and t;eMor(5Dv, 1). Therefore & is
a complex conjugation of v in the sense introduced in Sect. 1.

Now we again consider a concrete monoidal W*-category

R =(R’ {Hr}reR’ {MOI'(", S)}r, seR> .)~

Assume that M =(B, {v'},.g) is a model of R. Using (1.11) and the relation
1-1=1 one easily checks that

v1=1. (2.11)

Letr,FeR, 7 be a complex conjugation of r and j,: H,— H,. be the correspond-
ing invertible antilinear mapping. We know that ¢; eMor(1,r7) and
t; eMor(Fr, 1). Taking into account (1.11), (1.12) and (2.11) we get

WO, @D=t;,®I
;@) (W Dv)=t;, 1.
Remembering that v" is unitary and using ((I and III)=>II)-part of Prop. 2.5

we obtain
v =)yr®*, (2.12)

Proposition 2.6. Let R=(R, {H,},cx, {Mor(r, 5)}, scr> *, f) be a concrete monoidal
W*-category with the distinguished object f. Assume that f (a complex conjugation
of f) exists and that {f, f} generates R.

Let (B, v) be an R-admissible pair. Then the model M =(B, {v"},.x) of R such
that v/ =v is uniquely determined. Moreover denoting by & the *-subalgebra of
B generated by matrix elements of v we have

v*eB(H)Q@%
for any seR.

Proof. Let se R. Remembering that {f, f} generates R we can find a finite family
{b,} of morphisms: b,eMor(r,,s) where r, is a product of a certain number
of f and f, such that ) b, b} =1,. Using (1.12) one can easily check that

k

=Y B RI) v (b} ®1). (2.13)
k
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Clearly v" is uniquely determined and v" belongs to B(H,)®4% for r=f. For-
mula (2.12) shows that the same statement holds for r=f. In virtue of (1.11)
it remains true for r=r,. Now (2.13) shows that v* is uniquely determined and
r*eB(H)®%. O

The main proof presented in Sect.3 works only for complete categories.
Therefore we need

Proposition 2.7. Let R=(R, {H,},cg, {Mor(r,5)}, ser>*) be a concrete monoidal
W*-category. Then there exists a complete concrete monoidal W*-category
=(R, {ﬁ,},e,}, {M~or(r, )}, sek> *) such that RcR and

1. ﬁ,=H, for all reR.

2. M~or(r, s)=Mor(r,s) for all r,seR.

3. The binary operation on R extends that on R.

4. Every subset of R generating R generates R

5. If M=(B,{v'},cg) is a model of R then there exists unique model M
=(B, {#"},x) of R such that 6" =" for all reR.

If R contains the distinguished object f such that [ exists and {f, f} generates
R then distinguishing f in R we have

6. A pair (B,v) is R-admissible if and only if it is R-admissible.
Remark. We say that R is the completion of R.

Proof. We use the way suggested by Prop. 1.1. Let us consider objects of the
form

5=(Haa {(rka ak)}keda) (214)

where H, is a f—d. Hilbert space 4, is a finite set, n,eR, a,€B(H,,, H,) satisfy
the relations: a} a;eMor(r,, r,) for all k,k'e 4, and Y g, af =1,.
k
The class of all such objects will be denoted by R.
If GeR is of the form (2.14) then we set H,= H,. Moreover if

a=(H,, {(r, ak)}keda)
5= (Hb’ {(Sl, bl)}ledb)

are elements of R then we set

. *
Mor(, 5)={t€B(H,,,H,,): b} takGMOr(rk,S,)}

for all ke4,, le4,
i b= (Ho®Hy, {(1ic 1> B ®b)} k. e g0 x 4)- (2.15)

Clearly M~or(&, b) is a linear subset of B(H,, H;) and @beR. One can easily
check that

R=(ﬁs {ﬁﬂ}isib {M~Or(&, 5)}&,551-(: .)
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where the - denotes the binary operation introduced by (2.15) satisfies all condi-
tions CMW*[-X except CMW*1V. In order to pass over this difficulty we
introduce the equivalence relation

dzg‘b(ﬁﬁ:ﬁ,; and))

I,e Mor (@b

and consider R=R/~. The class of def will be denoted by & Clearly H,,

I\'for(d, b) and the class of @b depend only on 4 and b
Let

R=(R, {As}seir (Mor(@ B} seicr*)

where A= H,, Mor(& 5)=Mor(a, b) and the dot - is the binary operation intro-
duced by a b=the class of @b. Then R is a complete concrete monoidal W*-
category (one can easily verify CMW* I-X).

The embedding R—R is defined in the following way. For any reR we
set F=(H,, {(r,1,)}) (4 is now a one-point set) and F=the class of 7. Statements
1-4 are obvious.

Let M =(B, {t"},.x) be a model of R. For any d e R we choose a representative
8= (H,, {(1, 3)}xe.) and set (cf. (2.13)

P= Z (@ ®1p) v™(af ®1Ig)
k

(notice that the right hand side does not depend on the choice of @) and
Azl=(B, {;a}ﬁsﬁ)-

One can easily check that M is the model of R satisfying the requirement of
Statement 5. Statement 6 follows immediately from 5. [J

3. The proof of the duality theorem

In this section we complete the proof of our main result. Let G=(4, u) be the
universal R-admissible pair. In order to show that G satisfies condition CMP I1I
and in order to prove the “only if” part of Statement 3 of Theorem 1.3 we
need another construction of G giving better control of its properties than the
one described in Sect. 1.

Throughout this section

R=(R, {Hr}reR, {MO!‘(T, S)}r,seR’ %Sl

is a concrete monoidal W*-category with distinguished object. We assume that
f exists and that {f, f} generates R. In virtue of Prop. 2.7 we may assume that
R is complete. Then R contains sufficiently many irreducible objects (cf.
Prop. 2.4.4).
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Let R;, be a complete set of mutually non-equivalent irreducible objects
of R. We include 1 into R,,, (clearly 1 is irreducible). For any ae R, we consider
the space B(H,) of linear functionals defined on B(H,). We set

o= @ B(H,). 3.1)

a€Rjrr

At the moment ./ is a complex vector space. In the following we endow
o/ with a %-algebra structure. On the other hand each B(H,) is endowed with
a natural #*-conjugation (induced by hermitian conjugation of operators acting
on H,) which also will be used and which does not coincide with the *-conjuga-
tion that will be introduced on . In order to avoid possible misunderstandings
we shall use the following notation: for any aeR;, and any pe B(H,), the corre-
sponding element of .o/ will be denoted by uj. With this notation any element
aes/ can be written in the following form:

a= Y u, (3.2)

a€Rj;r

where p,e B(H,) are uniquely determined and the sum is finite (i.e. p,=0 for
all but finite number of elements aeR;,,).
For any aeR;, the embedding

B(H,)sp - ujesd
is linear. Therefore there exists unique u*e B(H,)® &/ such that
(p®id) u*=uj 3.3)

for any pe B(H,).

Let .7’ denote the space of all linear functionals defined on 2. It follows
immediately from (3.1) that for any family (m®),.g,,, of elements m*e B(H,) there
faxists a unique fe.«/' such that f(u}) = p(m®) for any aeR;,, and pe B(H,). Taking
Into account (3.3) we get (Id®f) u*=m* for any aeR;,,.

In particular, if o, feR;,, and a = f then there exists fe.&/’ such that

([d®f)u*=0 and @(Id®f)u’=1I,. (3.4)
Moreover for any aeR,,, and any me B(H,) there exists fe.o/’ such that
d®f)u*=m. (3.5)

We shall also use the functional he.o’ such that

1 ifa=1

3.6
0 otherwise. (26)

(id®h) u“={

Let M =(B, {v"},.x) be a model of R. Then for any a€R,,, and any pe B(H,)
we set

ou(up)=(p®id) v*, (3.7
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Clearly this formula defines a linear map

oy o —B. (3.9)
In order to have the short formulation of the next statements we introduce
the symbol I that can multiply elements of o/ from both sides and such that
Ia=al=afor all ae«/. Later, when the algebraic structure on .« is introduced,
I will be identified with the unity of 7.

Proposition 3.1. There exists a unique family {u'},.g, where for each reR,
uw'eB(H,)®« such that

1. For r=a€R,,, u" coincides with u* introduced by (3.3).

2. For any r,seR and any teMor (s, r)

t®I) v = (t®I). (3.9)

Moreover we have
3. For anyr,seR and any te B(H,, H,)

(®D) w* = (t®I)=(teMor (s, 1)). (3.10)
4. For any model M =(B, {v'},.g) of R
(d®@@y) =1 (3.11)

for all reR.

Proof. For each reR we choose the decomposition

L=Y ppi (3.12)
k

where k runs over a finite set, p,e Mor (o, r) and a,€R;,, (cf. Prop. 2.4.4). Taking
into account (3.9) (with ¢ and s replaced by p, and o, resp.) we compute

w=u([,®N=) v {p®I) (pFRI)
k

=Y. (@D u(pF ®1). (3.13)
k

Using Condition 1 we see that the family {u’},.g is uniquely defined. To
prove the existence we have to show that {u'},.r introduced by (3.13) satisfies
Conditions 1 and 2.

For r=aeR;,, the decomposition (3.12) consists of one term: I,=1I,I* and
the equality u"=u* follows immediately.

Let seR. Then

w=Y (q®I) u" (g 1) (3.14)
1

where | runs over a finite set, ;e Mor(8,, s), B,€R;,, and

Yaqr=I,. (3.19)
1
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Assume that teMor(s, r). Then p¥tq,eMor(f;, o). If B,+a, then p¥tq,=0.
If B=a; then pi¥tq, is a multiple of I, (cf. Prop. 2.4.1). In both cases
(p¥ t @) uP'=u™(p} t q,®I). Taking into account this relation and using (3.12),
(3.14), (3.15) and (3.13) we have

@D w=Y (ppi¥t q®I) uP'(gFRI)

kl

=Y (®) u™(p¥t q,qF Q1)
kl

=u' (t®I).

Condition 2 is satisfied. This proves the first part of our proposition.
Assume now that te B(H,, H,) and that

RN u¥=u"(t®I).

Multiplying both sides by p¥®]I from the left and by q,®I from the right and
using formula (3.9) we get

(p¥ t 1) wPi =u™(p} t q, 1)
Therefore for any fe.o/’ we have
p¥tq,(id®f) ' =({d@f)u™ - pftq,.

If o+ B, then using (3.4) we get pFtq,=0. If o,=p, then using (3.5) we see
that p{¥tq, commutes with all elements of B(H,,). Hence pftq,= 4,1, where
4. €C. Taking into account (3.12) and (3.15) we have

t=Y pPEtagr=y Auprd’
kl kl

where Z' denotes the sum over all pairs (k, /) such that a; = f,. Now the conclu-
sion of (3.10) follows immediately: p,eMor(a,,r) and g,eMor(B,, s). Therefore
for o, = B, we have g eMor (s, &), p, qF€Mor(s,r) and te Mor(s, 7).

To complete the proof we have to check (3.11). For r=aeR;,, (3.11) follows
immediately from (3.7). In the general case, taking into account (3.13), (1.12)
with s and ¢ replaced by o, and p, resp. and (3.12) we obtain

([d® @) =) (p.®) ([d®¢py) u™ (¥ RI)
k
=Y (P®I) v*(pi¥ ®1I)
k
=Y V(pE®D=v. O
k

Now, using the binary operation on R we introduce the multiplicative struc-
ture on o For any «, e R;,, and any pe B(H,), ce B(H,)' we set

up ub =(p@o®id) u*’. (3.16)
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Clearly this formula defines a unique bilinear map
XA A (3.17)

Proposition 3.2. The vector space <« equipped with (3.17) is an algebra with unity.
For any r,seR
u=u" Qu. (3.18)

Moreover for any model M=(B,{v'},.r) of R, the mapping @,: o —B is
multiplicative and unital: @\ (I ) =1Ip.

Proof. Let a, feR,,,. It follows immediately from the definition of @ that for
any peB(H,) and oe B(Hp)

(p®o®id) (u* D uf)=(p®id) u*(c®id) uf.

Taking into account (3.3), comparing with (3.16) and using the freedom of p
and o we get

W= Qub.

In order to prove (3.18) in full generality we compute using formulae (3.13)
and (3.14):

w Qu' =Y [(p®]) u*(pF® D] D [(0:®1) v’ (qF ®1)]
kl

=Y (P®q®I) - Du’) (pF @ ®1)

kl

=) (@) u! (p¥ g I).
kl

We know (cf. CMW* VIII) that the tensor product of morphisms is a morphism.
Therefore p,®q,eMor(x f;,7 s) and using (3.9) with r,s and ¢ replaced by rs,
o B, and p,®q, resp. we obtain

wQui=) u(p p¥ ®@q, g N =u".
ki

In the last step we used (3.12) and (3.15). Formula (3.18) is proved.
We know (cf. CMW* IX) that the binary operation in R is associative. In
particular («x f)y=a(By) for any a, B, yeR,,,. Using (3.18) we obtain

W OW)Ow =uw O Ou).

Applying p®@o®n®id (where pe B(H,), se B(H,)' and neB(H,)) to both sides
of the above equation and using (3.3) we get

(s uB) ul =3 (ub ul).

This relation shows that the product (3.17) is associative i.e. o is an algebra.

We know that Hy=C. Therefore B(H,)®. =/ In particular u*ed
Remembering that afl=fa=o and using (3.16) one can easily check that u;u’
=ul! u;=uj, for any aeR;, and any peB(H,). It means that u* is the unity
of the algebra &/
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Let M =(B, {v'},.g) be a model of R. Then using (3.16), (3.11) with r replaced
by a8, (1.11) and (3.7) we get

oum(uy W)=(pR®c® Opm) u*f
=(p®o®id) v*
=(p®c®id) (v* Do)
=[(p®id) v*] [(c®id) v*]
=0Mm (“Z) Pm (ug)
Therefore ¢,, is multiplicative.

To end the proof we remind (cf. (2.11)) that v*=1Ig. Therefore using (3.11)
we get

(PM(u1)= vi= I. O

At this moment we may reinterpret the meaning of the symbol I. Before
it was used as formal multiplier acting trivially on ./ Since now I=u? is the
unity of the algebra ./

We shall introduce *-algebra structure on &/ To this end we use the notion
of complex conjugate object. In virtue of Prop. 2.3 any object of R admits
complex conjugation. Moreover (cf. Prop. 2.4.2) the complex conjugation of
any object ae R, is irreducible.

For any aeR;, we denote by & the complex conjugation of a belonging
to R;,, and by j,: H,— H the corresponding invertible antilinear mapping. Clear-
ly@=a and j=j; .

For any aeR;,, and any me B(H,) we set (cf. (2.8))

J__ =1
m=J,mj, .

Clearly m’e B(H,). Moreover for any pe B(H,)’ we denote by p’ the linear func-
tional on B(H,) such that

p’ (m’)=p(m)
for all me B(H,). Remembering that j, j,=I, we get
mi=m, pil=p

for any me B(H,) and pe B(H,).
For any aeR;,, and any pe B(H,)' we set

(up)* =up,. (3.19)
Clearly this formula defines unique antilinear involution
x: A > (3.20)

Proposition 3.3. The algebra o/ equipped with (3.20) is a *-algebra. For any reR,
W is a unitary element of B(H,)® /. Moreover for any model M =(B,{v"},.x)
of R the mapping @,,: s/ — B is an unital *-algebra homomorphism.

Proof. Let aeR,,,. Clearly (3.19) is equivalent to the relation

ur= (ua)j® *
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We know that t; eMor(1, « @) and t; eMor(aa, 1). Using Prop. 3.1.2, formula
(3.18) and remembering that u* =1 we obtain

(u“@ua) (t1u®1)=tlu®1
.00 W Du’)=F, 1.
Applying now Prop. 2.5 we see that u* is invertible and
W) L=(ur)*®*, (3.21)

This formula holds for any a€eR;,. We have to prove the similar result
for all reR. According to (3.13)

u'=) (p®D) u™(pE®I)
k

where p,eMor(x, r), 0 €R;,, and Y p, p¥ =1,. Remembering that the hermitian
k

conjugation (i.e. the first star in *® %) is anti-multiplicative we get
@y*®*=3 (p®I) @*)*®* (pF®1I).
]

Therefore
@)*®*u =3 (p,®I) W)*®* (pf p 1) u™ (pf ®1I).
kil

Clearly pff preMor(oy, o). If o+, then pf p,=0. If o =0, then (cf. (2.5))
pi b is a multiple of I,,. In both cases (p} p,®I) u*=u*(pf p,®1I). Taking into
account (3.21) we get

(“r)*®*“'= Z pipf P PE®I= IB(H,)@.QI-
ki

Similarly one can check that u"(u)*®*=1I,4 e . This way we proved that
for any reR, u" is invertible and
W)~ 1=(w)*>* (3.22)
We still have to show that the involution (3.20) is antimultiplicative. Let
o, feR,,,. Inserting r=a f in (3.22), using (0.1) and (3.18) we get
(W@ = ()" = (ur D)~
=(t®id) {(uf)*®* D (u*)*®*}. (3.23)
For any reR and any peB(H,) we denote by p* the linear functional on
B(H,) such that p*(m*)=p(m) for any meB(H,. Then (p*®id)((u)*®*)
=((p®id) u")*.
Let pe B(H,) and ce B(Hy)'. Clearly (p*®0*) 1 =0*® p*. Therefore applying
p*®c*®id to both sides of (3.23) and taking into account (3.16) we get

(ufy ug)* = (ub)* (up)*.
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This formula shows that (3.20) is antimultiplicative and o/ is a *-algebra.
From now on we shall use the commonly accepted notation: For ve B(H)® &/
we write v* instead of v*®*,

To end the proof we notice that the formula (2.12) implies that

(P’ ®id) V" =((p@id) v')*
for any pe B(H,)'. Therefore
P (U)*) =@y (u},) = (p'®id) 0*
=((p®id) v*)* =@y (up)*. O
For any aeR;,, and any pe B(H,)’ we set
K (up) =(p®id) (u*)*). (324
Clearly this formula defines unique linear map

K: A > (3.25)

Proposition 3.4. 1. x is antimultiplicative.
2. For any ae </

Kk(k(a*)*)=a. (3.26)

3. For any reR
(d®x) W) ="~ (3.27)
Proof. Formula (3.24) means that (id®x)u*=(u**. Let reR. Using (3.13) and

performing standard computations we get (id®x)u"=(u")* and formula (3.27)
follows.

Let us compute x(u3uf), where a, feR;,,, peB(H,) and ceB(H,). Using
(3.16), (3.27), (3.18) and (0.1) we obtain
K (uf uh) =(p @ ®x) u*’
=(p@c®id) (u*)™")
=((p®0) ®id) (") D@ ™)
=(0®@p®id) (")~ D)™ ")=r(uf) K (up).

Statement 1 is proved.
To prove Statement 2 we notice that

k(2)*) =x (%)= (P’ ®id) (U)*) = U5s)* =upsu;.
Therefore

K (K ((U5)*)*) = ugsesms=tj

and (3.26) follows. [
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We shall also use the following

Proposition 3.5. The functional he of' introduced by (3.6) is positive and faithful :
h(aa*)>0 (3.28)

for any non-vanishing ae <.

Proof. Assume that a is given by (3.2). Then
h(aa*)=) h(ub, (u3)%). (3.29)
ap

Using (3.19), (3.16) and (3.13) we have
h(ub, (2 )*) =h(u?, u2))
=(p®@pi®h) u*
=(ps®@pi®h) Y. (P ® 1) u™(pi ®1I)
k

where p,eMor (o, B &), 0, €R;,, and Y. p; pf =1I,,. Taking into account (3.6) we
see that

h(ub, (us )*)=(ps®pd) (¥ Pe F),

where 2' denotes the sum restricted to ks satisfying condition o, =1. For these
k

k's, ppeMor(1, B &). If B+a then in virtue of (2.6) p,=0 and h(uﬁﬁ(uj‘,u)*)=0.
If f=a then using again (2.6) we see that Z'pk p¥ =/.t; t}; where 4, is a non-
k

negative numerical factor. In fact 4, is strictly positive. To see this we notice
that p¥ t;_ belongs to Mor(1, o) and (cf. (2.5)) pi t;, =0 if o, + 1. Therefore

tj, = Dk D tj,=zlpkpl,¢.‘ tj,
P k

= Aa tja tj*u tja
and 4,=(t%t;) "' >0.

Using (1.6) and performing rather simple computations one may check that
t} t; =Tr(F)
(Pa®pY) (t), t1)=Tr(F, po p¥)
where p, is the density corresponding to the functional p, (ie. p,€ B(H,) and

Pa.(m)=Tr(p,m) for all meB(H,)) and F,=j¥j,. Inserting these date into (3.29)
we get

Tr(F; fa P7)

h@a) =2 =1 x)

a

and (3.28) follows. [
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Now let ||+| be the largest C*-seminorm on the x-algebra < In virtue of
Prop. 3.5, |||l is a norm. Let A be the completion of &/ with respect to this
norm. Then A is a C*-algebra with unity, ./ is a dense x-subalgebra of A
and any *-homomorphism of &/ into a C*-algebra B can be extended to a
C*-homomorphism of A4 into B. For each reR, u" is a unitary element of
B(H,)®A and formulae (3.9) and (3.18) show that (4, {#},.g) is a model of
R. Therefore (A, u) where u=u' is an R-admissible pair.

We shall prove that o/ coincides with the *-subalgebra of 4 generated by
matrix elements of u. Indeed denoting the latter algebra by .7, we obviously
have o/, =/ On the other hand in virtue of Prop. 2.6, u*e B(H,)® o, for any
seR. In particular uje o, for any aeR,,, and peB(H,). Therefore o« = o/, and
the conclusion follows.

Assume that (B, v) is another R-admissible pair. Let M =(B, {¢"},.z) be the
model of R such that v/ =v, ¢,, be the *-homomorphism of &/ into B related
to M and @, be the extension of ¢, to A. Then @, is a C*-homomorphism
and (cf. (3.11)) (Id®@,)u=v. It shows that (4, u) is the universal R-admissible
pair.

Let G=(A4,u). We shall prove that G is a compact matrix pseudogroup.
To this end we have to verify conditions CMP I-111. We already know that
CMPI holds. To prove CMPII we notice that (A®A, {u" D u'},.g) is a model
for R. Therefore (A® A,uDu) is an R-admissible pair. Existence of @ follows
now from the universality of (4, u). CMP III follows immediately from Prop. 3.4
(insert r=f in (3.27)). This proves the Statement 1 of Theorem 1.3.

The “if” part of Statement 3 and Statement 4 of Theorem 1.3 follows immedi-
ately from the fact that (4, {u"},.z) is @ model of R (cf. (1.12) and (1.11)). The
“only if” part of Statement 3 coincides with Prop. 3.1.3.

To prove Statement 2 we notice that the comultiplication @ coincides with
the C*-homomorphism @,, associated with the model M =(A® A4, {v" O u'},.r)-
Therefore (cf. (3.11))

([d@¢)u"=u Qv

and " is a unitary representation of G for any reR.

Assume that v is a unitary representation of G acting on a f—d. Hilbert
space H. Let # be a complex conjugation of the fundamental representation.
Clearly the tensor product of a certain number of u and # is of the form u',
where reR. Since {u,u} generate Rep G, one can find a finite family {b,} of
intertwiners (b, intertwins u"™ with v, r,e R) such that Y by b¥ =Ig,. Then b} b,

k
intertwins u" with u" and in virtue of Theorem 1.3.3 b¥ b,eMor(r;, ) for all
k, I. Using Prop. 1.1 one can find seR such that H,=H and b,eMor(r, s) for
all k. Now we have

v=20(b;®) BE®N =}, (b:D1) u™ (b 1)
k k

=2 W (bR (BE®D =’

It shows that any unitary representation of G is of the form u" for some
r€R and Statement 2 holds.
The proof of Theorem 1.3 is complete.
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4. Twisted SU(N) groups

It is well known that the algebra of operators intertwining the n-th power of
the fundamental representation of SU(N) group with itself is generated by the
representation of the permutation group of n elements acting naturally on HP".
This is the place where the Young diagrams (which originally were invented
to classify the representations of the permutation group) enter into the represen-
tation theory of SU(N). We shall prove the analogous result for a twisted SU(N)
group. In this case the group algebra of the permutation group should be re-
placed by the Hecke algebra (see e.g. [4]).
At first however, we have to present

Proof of Theorem 1.4. It is sufficient to construct a concrete monoidal W*-
category R with the distinguished object f satisfying the assumptions of Theorem
1.3 such that a pair (A4, u) is R-admissible if and only if the matrix elements
of u satisfy the relations (1.15)—(1.17).

At first we describe a smaller category R,. R will be obtained by completion
(cf. Prop. 2.7) of R,.

All objects of R, are powers of the distinguished object: Ro={f°
=1, f, f% ...} - H.=C" (the scalar product on C" is the standard one) and conse-
quently H,.=(C")®". In order to define Mor(f™, /™) we use the linear mapping

E ] C =~ H N
introduced by the formula

E(l)= Z Ep ks kn €1, P8, ® ... @8y,
yenrk

ky N

where (g, €,, ..., &y) is the canonical basis in C". An element of B(H, H;m)
is said to be a monomial if it is a composition of mappings of the form
I+®E* ®I,., where k, | are non-negative integers, I, and I, are identity map-
pings acting on Hp and Hy and E* denotes either E or E*. If n=m then
I, is also included into the set of monomials. Mor(f™, f™) is by definition
the set of all linear combinations of monomials belonging to B(H ., H;n). Clearly,
Mor(f", f™) contains non-zero elements if and only if n=m mod N.
One can easily check that

RO =(R0, {Hr}reRos {MOI‘(T, s)}r,seRo, ‘s f)

described above satisfies the conditions CMW* I-IV and CMW* VIII-X ie.
R, is a concrete monoidal W*-category with distinguished object.

Let R be the completion of R, (cf. Prop. 2.7). We shall prove that R contains
a complex conjugation of f. To this end we consider the morphism
geMor(fV~1, f¥~1) introduced by the formula

q=(E*®IfN—l)(IfN—l®E). (41)

One can easily check that for any ze Hyn -,

N
qz= Y x (|2 42
k=1
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where x, and y, (k=1,2, ..., N) are elements of H;~-, introduced by the formulae

Z Eklz lN8l2® ®81N

i2, ., iN

W= Z Eu VN - 1k811® ®8|N §°

i1y eesin -1

Since E is left (right resp.) non-degenerate, vectors Xy, X5, ..., Xy (V1> V2s -5 VN
resp.) are linearly independent. Therefore q is a linear mapping of rank N and
the space

H= q(HfN— 1)

is N-dimensional. Clearly (x,, X5, ..., xy) is a basis in H (not orthonormal in
general).

Let peB(H ~-1) be the orthogonal projection onto H and ie B(H, H/n-1)
be the embedding. Remembering that geMor(fV~ L, f¥"!) and that
Mor(f¥"L f¥ 1) is a W*-algebra one easily concludes that
peMor(fV~1, f¥~1). Moreover there exists ¢ eMor(f¥ ", f¥~ 1) such that

499 =p. (4.3)
In virtue of CMW* VI there exists an object seR such that H=H and
ieMor(s, f¥N71).
Let j: H,—H be the antilinear mapping such that j(e,)=i*Xx,. Since
(Xtk=1.2,....n is a basis in H=H_, j is invertible. We have

t;=(I;,®i*) EeMor(1, f's)

e . 4.4
ti=E*(q'i®I)eMor(sf, 1).

The first equation follows immediately from definition (1.6) with (e,) replaced
by (). To prove the second we notice that E*(z®y)=) (yi|z) (& |y) for any
k

2€Hpx-1 and yeH,. Therefore for any xe H; and ye H; we have

E*(q'i®I) (x®y)=E*(q' ix®y) =) (vi|q'ix) (e | ¥)
k

=Y 0xlq i) (7 (*x)19) =G 0* . x4 X)) y)-
k k

Now using (4.2), (4.3) and remembering that p is the projection onto H=i(H,)
we get

E*(q'i®I;) (x®y)=(""'(x)|y)
and Eq. (4.4) follows (cf. (1.7)). This way we proved that s is a complex conjuga-
tion of i
One can easily construct a model of R,. Indeed, if uy,; (k,I=1,2, ..., N) are
elements of a C*-algebra A with umty I satisfying (1.15)+(1.17) then settlng
U= (g, 1= bes 3 " =u®" (n=1,2,...; u®" denotes the D-product of n copies

of u) and =] we define a model (A {u'},cr,) Oof Ry. Clearly, any model of
Ry is of this form. Therefore a pair (A, u) (where A is a C*-algebra with unity
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and ue B(C¥)® A) is R-admissible if and only if the matrix elements of u satisfy
relations (1.15)1.17). Now the statement of Theorem 1.4 follows from Theorem
1.3.1. O

In order to prove Theorem 1.5 we have to analyse more in detail the structure
of the morphism sets Mor(f”, f™). In this analysis we deal with complicated
monomials being products of many factors of the form I.@E*®I,. (typically
the number of factors will be of the order of N2). For this reason we have
to use the graphic notation described below.

In this notation monomials will be represented by diagrams consisting of
vertices and lines of approximately vertical direction. Each vertex is either the
end point of N lines coming from up (then we say that the vertex points down)
or the start point of N lines going down (the vertex points up). Each line either
has a free upper (lower resp.) end or starts from (ends up at resp.) a vertex.
Lines having free upper (lower resp.) end are called incoming (outgoing resp.).
Lines must not intersect (later we admit this possibility giving the special mean-
ing to the intersections).

The monomial represented by a diagram « will be denoted by [a].
[«]JeMor(f", f™) if and only if « has n incoming and m outgoing lines. I;.
is represented by the diagram consisting of n vertical lines (and no vertex).
Elementary monomials I® E®I: and I«.® E*®]I. are represented by the dia-
grams

k-lines I-lines N-lines
L (R 2
N-lines and k-lines I-lines
respectively.

The diagram representing the composition of monomials [«] [#] is obtained
by placing the diagram o below the diagram # and connecting the lower ends
of B with the corresponding upper ends of « (notice that [a][f] is well defined
only if the number of outgoing lines of § equals the number of incoming lines
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of a). For example the morphism (4.1) is represented by the diagram

The above rules give the complete description of our graphic notation. To
any given monomial one can easily assign the representing diagram. Conversely
cutting a given diagram a with horizontal lines into elementary pieces (each
consisting one vertex) one finds all factors of the form I+«®E* ®I,: entering
into the decomposition of [a]. Let us notice that the diagram representing [o]*
can be obtained by mirroring o with respect to a horizontal line. Moreover
[«]®[B]=[a B], where af is a diagram obtained by drawing a side by side
B (o on the left).

In what follows we shall need an explicit formula for matrix elements of
the monomial [«] corresponding to a given diagram o. Let V(x) and L(x) be
the set of all vertices and the set of all lines of the diagram o. For each we V(«),
Wi, Wy, ..., wy Will denote the lines starting from (or ending at) the vertex w
listed in the natural order (w, is the most left line). Moreover o, o, ..., ot
(@, a3™, ..., a2 resp.) will denote the incoming (outgoing resp.) lines of diagram
« listed in the natural order. Using the induction with respect to the number
of vertices of « one can easily show that for any iy, iy, ...,im, j1sj2s--+sJn
=1,2,..., N we have

(€, ®8,® ... Q¢ |[d] &;,®e;,®...®¢; ) =Y. ( [] E) (4.5)

A weV(a)

where EY equals Ej,,). ... aown) (Eaowy)s -+-» 20wy T€SP.) if the vertex w points up
(down resp.) and )" denotes the sum over all mappings
A

A: Lw—{1,2,...,N} 4.6)

such that A(ei")=j, (k=1,2,...,n) and A(")=i, (k=1,2,...,m). Each of the
mappings (4.6) is called a labelling. To any line le L(x) it assigns the label A()).
The labelling is said to be regular if the corresponding term in (4.5) does not
vanish.

Starting from this place we assume that the array E _ is given by the formula
(L18). One can easily check that E _ is left and right non-degenerate.
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Lemma 4.1. Let a be a diagram having no incoming lines and N outgoing lines

o, ag, ..., o and iy, i, ..., in=1,2,...,N. Then

Z( H E}v):CaEi,,iz....,iN 4.7)

A weV(a)

where the summation runs over all labellings A such that (o) =i, (k=1,2,...,N)
and c, is the value of the left hand side for (iy, i,, ...,iy)=(1,2, ..., N).

Proof. Let V"P(a) (V9" (x) resp.) be the set of all vertices of the diagram o
pointing up (down resp.). Clearly

# V(@) =1+ (4 V" ().

(3 A denotes the number of elements of A). Let 1 be a regular labelling. Then
at each vertex we have precisely one line with a given label i. Therefore denoting
by L** the number of outgoing lines with label i we have

4 V(@)= L9+ (4 V4 ().

Comparing the two relations we get [*'=1 for all i=1,2,...,N. If in the
sequence (iy, i,,...,iy) @ number i occurs more than once, then L?*'>1 and
the above reasoning shows that in the sum (4.7) there is no non-vanishing term.
In this case both sides of (4.7) vanish and the formula holds. Therefore we
may assume that (i, i,, ..., iy) is @ permutation of (1,2, ..., N).

Let i be one of the numbers 1,2,..., N—1 such that i,i+1 occur in the
sequence (iy, i, ..., iy) in the reverse order (i.e. i+ 1 precedes i) and A be a regular
labelling such that A(ag*)=i, (k=1,2,..., N). We shall consider the following
walk on a. We start at the lowest point of the outgoing line with label i and
move alternately up and down using the lines with labels i and i+1 resp.,
until we reach the lowest point of the outgoing line with label i+ 1. At this
moment we end our walk.

Let C be the path passed this way. Clearly, C is a non-self-intersecting (there
is no vertex visited more than once) broken line (open polygon). At each vertex
belonging to C we make a left or right turn of almost 180°. Remembering
that i+ 1 precedes i in the sequence (iy,i,,...,iy) S0 the ending point of our
walk is placed on the left with respect to the starting point one can easily
show that the number of left turns exceeds by one the number of right turns:

# V= #Vp+1 4.8)

where V; (Vg resp.) denotes the set of all these vertices belonging to C, where
we make a left (right resp.) turn.

Let A’ be the labelling obtained from A by exchanging the labels i and i+ |
on the lines belonging to C:

i if keC and A(k)=i+1
Xk)={i+1 if keC and A(k)=i
Ak) if kEC.
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Then A'(og"")=ji, where (jy, j, .-, jy) is the sequence obtained from (i, i,, ..., iy)
by exchanging i with i+ 1. Notice that i,i+ 1 occur in (jy, j,, ..., j) in the natural
order.

It follows immediately from (1.18) that

—uEY  if weV,

M= 1 EY. if wely
E?. otherwise.
Taking into account (4.8) we get
[l Efy=-n [] E}. 4.9)
weV(a) weV(a)

Denote the left hand side of (4.7) by E,_ . . Summing both sides of (4.9)
over all labellings 4 such that A(eg")=1i, (k=1,2, ..., N) we get
E =—uk; (4.10)

i1...in - JN*

Let I(iy,i,, ..., iy) be the number of inversed pairs in the sequence (i, i,, ..., in).
Using I(iy, i,, ..., iy) times the formula (4.10) we obtain

-~

Ei,...i,,z(‘/l)m" iy EI,Z....,N'

This formula coincides with (4.7). [

Taking into account (4.5) we get
Mor(1, f¥)={cE: ceC}. @.11)

Let peMor(f, f) and xe H;. Since E _ is left nondegenerate, there exists a linear
functional ¢ defined on Hj~ -1 such that x=(I;®¢) E(1). Therefore

px={pP®¢) E()=I;®¢) (p®I;~-1) E(1).

Clearly (p®I;~-1) EeMor(1, f M. In virtue of (4.11) there exists ceC such that
(P®I~-1) E=cE. Therefore px=(I;®¢)c E(1)=cx and

Mor(f, f)={cI;: ceC}. 4.12)

It means that the fundamental representation of S, U(N) is irreducible.
For any natural number n we set

2k

L
Fact,(n) =Y u*'0= [] =L+
i k=1 H

Wwhere the summation runs over all permutations i of the set {1,2,...,n} and
I(i) denotes the number of inversed pairs in the sequence (iy,...,iy). Clearly

Fact,(n)=n!. The twisted factorial Fact,(n) will be used in the remaining part
of this section.
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Let

#—2N+4
im e ([ E*) (EQI,:
Iy Factu(N~2)(f® )E®I)

i i

g=

—-2N+4

Y B
Fact,(N—2)

-

Clearly ceMor(f2, f 2_) Usir;g (4.5) one can eas—ily check that

ne®e, for a<b
a(e,®¢)=1 &Rc¢, for a=b (4.13)
uey®e,+(1—p?e,®e, for a>b.

If p=1 then o(x®y)=y®x for all x, ye H,. It shows that in this case the funda-
mental representation u commutes with itself. According to the proof of Theorem
1.4 (see beginning of this section) the complex conjugation # is contained in
the (N —1)-th power of u. Therefore # commutes with u and (cf. [8] Prop. 2.4)
the algebra of the continuous functions on S, U(N) is commutative. In this
case S; U(N) may be identified with a group of N x N matrices and using formula
(1.21) of [8] we get S; U(N)=SU(N).
The formula (4.13) can be used to check the following relations

oc¥=g (4.14)
?=(1—p®)o+pu*ls 4.15)

(0e®I)) (I;®0) (e®I;)=(I;®0) (c®I) (I;®0) (4.16)
Un®0®@In-u-2) E= — 2 E @.17)
E*([n@®0® I -y-2)= — u? E*. (4.18)

In the two last equations k=0, 1, ..., N—2.

Now we have to extend our graphic notation. We say that an element of
B(H;n, Hym) is a quasi-monomial if it is a composition of monomials and map-
pings of the form I.®c®I,., where k, | are non-negative integers. Completing
the list of elementary diagrams with the diagram

(4.19)

—— =

k-lines I-lines
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representing the morphism I®o®IeMor(f**'*2, f¥*1*2) we can represent

graphically any quasi-monomial. The symmetry of (4.19) with respect to a hori-
zontal line reminds us that o is selfadjoint. Relations (4.15)(4.18) mean that

= (1-u?) +u? (420)

= 4.21)

4.22)

(4.23)

It follows immediately from (4.15) that Spo={1, —u?}. An element xeH,. is

said to be symmetric (antisymmetric resp.) if 6 x=x (6 x= —pu?x resp.). Using

(4.13) one can easily check that an element xX=Y X, £,®¢, is antisymmetric
ab
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if and only if

—uxy, for a>b

Xop= 0 for a=b (424

——Xp, for a<b.

Let xe H;.. We say that x is completely antisymmetric if
(Ifk@d@]fn—k—z)x= —[12)6

for k=0,1, ...,n—2. The subspace of completely antisymmetric elements of H,
= H®" will be denoted by H/". Using (4.24) one can easily check that dim H/"

=<IZ) and that xe H " (n<N) if and only if there exists a linear functional
¢: Hyn-n— @ such that
x=(In®¢) E(1). (4.25)

Lemma 4.2. Let geMor(f", f"), ¢*=q and qH;.c H{". Then q is proportional
to the orthogonal projection onto H{".

Proof. 1t is sufficient to show that there exists a complex number ¢ such that
gx=cx

for all xeHp" Clearly (9®I;~-»)E€eMor(1, f¥). Therefore (cf. (4.11))
(q®I,~-») E=cE and using (4.25) we get

4x=(q®¢) E(1)=(®@¢) (q®I;~-») E(1)
=c([.®@)E(l)=cx. O

Let yePerm(n) (Perm(n) denotes the group of all permutations of the set
{1,2,...,n}). With the same letter y we denote a diagram consisting of n (inter-
secting) lines (and no vertex) such that there is no pair of lines intersecting
more than once and y{"=9y% for k=1,2,...,n. We remind that y¥, 9, ...y}
(3"5y5", ..., 5" resp.) denote the incoming (outgoing resp.) lines of the diagram
y listed in the natural order: Y, (3™ resp.) is the most left incoming (outgoing
resp.) line. For a given permutation y there exist many diagrams y satisfying
the above conditions, however, due to (4.21) the morphism [y]eMor(f™, f")
is uniquely determined. Let us notice that [y*]=[y~'].
Let

A,= ) (signy)[y]. (4.26)

yePerm(n)
Then A} = A, and using (4.15) one can check that
(Ifk®a®1fn-k—2) A,,= —#2 An
for k=0, 1, ...,n—2. Therefore A, H..< H/" and using Lemma 4.2 we get

A,=c,P" 4.27)
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where B~ is the orthogonal projection onto H/" and c,eC. Computing
4,6 ®e,® ... D¢, one easily finds that

¢, =Fact,(n). (4.28)

In the special case n=N we have dimH/"=1, H*¥=CE, B/ =cy ' EE* where
cy=E* E=Fact,(N) and
Ay=EE*, (4.29)

In diagram notation

[ 1 T T

Y (sign y) = (4.30)

In virtue of (4.21)
i

Therefore
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and

Clearly

Moreover in virtue of (4.12)

= Fact,, (N)

S.L. Woronowicz

=C‘If

4.31)

4.32)

(4.33)

where c¢'eC. Computing the action of (4.33) on the vector &y we get ¢
=pt—1 Fact,(N). Inserting (4.32) and (4.33) into (4.31) we get

—

|

4.34)
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Taking the hermitian conjugation of both sides we obtain

- (4.35)

- - - -

Now we are ready to prove the theorem revealing the structure of the morphism
sets Mor(f™, f").

Theorem 4.3. Mor(f”, f") is the subalgebra of B(H,.) generated by elements
Ifk®a®1f"‘k‘2 (k=0, 1, cany n—2)

Proof. Let a be a diagram having the same number of incoming and outgoing
lines. We have to show that

[] is a linear combination of quasimonomials represented
by diagrams having no vertices. (4.36)

We shall use the induction with respect to the number of pairs of vertices.
Assume that « contains two vertices (w"P pointing up and w*" pointing down).
In virtue of (4.34) and (4.35) we may assume that o is of the form

wep

A diagram
containing
no vertex

Wdown

~ Moreover taking into account (4.22) and (4.23) we may assume that the
I}HCS WiP, wiP, ..., wiP starting at w"P are pairwise non-intersecting and that the
lines wgown, yydown ..., W™ ending at wi°"" have the same property. Let k be
the number of lines connecting w*® and we*". Then any of the lines
Wil 1, WER 5, ..., WP intersects each of the lines wio™®, wio™s, ..., wi™ Moving
these intersection points to the left (this is possible due to (4.21)) we may assume
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that o is of the form

Part of the
diagram

containing
no vertex

Let us consider the left part of this diagram

N—k lines

Br-i

L
N—k lines

Clearly [By-,] is selfadjoint and using (4.21) and (4.22) one can easily show
that [By_] Hy~-x is contained in Hf*™ ™. Therefore (cf. Lemma 4.2 and (4.27))

[Brv-k]l=c Ay

where Ay _, is given by (4.26) and c is a numerical constant.
Therefore

Part of the
[al=c ¥ (signy) diagram

yePerm (N —k)

containing
no vertex

and (4.36) follows.
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Assume now that (4.36) holds for any diagram o having 2k vertices. Let
o be a diagram having 2k+2 vertices. In virtue of (4.34) and (4.35) we may
assume that a is of the form

where Q is a diagram having 2k vertices. Using the induction assumption we
see that

[a]= 2 ¢,

-

where Q, are diagrams having no vertices. Each of the diagram on the right
hand side of the above equation has two vertices. Therefore (cf. the first part
of the proof) (4.36) holds. []

Let us remind [4] that the Hecke algebra H, , (where geC) is the universal
associative complex algebra with unity generated by n—1 elements
81,82, ..., g satisfying the following relations

g2=(1—q)g;i+ql i=12,...,n—1
8igi+18i=8i+18i8i+1 i=12,..,a~2 (4.37)
2:8=8;8i li—jl=2,i,j=1,2,...,n—1.
Elements g,, g, ..., g, and their products can be (in the obvious way) repre-
sented by diagrams consisting of n lines and no vertex (g, is represented
by the diagram (4.19) where |=n—k—2). In particular, for any yePerm(n) we

denote by [v], the element of H, , represented by the diagram y corresponding
to the permutation y. It is known that dim H, ,=n!and that

{[y]q}yel'erm(n) ' (438)



74 S.L. Woronowicz

is a basis in H, ,. In the following we assume that g>0. Then H, ,is a C*-algebra
(the star is introduced by the formula g¥=gq;, i=1,2,...,n—1).

In [5] (see also [4]) for each Young diagram d consisting of n boxes an
irreducible representation n of H, , is constructed. The carrier Hilbert space
K“ of the representation is the same for all g and for any yePerm (n) the mapping

R, 3q-n([7])eB(KY (4.39)

is continuous. Considering all Young diagrams with n boxes we obtain the
complete set of mutually non-equivalent irreducible representations of H, ,,.

- Let ¢4 be the projection in H, , supporting nd (eI Tcg is the largest projec-
tion killed by nf). Clearly ¢ is a minimal central projection in H, , and

Y=Ll (4.40)
d
Using the basis (4.38) we have
= Y DI, (4.41)
yePerm(n)

Remembering that the mappings (4.39) are continuous one can show that the
coefficients t2(y) depend continuously on q.

It follows immediately form (4.14)+4.16) that operators gy =I - @ 0@ Ipn-x-1
acting on H, are selfadjoint and satisfy the relations (4.37) with g = p?. Therefore
there exists an unital representation n of H,. , acting on H, such that

(g =L- 1@ ®Ln—i-1.

Clearly n([y],2)=[y] for any yePerm(n).
Let d be a Young diagram consisting of n boxes. We consider the orthogonal
projection
c=mn(ch). 4.42)

It depends continuously on . Indeed using (4.41) we have

=Y f0)Db]

yePerm(n)

and all quantities on the right hand side are continuous with respect to u (contin-
uity of [y] follows immediately from (4.13)). ¢*=0 if and only if d contains
more than N rows (for u=1 this fact is well known, for p<1 it follows from
the continuity argument).

Let d be a Young diagram consisting of n boxes with number of rows smaller
or equal to N In virtue of Theorem 4.3, n(H . ,)=Mor(f", f") and ¢* is a
minimal central projection belonging to Mor(f", f"). Therefore c?(H,.) i
u"-invariant (To simplify the notation we write u" instead of u/") and the sub-
representation of 4" acting on ¢?(H,») is factorial i.e. is equivalent to the direct
sum of (dim K%-copies of an irreducible representation of S, U(N). The latter
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representation will be denoted by u“. The dimension count shows that
dim y'=——. (4.43)

Clearly representations u? (where d runs over the set of all Young diagrams
with n boxes and number of rows smaller or equal to N) are mutually non-
equivalent. Moreover (cf. (4.40)) any irreducible subrepresentation of 4" is equiva-
lent to one of .

Let d (d', d” resp.) be a Young diagram consisting of n (n’,n”=n+n’ resp.)
boxes with number of rows smaller or equal to N and m3? be the multiplicity
of u*" in u'@u. Then ¢*(H)®c (Hpm)=(c"®c*)(Hw) is u" -invariant and
the corresponding subrepresentation is equivalent to the direct sum of
(dim K% (dim K¥)-copies of u?@u?. Therefore, the multiplicity of u” in this
subrepresentation equals md? (dim K¢) (dim K?). Remembering that ¢?" selects
the subrepresentations equivalent to u?” we get

dim(c*'(*®c)) =mi? (dim K% (dim K*) (dim u?")

and (cf. (4.43))

dd’ __ (dlm Kd”) (dlm (Cd”(cd®cd’)))
" (dim K9 (dim K7) (dim ™) (4.44)

The continuity argument applied to (4.43) and (4.44) shows that dim u? and
mg? are independent of u. Therefore these quantities are expressed by the same
formulae as in the SU(N) case. It means that the decomposition

wWQut =Y mid ut”
er

has the same form as in SU(N) case. In particular if d' is the diagram consisting
of N boxes placed in one column then

ud @ ud’ — ud“

where d” is the diagram obtained from d by adding one full column. Using
the continuity argument one can show that u?' is trivial. Therefore

w=ut". (4.45)

Let d (4’ resp.) be a Young diagram consisting of n (n’ resp. n<n’) boxes with
number of rows smaller or equal to N Assume that u? is equivalent to u.
Then n'—n=0 mod N (otherwise Mor(f™, f™)={0}). Let d” be the Young dia-
gram obtained from d by adding (n’ —n)/N full columns. Then (cf. (4.45)) u®”
1S equivalent to u¥ and d'=d” (4 and d” have the same number of boxes).
This ends the proof of Theorem 1.5.

The following problem (for N =3) is still open: Find all compact matrix
pseudogroups that have the property of S, U(N) described in Theorem 1.5.

For N =2 the pseudogroups presented in [7] are the only ones having this
property.
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