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On the Shafarevich-Tate group of the jacobian
of a quotient of the Fermat curve

William G. McCallum
M.S.R.L, Berkeley, Ca 94721, USA

Introduction

Let p be an odd prime number and let a, b, and ¢ be integers such that
0<a, b<p and a+b+c=0. Let F, , . be the complete nonsingular curve over
@ with affine equation

(0.1) yP=x(1—x)".

F, ;.. is a quotient of the Fermat curve x?+y?=1 by a cyclic automorphism
group of order p. Let J, ; . be the jacobian of F, , .. Then J, , . has potential
complex multiplication by the ring of integers Z[u,] in the cyclotomic field
of p-th roots of unity @Q(u,); if { is a p-th root of unity the action of { on
.5, is induced by

y={y.

If K is a number field, we denote by II(J, , ., K) the Shafarevich-Tate group
of J, .. over K. In this paper we find systematically occurring non-trivial ele-
ments in I (J, ; ., Q(u,)). For a rational number x let g(x)=(x?"'—1)/p.

Theorem. Suppose p=1(mod 4), p¥ B, 1)2 B(p+ 32, and —2abcq(a®b®c?) is con-
gruent to a non-zero square modulo p. Then (J, ;, ., Q(u,)) contains a subgroup
isomorphic to Z/pZ®Z/pZ.

Here B; denotes the i-th Bernoulli number. The congruence condition in
the hypothesis has a geometric interpretation in terms of the reduction type
of the minimal model of F, , . over Z,[u,]. We will recall this interpretation
in §3. Heuristically about half the quotients of the Fermat curve satisfy the
congruence condition.

The theorem is proved by calculating the restriction of the Cassels-Tate
pairing on MI(J, , ., Q(u,)) to its (1—{)-torsion subgroup. In fact we give a
general formula for the pairing between the (1 —{)-torsion and the (1 —{)"-torsion
of (J, , ., K), provided n<p—2 and all (1—{)"*'-torsion points on J, ,, . are
rational over K. We are able to apply this to the case n=1, K=Q(g,), by
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638 W.G. McCallum

virtue of a result of Greenberg [7] stating that all (1—{)3-torsion points on
Ja, b, are rational over Q(u,).

In order to apply this formula directly, it would be necessary to find a
function f defined over K whose divisor is p times a divisor which represents
a (1—{)*-torsion point on J, , .. Such functions are hard to find explicitly. We
are able to avoid doing this by finding a p-adic approximation to the function
in §4. The technique for this p-adic approximation was inspired by ideas of
Robert Coleman.

In §1 we show how to express the Cassels-Tate pairing as a sum of local
pairings when a certain hypothesis is satisfied, and in §2 we give a formula
for the local pairing in terms of functions evaluated on divisors. In §3 we recall
various results on curves over discrete valuations rings and duality theory. In
§4 we recall the necessary information on the geometry of a minimal model
for F, , .. In §5 we find the p-adic approximation. In §6 we compute the local
pairing, and in § 7 we deduce the main theorem.

The author would like to thank Robert Coleman for many useful discussions.
An earlier version of this work formed the author’s Ph.D. thesis, under the
supervision of Barry Mazur, to whom the author owes a great debt of gratitude
for his advice and support. The author would also like to thank the referee
for many helpful suggestions and corrections.

§ 1. The Cassels-Tate pairing

Let A be an abelian variety over a number field K. Let My be a complete
set of non-equivalent valuations of K. The Shafarevich-Tate group is defined
by the exactness of

0-II(K, A)» H'(K, 4)~ [] H'(K,, A),

veM

where the cohomology groups are Galois cohomology groups. Let 4 be the
dual abelian variety. The Cassels-Tate pairing is a pairing

() MI(K, A)x TI(K, 4) - Q/Z

which is non-degenerate modulo the divisible subgroup. It was defined by Cassels
for elliptic curves and by Tate in general. We give Tate’s definition in the special
case needed here, as expounded in [17] 1.6.9. Let ¢, y be isogenies of A over
K, and let $, J be the dual isogenies of A. Denote the induced endomorphisms
of (K, A) and MI(K, A) by the same letters. If f: G— G’ is a morphism denot¢
its kernel by G,. We will define the restriction of the Cassels-Tate pairing 0
the kernels of ¢ and

<, ) (K, A)y x TI(K, A); > Q/Z.



Shafarevich-Tate group of the Fermat jacobian 639

We will make use of various maps between cohomology groups, all coming
from the cohomology of one of the following types of sequence:

0 A, (K) > Agy, (K) > 4,(K) >0

or

0 4,(K)— A(R)—2 A(R) — 0.
If x is a global cohomology class, cocycle, or cochain, we write *, for the corre-
sponding local object. Let aelll(K, A), and a’elll(K, A);. Choose elements b

and b’ of H'(K, A,) and H' (K, /T,;) mapping to a and a’ respectively. For each
v, a maps to zero in H'(K,, A), and so it is obvious from the diagram

A(K,)

H'(K,, Ay) ——H'(K,, 4)

AK,)——H'(K,, 44,)

that we can lift b, to an element b, ;€H'(K,, A,,) that is in the image of
A(K,). Suppose that a is divisible by ¢ in H'(K, A), say a=y a,, and choose
an element b, e H' (K, A,,) mapping to a,. Then b, ; —b, , maps to zero under
H'(K,, As,)—>H"(K,, A4), and so it is the image of an element ¢, in H' (K, 4,).
Then

(L1) a,ay="Y inv,(c,ub)),

veM
where the cup-product is induced by the Weil pairing

e, A4, x /i,@ -G,
and inv, is the canonical isomorphism H?*(K,, G,,)— Q/Z (see [4], Ch. VI, §1).
For the definition when a does not lift to an a, we direct the reader to [17]

L.6.9.
Now suppose the following hypothesis holds

(H,,,) the map of Galois modules y: Agy (K)— A4(K)
has a section s: A4(K) = Ay, (K).
Then we can take a,=s,a. Further, we can express the Cassels pairing as
a sum of local pairings. Write =1 (K, 4), III'=MI(K, A), and let S, be the
¢-Selmer group, i.e., S,= H' (K, 4,) and

0— A(K)/¢pA(K) > Sy —1I, -0
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is exact. Let S, be the /-Selmer group. Denote the lifting of the Cassels-Tate
pairing to Sy xSy by {, > also. Fix a valuation ve M. By the definition of
III the third vertical map in

0—— A(K)/¢pA(K) —— S, — —0

0———+A(K.,)/¢A(Kv)-—->H‘(J<w A)——H' (IJ(W A)y —0
is 0. Hence we get a map

ly,: 84— AK)/PA(K,).
We will define a pairing
COoPv AKKL)9AK) x AKK)PAKK,) —Q/Z
such that for beS, and b'e S,
Kb, by= 3 (I, 4(0) 1, ;&)Y

veM g

Let G =Gal (K/K). Denote the map A(K,)/$pA(K,) - H'(K,, A,) by 1,,. Consider
the diagram

Ay (KW Ay, (K,)

AKIAK) ——  H'(K,, A,)

¢
l s l

0—')A(Ku)/¢¢A(Ku)___' Hl(Kvs Ad’lﬁ)

Y

iy

0 AKYIAKY) ——  H'(K,, 4,)

Let xeA(K,)/pA(K,), x'cA(K,)WA(K,). Let x, be a lifting of x to
A(K,)/¢ppA(K,). Then iy, (x;) and s,is(x) both have the same image in
H'(K,, Ay), hence (iz, (X,) —S,is(x)) is the image of an element c,e H' (K, 4,)
Define

1.2) {x, XY ¥ =inv,[c,Ui;(x)].
(1.3) Proposition. The map
Co8v: AK)/QAKK,) x AKK)PAK,) - Q/Z

is a bilinear pairing of abelian groups.
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Proof. The pairing is well-defined, since if the lifting x, is modified by an element
¢t of pA(K,)/pYA(K,), then the pairing changes by i,(t)ui;(x). It is well-
known that the images of i, and i, annihilate each other (for lack of a precise
reference, we prove this in Proposition 1.14 at the end of this section). Hence
the pairing does not depend on the lifting. By a similar argument, the pairing
does not depend on the choice of ¢, and is linear in the first argument. It
is obviously linear in the second. [

(1.4) Theorem. The Cassels-Tate pairing on S, x Sj, may be expressed as a sum
of local pairings

b, o> =3 ) L, (0D

veM
Proof. 1t is clear that if x=1, 4(b) and x'=1, ;(b'), then s,iy(x)=b; ,, igy(x1)
=b,, 1, and i; (x')=b},. Hence the c, in (1.1) is the same as the ¢, in (1.2). O

(1.5) Lemma. If v is a complex archimedean valuation, or if v is non-archimedean,
A has good reduction modulo the maximal ideal of v, and v(deg(¢$) deg(y))=0,
then { , Y*¥ is trivial.

Proof. The first statement is obvious, since in that case inv,=0. Now suppose
that v is non-archimedean. Under the hypotheses the cocycles in the definition
of the pairing are unramified (see [14], Proposition 9). But unramified cocycles
in H*(K,, A,) and H*(K,, A;) pair trivially (see [17] 1.2.6). [0

Before proceeding further, we recall the definition and some properties of
the Weil pairing. Let ac A, and a’'e A; and let D be a divisor on A representing
a. Let g be a function on A with divisor ¢ ~' D. Then

ey(a, a)=g(x+a’)/g(x)

for any x for which the right hand side is defined.
The Weil pairing is skew symmetric,

(1.6) es(a, d)=ez(@,a)"" for all acA,, aed;.
IfaeAW, and a'e A; then

(1.7) esyla, a)=e,(Ya, a),

and if ae 4, and a'€ 4,4 then

(1.8) egy(a, a)=¢,(a, da).

The latter two properties are immediate from the definition. Skew symmetry
follows from the general duality theory of abelian varieties [19], §20.



642 W.G. McCallum

The definition of {, >®'¥ depends on the choice of a section s, which may
not be unique. I-_Ioweyer, once s has been chosen, there is a natural choice
of section s': 4,,(K)— A, (K) for ¢, namely, the one determined by the condition

(1.9) egy(sa,s'a)=0 for all acA,(K), a'ed;(K).

This is the choice we make in what follows. The following lemma is natural
in view of the skew symmetry of the Cassels-Tate pairing.

(1.10) Lemma. For all xe A(K,)/pA(K,), x' € A(K,)/JA(K,),
G, X P — Lo, Y04
Proof. The skew symmetry of the Weil pairing (1.6) implies that the cup product
pairing between H'(K, A,) and H'(K, 4;) is symmetric, ie.,
(1.11) auvd=dua for all aeH'(K,, A,) and da'eH'(K,, 4;),

where the first cup is with respect to e, and the second with respect to e;.
This follows from the general symmetry properties of the cup product (see [4],
Ch, V, §7, Prop. 9(ii)). Now let xe A(K,)/¢ A(K,), x' e A(K,)/yA(K,), and let x,
and x/, be liftings of x and x' to A(K,)/¢ ¥ A(K,) and A (K,)/y pA(K ), respective-
ly. Write

a=ig,(x)—s,ig(x) and a'=ij;4(x7)—s,i;(x).

Then a is thAe image of an element ce H'(K,, 4,), @' is the image of an element
c'eH'(K,, Ay), and by definition

(1.12) (x, XYV =cuiy(x) and (X, xpPO=c Uiy (x).
By Proposition 1.14
(1.13) 0=1i4, (x1)Uij4(x})

=avad +aus, iy (x)+s,is(x)Ua +s,04(x)Us, iy (X).
Now s, i,(x)Usy i;(x)=0 by (1.9). From (1.7) and (1.8) it follows that au a
=00uc'=0, s, ig(x)ua =ig(x)uc and aus,i;(x)=cui;(x’). Hence (1.13)
implies

cuiy(x)+ig(x)uc’=0.
The lemma now follows from (1.11) and (1.12). O
It remains to prove that the images of i, and iy annihilate each other.
(1.14) Proposition. Let ¢ be an isogeny of A. The images of the maps
iy: AK,)/pA(K,) > H (K,, A)) and iz: A(K,)/pA(K,)—~H'(K,, 4y

annihilate each other under the cup product pairing

Hl(Km A¢)x Hl(Kva j&)—)Q/Z
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Proof. Let a=i4(x) and a’=iz(x'). Then a,=y”—y for some ye A(K,) such that
¢y=x, and a,=y'°—y' for some y'e A(K,) such that ¢y'=x". Let D be a divisor
on A representing y and such that y° and supp(D®) never meet for o, te
Gal(K/K), and let g, be a function with divisor ¢~ !(D°— D). Define a cochain
b with values in K* by

b,=g,(y").

By checking divisors we see that g,. =g, g?(mod K*). Thus

(06)g, =84 (V")/8:(y) 8.()" =8, ((y’") = (")
=€ (aa’ a:a') = (a Y a,)o, T

Hence the cup product of a and a’ is a coboundary, which is what we wanted
to show. []

§2. A formula for the local pairing when 4, ~ A;~Z|mZ

In this section we will find a formula for the local pairing in terms of the
Hilbert norm residue symbol of the values of certain functions. Until further
notice, K is any field. If f, ge K(A4)* and H is a subgroup of K(A4)*, we say
f=g(modH) if f/geH. Let ¢ be an isogeny of degree m. Suppose that there
is a non-zero Pe,iq;m/i (K). Let Dp be a divisor on A over K which represents
P and let fpre K(F, ; .) be a function satisfying

(fp)=mDp.

(2.1) Lemma. Let a be a zero-cycle of degree zero on A defined over K and
not meeting the support of Dp.
(i) We have fp(¢p a)e K*™.

(i) If Za=0 then fp(a)e K*™

(i) If Dp is defined over K and linearly equivalent to Dp, and fpeK(A) is
such that (fp)=mD}p, then fp=fpg?(mod K*) for some ge K(A).
Proof. (i) Let g be a function with divisor ¢ ~* D. Then fpo ¢ =g™(mod K*).

(ii) Since the divisor of fp is divisible by m, this follows from Lang’s reciproci-
ty law [13].

(iii) Obvious. [

It follows from (i) and (ii) of Lemma 2.1 that by evaluating f» on zero-cycles
we get a well-defined map

1p: A(K)/PA(K)— K*/K*™.

It follows from (iii) that this map depends only on P, not on the divisor chosen
to represent it. On the other hand, since P is rational over K, we have a Galois
map

Ad)_'ﬂma aHed;(a’ P)’
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which induces a map
jpi H'(K, Ag)— H' (K, p,)=K*/K*™,

where the equality is the canonical map from Kummer theory. Recall the map
ig: A(K)/¢A(K)—H' (K, A,) from the previous section.

(2.2) Lemma. We have jpoi,=1p.

Proof. In what follows we identify H!(K, u,) and K*/K*™ via the canonical
isomorphism from Kummer theory. Let xe A(K)/¢pA(K). Then i4z(x) is repre-
sented by the galois cocycle o+a,=(c— 1)y, where ¢ y=x, ye A(K), and jpoi,(x)
is represented by the cocycle e4(a,, P). On the other hand, 1p(x) is represented
by the cocycle o t° !, where t™ = fp(a), for a a zero-cycle of degree zero defined
over K summing to x. Choose a=(x)—(0), and choose D so that its support
does not contain x, 0, or y. Let g be a function with divisor ¢ "' D. Then
frop=g™ (mod K*). Hence we may choose t=g((y)—(0)). Then t° '=

gey)—(M)=g((y+a,)—()=esla,, P). O

Now let ¢ and y be isogenies satisfying H, ,, and suppose further that
(2.3) A ,~Z/mZ and A,~Z/mZ for some meZ.

Let P and P’ be generators of 4, and A, respectively, and let Q=s"P’, where
s’ is the section dual to s, as in §1. Let K be a number field. Let v be a valuation
of K, and let K, be the completion of K at v. Let

G Im: KS/KE™ X KE/KE™ = piy
(x, y),_,,(xl/rn)([?, K,1—1)
be the Hilbert norm residue symbol. Here y is any element of K* mapping
to y, and [, K,] denotes the Artin symbol. If {, {'ep,,, { a generator, let Ind,({)

be the unique element u of lZ/Z such that {™={’. We have canonical
isomorphisms "

(24 H'(K,, i) =K}/K¥™
and
(2.5) H?*(K,, @ i) =H*(K,, ) @ =" Z/Z)® = i

It follows easily from the discussion in [22] Ch. XIV, §2 that under the identifica-
tions (2.4) and (2.5), the Hilbert norm residue symbol may be identified with
the cup product pairing

Hl(KU’ ”m) X Hl (KI)’ #m) s HZ(KI)’ ﬂm®ﬂm)'
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(2.6) Theorem. Let xe A(K,)/pA(K,), ye A(K,)/YA(K,). We have

<X, y>g" v = Indev,(P’. P) [(IQ (X 1 )’ lp (y))m],

where x, is any lifting of x to A(K,)/¢YA(K,).
For the proof we need a lemma.

(2.7) Lemma. The following diagram commutes.

cup: H'(K,, A, )x H'(K,, 4;) ——Q/Z

FE

Ind,, e, pyo(; )m: K3/KE™ x K¥/Kym ——Q/Z

Proof. Let aeH'(K,, A,), BeH'(K,, A;) be represented by the cocycles n,P
and m, P’ respectively. Let e=e; (P, P). Then by (1.6), e, (P, P')=¢"~ ! Thus au B
is

e,(ngP,m P)=g~ "™

On the other hand, jp,(x) and jp(B) are represented by the cocycles ¢~ "= and
¢™ respectively, and pair via the Hilbert norm residue symbol to (e®g) "™,
Thus we have a commutative diagram

Cup:Hl(Km Alp)XHl(Ku";iJ;)——' HZ(Ku’ Il'm)
Jp: Jjp ¢

() K¥/KE™ % KJ/KE™ H* (K, @ ).

The theorem now follows from the fact that the composition of maps

iny 1!

m AV ZJL " H* (K, i)~ H* (K pin @ o) = H? (K, 1) @t
T ZYZR® g —

is simply ar»e™. []

Proof of Theorem (2.6). Let xe A(K,)/¢A(K,), xX€A(K,)/\JA(K,). Let x, be a
lifting of x to A(K,)/¢¥A(K,). Then (igy (x1) =540 (X)) =(1 — 5, ¥ )iy (x,)). For
any deH'(K,, Ayy), (1—s,¥,)(d) is the image of an element ceH'(K,, 4,),
and it follows from (1.8) and (1.9) that jp.(c)=jo(d). The theorem now follows
from the Lemmas 2.2 and 2.7. [J

Note that if A is the jacobian of a curve C, then the zero cycles in the
definition of the maps 1, and 1, may be taken to be divisors on C. Further,
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in defining the functions fp and fy, instead of taking divisors on A and A
representing P and Q, we may take divisors on C, and let fp and f, be functions
on C. All this follows from the autoduality of the jacobian and the natural
divisorial correspondence between C and J (see [18], Ch. VI, §5).

Theorem 2.6 applies in the following case. Let A be the jacobian J of the
curve F, , .. Then J is canonically isomorphic to J and the involution ¢ ¢
of End (J)=Z[u,] is that induced by {+—({~'. Choose a primitive p-th root
of unity ¢, and let A=1—{. Then deg(4)=p. Let II=MI(K, J). Let 1<n<p-2
be an integer and let K be a number field such that the complex multiplication
is defined over K and J,,..,<J(K). Then, since A"*! divides p and /1 is a
unit in Z [{], Jye=Ju~(Z/pZ)* as a Gal (K/K)-module for 1 £k<n+ 1. Hypothe-
sis H;. ; is satisfied, since all the groups in the sequence

0— J3(K) = I3 3(K) > J3(K) >0

are abelian groups of exponent p and with trivial Gal (K/K)-action. Further,
(2.3) is satisfied, since the divisor (0, 0)—co represents a non-trivial A and -
torsion point on J. Thus we may apply Theorem 2.6 with ¢=41", Yy =1 In
this paper we will consider only the case n=1. Since, by [7], J[A*]1=J(Q(y,)),
we may take K to be @Q(u,) in that case. If we choose P to be the A-torsion
point represented by the divisor (0, 0)— oo then fp=x. Let Q be a A*-torsion
point. The function f=f, is difficult to find explicitly, and we will have to
use an approximation method. First, we recall some facts about curves over
discrete valuation rings.

§ 3. Curves over discrete valuation rings

Let R be a discrete valuation ring with field of fractions K and residue field
k. Let 7 be a uniformiser for R. By a curve over a field F we mean a separated
scheme of finite type over F and of dimension one. By a curve over R we
mean a connected normal scheme C with a morphism f: C - R which is flat
and of finite type over R, and whose fibres are curves. We let C,=CxzK
and C,=C x gk, and call these the generic and special fibres of C, respectively.
We sometimes say that C is a model for C,. If f is proper, we say C is complete.
If C is a regular scheme, we say C is a regular curve. It is proved in [15]
2.8 that a complete regular curve over R is projective over R. It follows from
[10], II1.9.10 that the arithmetic genus of C, is equal to the arithmetic genus
of Co; we call this number the genus of C. Denote the set of closed points
of a scheme S by S'. By the valuative criterion for properness, any PeC} can
be extended to a divisor P on C; we let P,=P-C,. The map P— P, is called
the reduction map.

For Theorem 3.7 below we need to recall some facts about the relative
dualizing sheaf on a curve over R. We do this in some detail, since although
it is all in [11] and [21] in some form, we could not find a precise reference
for the statements we wanted.



Shafarevich-Tate group of the Fermat jacobian 647

Let A be R, K, or k. If f: Y— A is a scheme of finite type over A we denote
by Qy,4 the relative dualizing complex for Y over A4; specifically, in the notation
of [11]

Q}'/,4 =f! (A)

Let j: C,>C and i: C,< C be the immersions of the generic and special fibres.

(3.1) Theorem. Let C be a regular curve over R. Then Qg is an invertible
Sheaf on C. Further, QC/RIC,,:QC"/K and QC/R|C0=QCo/k'

Proof. This is in [11]; for the convenience of the reader, we provide a guided
tour of the relevant sections. It is shown in [11] that /" takes dualizing complexes
to dualizing complexes [V, 2.4 for finite morphisms, 8.3 for smooth morphisms,
VI and VII in general]. Any regular local ring is a dualizing complex for itself
[11], §9. Thus f'(R) is a dualizing complex for C. On the other hand, since
all the local rings of C are regular, it follows from [11] V, Corollary 2.3 that
O is a dualizing complex. The first statement of the theorem now follows from
the fact that dualizing complexes are unique up to tensoring by an invertible
sheaf [11] V, 3.1.

That Qc/glc, =R,/ follows immediately from the fact that j'=j* [11] III,
§1-2 and (fj)'=j'f' [11] 111, 8.7. To see Q¢/rlc,=2c, x> consider the diagram

CyeaiC

I

Using (fi)' =i'f", we get Q¢ r=1'Qcr- By [11] III, 7.3 and definition (b) after
1.3 of the same reference this means

(3.2) Qcor= Qc/rlc,@U/TH) ™1,

where I is the sheaf of ideals on C,. The same reference implies that (iy)'(R)
=k®((m)/(n?)) . Going the other way around the diagram, we get

QCO/R = (fo)! (io)! (R)= (fo)! (k®((7[)/(7'52)) - l) = QCo/k ®fF ((75)/(71'2)) =

The last equality follows from the fact that f; is Gorenstein, since C is regular
(cf. [11], Ch. III, remark at end of §1). But f((n)/(n?)=1/I?, since C, is the
divisor of n. Hence Q¢ r=Rc,x®(I/I?)~'. Comparing this with (3.2) gives the
result. [

To apply Theorem 3.1 we need to identify Q¢ in a concrete form. Let

i:Cq—C
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be the closed immersion of C with its reduced induced subscheme structure.
The duality theorem for finite morphisms [11] III, 6.7 implies that for a coherent
sheaf # on C,4

Homc,  (#, Qc, i) =Homc(i, Z, Qcp).
Taking & =Qc,__,x We get a canonical map
(3-3) L Qceeark = L

which is injective since Hom is left exact and i, is fully faithful.

Now suppose that C is reduced and let n: C'— C be the normalization of
C. We define the sheaf of regular differentials Q% on C as follows. If U is
an open subset of C, then QF#(U) is the set of rational Kahler differentials
w on U such that

(3.4) Y res,(n*(fw)=0 for all fe0(U).

xen~ 1(U’)

For example, there is only a simple pole at an ordinary double point and the
residues on each branch cancel. If C is smooth then the sheaf of regular differen-
tials is just the sheaf of Kahler differentials Q¢.

(3.5) Theorem. Suppose C is reduced and Cohen-Macaulay. Then Q, is canoni-
cally isomorphic to Q¢®.

Proof. We remark that for a curve, Cohen-Macaulay is equivalent to having
no embedded components. Since C is Cohen-Macaulay, the dualizing complex
Q¢ is a flat sheaf (cf. [1] IV, 5.6; III, 5.22). Let Q denote either Q¢ or Q¢
Then there is a residue map

n: H(C, w)—>k
such that the induced pairing
H'(C, F)x Hom(F, w) - k

is non-degenerate for any coherent sheaf F. For Q. this is the duality theorem
[11]; for Q® it is proved in [21]. In particular, the residue map for Q. induces
a map Qc, — Q¢®, and vice versa, and these maps must be inverses. []

(3.6) Lemma. Let C be a regular, complete curve over a discrete valuation ring
R. Suppose that C has a section s: R — C. Then H°(C, Qcg) is a free R-module
and H°(C, QC,R)®K=H°(C,,, Qc,/x) and H°(C, QC/R)®k=H°(CO, Qco )

Proof. Since C is projective over R, it suffices by Grauert’s theorem [10] III:
12.9 to show that dim H'(C,, Qc/xlc,)=dim H'(Co, Q¢xlc,) for i=0, 1. Since C
has a section, at least one of the components of C, has multiplicity 1. It follows
from [20] 8.2.1 that f: C — R is cohomologically flat (see [20] 1.4) which implics
that dimg H°(C,, Oc,)=dim, H®(C,, Oc,)=1. Since f is flat, it follows from K2
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7.9.4 that x(Oc,)=x(0,), hence dimy H l(C,,, Oc,)=dim, H '(Co, Oc,). By Theo-
rem 3.1 and the duality theorem for curves over fields [1] VIIIL, §1,

dimg Hi(cna QC/R'C,,) =dimg H' _i(C.,, (QC,,),

and
dim, H'(Cy, Q¢/glc,)=dim, H' “{(C,, Oc) i=0,1. O

It follows that we may regard H°(C, Q¢ ) as an R-submodule of H°(C,, Q¢,).
If we H(C,, ©¢,) lies in H°(C, Q¢,g) and maps to

wEHO(Co: QCO/,‘)=H°(C, QC/R)®k’

we say that w reduces to w,.

(3.7) Theorem. Let C be a regular, complete curve over a discrete valuation
ring R. Let wy be a regular differential on C, 4. Then there is a holomorphic
differential w on C, that reduces to w,.

Proof. Follows immediately from Theorem 3.5, Lemma 3.6, and the inclusion
(33). O

Let C be a complete, regular curve over R, and let .# be the set of irreducible
components of C,, with their reduced induced subscheme structure. We refer
the reader to [15] for the following basic facts. An irreducible (Weil) divisor
on C is on of two types:

(i) horizontal, i.e., the image of a morphism spec(R’)— C for some finite
extension R’ of R
(ii) vertical, i.e., an element of .#.

A linear combination of horizontal (vertical) divisors will be called horizontal
(vertical). Any divisor D on C can be written uniquely in the form D,+D,,
where D, is horizontal and D, is vertical. Since C is regular, every invertible
sheaf # is isomorphic to O(D) for some divisor D. We have deg(Z|c,)
=deg(D N C,) and deg(Z|c,)=deg(D-C,). Here - denotes the intersection prod-
uct. Since X-C,=0 for all Xe.#, the two degrees are the same; we call their
common value the degree of £.

(3.8) Proposition. Let C be a regular complete curve over R, of genus g, and
let # be an invertible sheaf on C. Suppose that deg(¥)>2g—2. Then H°(C, &)
is a free R-module of rank deg(¥)—g+ 1. Further,

HO(C, $)®RK=HO(C,,, gq) and HO(C9 ag)(’bllk='lfo((j0,='?0)'

Proof. By the Riemann-Roch theorem for curves over a field ([1] VIII, §1)
H'(C,, #)=0 and H'(Co, %,)=0, and dim, H°(C,, %,)=dimg H°(C,, £,
=deg(#)—g+1. The proposition now follows from Grauert’s theorem [10]
I, 129. O

If S is a set of closed points of C, we denote by S, the image of S under
the reduction map.
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(3.9) Lemma. Let C be a regular complete curve over R. Let S be a finite set
of closed points of C,. Let D be a divisor on C, and let E be an effective horizontal
divisor whose support does not meet P for PeS. Then for large enough n there
is a function f such that

(f)+nE=zD and f(P)=1 for all PeS.
Proof. Choose n such that the invertible sheaf associated with the divisor

F=nE-D-Y P

PeS

satisfies the conditions of Proposition 3.8. Let PeS, and let F'=F + P. Then
P also satisfies the conditions of Proposition 3.8, and deg(#*F)=deg(%)+1,
so there is a function f,e H°(C, #¥) but not in H°(C, %). Hence

(fp)+nE=D, fp(P)=0 for all P'+PeS, and fp(P)+0.

Multiplying by a suitable constant we may assume that fp(P)=1. Then
f= z Ip
PeS

is the function we seek. []

§ 4. The local geometry of F, ,, .

In this section we recall from [16] some facts about the minimal regular model
for F, , . over the ring of integers in Q,({,), where {, is a primitive p-th root
of unity. This model is one of three types, according to what its special fibre
looks like:

(1) Wild type

(a) Split

s

Fig. 1. All components are curves of genus zero defined over IF, and have multiplicity 1

order of tangency (p-1)/2

(b) Non-split.

Same picture as for the split type, except that the two tangent curves ai¢
not individually defined over FF,, but are conjugate over the unique quadrati
extension of IF,.
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]
Pl I\

p+1 multiplicity 2
curve

(i) Tame type

Fig. 2. All components are curves of genus zero defined over IF,. All vertical components have
multiplicity 1

The types are distinguished as follows. Recall that for a rational number x

q(x)=(x"""—1)/p.
Then F, , . is

tame if q(a®b®c?)=0 (mod p)
wild split if q(a“b’c)%0(modp), —2abcq(ab®c)elF*?
wild non-split  if g(a®b’c)%0(mod p), —2abcq(a®b’c)¢IF*2,

§ 5. Approximation of f in the wild split case

We now return to the situation discussed at the end of §2. Thus ¢=4, Y =1,
K=Q(u,), P= P’ is the point on J corresponding to the divisor (0, 0)— o0, fp=x,
and Q is a A>-torsion point such that ZQ=P. There is only one valuation v
such that v(p)+0. By Lemma 1.5, this is the only valuation such that {, d**
is non-trivial, since K is totally complex, F, , . has good reduction outside v
and deg(/)=deg(f)=p. In order to apply the formula for the local pairing in
the wild split case we need to approximate the function f on F, , . whose divisor
is p times a divisor representing Q. To carry out this approximation we need
to know the structure of certain affinoids contained in F, , .. So assume that
F, . is wild split and denote it simply by F. We refer the reader to [3] for
general facts about rigid analysis.

The closed unit disk, {xeK: |x|<1}, has a natural affinoid structure defined
over K. The open unit disk, {xeK: |x|<1}, has a natural structure of rigid
analytic space defined over K. By a closed (resp. open) disc over R we mean
an affinoid (resp. rigid analytic space) conformal to the closed (resp. open) unit
disc in R; by a parameter on a closed (resp. open) disc we mean an isomorphism
from it to the closed (resp. open) unit disc. Let C be a curve over a complete
discrete valuation ring. R. For any subscheme S<C,, the subset red~!(S") of
C! has a natural structure of rigid analytic space, which we denote by S. If
S is a Zariski open affine subset we call S a Zariski open affinoid in C,. If
S={P} where P is a closed point of C, then we call § the residue class of

If V is a K-vector space, then a lattice in V is an R-submodule V° such
that V°®.K=V. If X is an affinoid over K, let A(X) be the ring of rigid
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analytic functions on X, let M(X) be the quotient field of 4(X), and let D(X)
be the module of Kahler differentials of M (X). Define lattices

A (X)={feA(X): |f(x)|<1 forall xeX},
M°(X)={f/g: fe A°(X), ge A°(X)—nA°(X)},

D°(X)={} fidg:: fi, gie M°(X)}.

If f, ge M(X), w, neD(X), and he A°(X), we say f=g(mody h) if f—gehM°(X),
and we say w =7(mody h) if ® —nehD®(X). We will also write these congruences
f=g+0(h) and @=n+O0(h). If P is a closed point in C, and  is a differential
on C then we define resp(w) to be the residue of w|c, at P. We denote by
w, be the restriction of w to C,, and by n: Cy— C, the normalization of the
reduced subscheme of C,. Let (w),, denote the polar divisor of w, i.e., smallest
divisor such that (w)+(w), =0, and let (w),,, denote the vertical part of the
polar divisor.

and

(5.1) Theorem. Let C be a curve over R with a section s: spec(R)— C. Let w
be a rational differential on C. Let Ry be a closed point at which C is regular
which does not meet the support of (®),,,. Let Z be the residue class of R,.
Then

Y resg(w)= Y resg,(wy)  (mod 7).
Qez Qoen~ 1(Po)

Proof. Step 1. We may suppose that C is regular. For if not, we may, by blowing
up, obtain a regular curve C’' and a morphism f: C' - C which is an isomorphism
on a neighbourhood of B, [15]. Replace C by C’ and w by f*w.

Step 2. We may suppose that (), ,=0. Let X be the union of all irreducible
components of C, containing F,. Let S={poles of w in Z}, D=(w),,,, and
E=U, where U¢Z. Choose f as in Lemma 3.9. Then (fw),, ,=0 and resp(fo)
=resp(w) for all PeZ. Further, f(B)=1 since f has no poles in Z and takes
the value 1 at points of So. Hence resg, ((fw)o)=resg, (w)o) for all Qpoen™" (R):
Thus it suffices to prove the theorem for fw.

Step 3. Suppose that C, is smooth at By. In that case Z is conformal to an
open disc [2] 2.2. There exists a rigid analytic function ¢t on a Zariski open
affinoid neighbourhood of Z which restricts to a parameter on Z and which
reduces to a uniformiser at B,. Then w has a formal Laurent expansion in
t, and the coefficient a_, of ¢t~ ! in this expansion reduces to the residue of
w, at B. The formula now follows from [6] 1.3.3, which states that the sum
of the residues of @ in Z is equal to a_,. In fact it is proved there only for
closed discs, but may be deduced here by choosing a large enough closed disc
in Z; a_, does not change when ¢ is multiplied by a constant.

Step 4. If C, is not smooth at F,, choose a point U not in Z at which_ ®
does not have a pole, and such that C, is smooth at U,. Indeed, there exists
at least one component X of C, which is reduced, namely the component
through which the section s passes. Any smooth point on X —{P,} not in the
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support of (w),, will do. Choose a rational function f on C satisfying the conclu-
sion of Lemma 3.9 with S=(w),nZ, E=(U), and D=(w), n(C—Z). Then the
only poles of fw are in Z and at U. By the same argument as in Step 2, resp(fw)
=resp(w) for all PeZ and resy, ((fw)o) =resy, ((w),) for all Qoen™'(Ry). We have
already proven in Step 3 that resy(fw)=resy,(fow,) (mod ). The formula now
follows from the fact that the sum of the residues of a differential on C, or
n~1(Co) is zero. [

(5.2) Theorem. Let C, be a curve over K, and let Y be a Zariski open affinoid
in C, with reduced reduction. Let f be a function on C, whose divisor is divisible
by p. Then there exists a holomorphic differential w on C such that df/f|y=wly
(mody p).

Proof. Choose a model C for C, such that Y=X for some Zariski open affine
X in C, and such that C, is reduced. (For example, start with any model
such that Y=X for some Zariski open affine X in C,, blow it up to become
regular, choose a horizontal divisor D that is very ample on the generic fibre,
very ample on each component of C, contained in the completion of X, and
of negative degree on each other component, and take image of the correspond-
ing map to projective space.) Then = has multiplicity one along each irreducible
component of the special fibre; hence on each component, there is some ¢c=n"
such that cf is neither identically zero nor identically infinity on that component.
Thus since d(cf)/cf=df/f, df/f is defined on each component. All its residues
are multiples of p, hence by Theorem 5.1 its reduction is a regular differential,
so by Theorem 3.7 there is a holomorphic differential @, whose reduction is
the same as that of df/f. Hence (df/f—w,) vanishes on C,, and so n,=
(df/f —w;)/m is defined on each component. In particular its restriction to Y
is in D°(Y). If p/n is a unit we are finished. Otherwise let e be the ramification
index of . Since all the residues of #, are multiples of 7°~?, there is a holomorph-
ic differential w, whose reduction is the same #,. Let n, =(n; —,)/m and repeat
the argument above. Continuing in this way we construct #; and w; fori=1, ..., e
such that n;|yeD°(X), w; is holomorphic,

dflff=w+nn,
n=w; +ny, i=1,...,e—1
Thus df/f=w, +nw,+...+7° o, +7°n,. O

Let W and W’ be the two mutually tangent components of F, (see Fig. 1),
and let Wo=W—-Wn W', Wo=W —-WnW. Let

X=W° and X'=W7.

Set
(5.3) x=—afc(1+n'?~V2g)
(5.4) y=ab?c*(1+mt).

(5.5) Lemma. X and X' are isomorphic to closed discs. The function t restricts
to a parameter on each of them.
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Proof. It is shown in [16] that on the model for F, , . defined by the equation
(0.1), the point on the closed fibre defined by the ideal (n,x+a/c, y—a®b®c)
is a non-regular point which blows up to give the two components W and
W'. 1t is also shown that Pe X (K)u X'(K)<>x(P)= —a/c (mod =), and that then
in fact x(P)=—a/c(mod n'*~"?) and y(P)=f(—a/c)=a’b®c* (mod n). Thus
X(K)u X'(K)={PeF,(K): [t(P)| 1, |s(P)|<1}. Substituting (5.3) and (5.4) into
(0.1) we obtain

b
(@b P 11 +nty=(1+n"" 1”25)"(1 ——% nP- ”/Zs) .
Expanding both sides gives
(1+Pq(a"b”6‘))(1—Pn(t"—t)+0(17n2))=1—% ps*+0(pn®~112),

hence

(5.6)

_ apb .
2 q(a*b c)2b+7r2b (tP— 1)+ 0(n?).
ac ac

It follows from [16] that the two square roots of the right hand side of this
equation separate X from X'. Thus

X={P:[t(P))£1 and [s(P)—a| <7},
_ apb ¢
where o is one of the square roots of M. It follows that A(X)
a
=K{{u,t}} (cf. [6] IIL1), where u=(s—a)/n. From (5.6) we have
u(2a+nu)etR {{t}}, hence ue R{{t}}, so A(X)=K{{t}}. This proves the lemma
for X. The proof for X' is the same, replacing « with —a. []

Now choose ITe®, satisfying IT’=n and let S=R[IT]. Let L be the field
of fractions of S. Then the substitution

(5.7 t=u/ll
transforms (5.6) into

(5.8) sz=~%q(a"b"c‘)+i—g(u"—H""lu)+0(nH).

The error term is O(nll) because the highest power of ¢ in the O(n?) error
term of (5.6) is t? 1. Let Y={PeF, x xL: |s(P)| <1, [u(P)|<1}. Then Y is a Zarisk!
open affinoid in F, x xL. Indeed, the completion of the affine scheme over R
defined by (5.8) is a model for F, x x L, and its special fibre contains the reduction
of Y as a Zariski open subset. The reduction of Y is just the affine schem¢
over k defined by (5.8) mod x; in particular, it is reduced, so we may apply
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Theorem 5.2. Let X; =X x ¢ L, X7 =X'x L. Then it is clear from the defining
equations that

(5.9) Y2X,UX].

We are now ready to find the approximation for f. We will find two properties
of f that are sufficient to approximate it on Y.

(5.10) Proposition. The function f satisfies the following :

(i) flfo{=x (mod K(F, 5 )*").
(ii) There is a holomorphic differential w on F, , . such that df/f = w (mody p).

Proof. Let D be a divisor representing Q. Then, since 1Q =P, (1—{ ') D is linearly
equivalent to (0, 0)— co. Let g be a function with divisor (0, 0)— oo —(1—¢~ 1) D.
Then (f/fe{)=p(1—{"'")D=(x)—p(g). Thus f/fo{=cx/g” for some constant c.
Evaluating at the point (1,0), which is fixed by {, we see that ce K*P. This
proves (i). Property (ii) follows immediately from Theorem 5.2. []

To apply this proposition we need to know the holomorphic differentials
on F, , .. If ze@, let [z] denote the integer part of z. Let

narfersar S Sb 4

p

For keH, ;. ., let

I B
(5.11) wk=# dx.

Lemma. The set {w,: ke H, , .} is a basis for H*(F, ;, ., Q"). Also w,o{={"*w,.

Proof. The second statement is obvious from the definitions. First we show
that w, is holomorphic if keH, , .. The only possible poles are at (0, 0), (1, 0),
and oo. If meZ, let r(m) denote the unique integer such that 0=<r(m)<p—1
and m=r(m) (mod p). Note that m—p[m/p]=r(m). The following table gives
the orders of x, 1 —x, y and dx at these points.

Order at (0, 0) (1,0 0

x P 0 —p
1—x 0 D —p

y a b c

dx p—1 p—1 —p—1
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Thus

Ord(O,O)(wk)=p_ 1—r(ka)20, ord, 1)(@)=p—1—r(kb)20,

o A S ] 00

p p
k . o
Now [k—a~]+[%]+[—p£] is —1 or —2, so ord, (w,) is non-negative if and only
p
if the latter possibility occurs. Thus w, is holomorphic if keH, , .. Now it is
not hard to see that H, , . (mod p) is a set of representatives for IF¥ modulo
{+1). Thus

and

4#:Iia,b,cz(p_ 1)/2=g(Ez.b,c)=dimK HO(Fa,b,ca Ql)
Hence we need only show that the w, are linearly independent. This follows

from the fact that they all have different eigenvalues for the action of {. []

By Lemma 5.5 X is isomorphic to the closed unit disc over K, and t is
a parameter. Thus, since (f) is divisible by p, there is a rational function g(t)
on X such that f|x/g(¢)’ has no poles or zeroes on X. Hence f|y/g(t)” is an
element of K* times an element of 1+ntR {{t}}. Write this element in the form
u(t) v(t?) for some u(t), v(t)el+ntR{{t}}, such that the coefficient of ¢* in u(t)
is zero whenever p|k. Thus we have

(5.12) flx=Cu(®)v(t") g(t)",

where CeK*, g(1)eK (1), u(t) and v(t)el+nR{{t}}. The following theorem is
the key theorem in this paper. The rest of this section is devoted to its proof.

(5.13) Theorem. The power series u(t) in (5.12) satisfies
u@®)=1+n?""Y2Dpt+0="*V?¢), DeR*,

Proof. Since u has no p-th powers in its expansion, this is equivalent to showing
that

du _
—=a?"Y2Dpdt (mody n'?*1/?),
u

for some De R*. Now

df dg P~y () du du
Y _pley . T g TR d, p),
7 p g +p o0 + ” ” (mody p)

so it suffices to show that

(5.14) gfizn‘”“l”ZDdt (mody nP* V72,
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In fact we will show that

af _ dt

(5.15) AP~ V2D 2" (mody n'?~ W2 T),
S

for some D’'eS*. Because of (5.9) this congruence will then also hold
mody n?" 2T (see note added in proof). Then choosing D"”eR* such that
D”=D’" (modII) (which is possible because S is totally ramified over R) we
get

%Eﬂ:(p_”/z pr 4t (mody n'?~ V2 1),
s

Since both sides of this congruence are in A(X), it is a congruence mody n'?* 12,
Finally, it follows from (5.6) that s=D"" (modyn) for some D"”'eR*. Setting
D=D"/D", we get (5.14).

By Theorem 5.2, there exist a, €L such that

d
7 = Z ak (l)k (mody p).
keHqa b, o

From (5.11), (5.3), and (5.4) we have

E,ds

=p(p—1)/2
W, =T
k (1+mo)k

(mody p),

for some E,eR. (Note: although t¢ A°(Y), it follows from (5.7) that ITte A°(Y).)
Thus

a E ds

df _ p-12
: = dy p).
(5.16) 7 n “Eiil+my (mody p)
From (5.7) and (5.8) it follows that
ds=—m i ﬂ (mody nII).
ac

Thus to deduce (5.15) from (5.16) it suffices to show that

(5.17) nE,a,eS for keH,,, and =©n ) a.E.eS*

keHa,b.c
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Using Proposition 5.10(i), (5.16), and the fact that w,o{={ ¥*w,, we have

Q(_En(p—n/z Y b E,

5.18
(5.18) X keHop.e (1+me)k

ds (mody p),

where b,=(1—("¥) a,. Since n/(1 —{ %)= — 1/k (mod =), we have na,/b,= —1/k
(mod n). Thus to show (5.17) it suffices to show

(5.19) E,b,eS for keH,,,. and Y %GS*.

keHa, b, c k

Now from (5.3),
dX/X=n?""Y2Fds (mody p)

for some FeR*. Thus (5.18) implies

P12 Fde=qnP~ 12 Z bkEk
keHa.b.c (1 +nt)k

ds (mody p).

Now from (5.8), ds=0 (modyI1°~ ') and ds%0 (modyII?). Thus, dividing both
sides by n®~1/2 45 we get

Y (lb-:ikt)" =F (mody I n®~ 373,
keHq, b, c

It is to achieve this congruence that we introduced the affinoid Y. Working
with X alone, one can only show that this congruence holds mody n?~¥'?,
which is not strong enough. Expanding and setting the coefficients of 1,
nt, ..., (nt)®?~ 32 congruent mod IT, we obtain

—k F if i=0
= d II).
LB i 1zispoyp @D

Expanding the binomial coefficients in powers of k we find inductively that

(5.20) Y bEki=

keHa, b, c

{F if 1=0 (mod IT).

0 if 1<i<(p—3)2

This is a system of (p—1)/2 linear congruences in the (p—1)/2 quantities
b.E,, keH,, .. Let

A(Xqy ooy Xp)= n (;—x;).

1gi<jsn
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The coefficient matrix M of the system is non-singular, since its entries are
k',0=i=(p—3)/2, keH,, ., and thus its determinant is a van der Monde deter-
minant

det (M)=A(ky, ..., kip—1)2),

where {ky, ..., k(—1)2} =H, 5 .. Since FeR¥, it follows from (5.20) that b, E,eS
for all keH, , ..

(5.21) Lemma. Let

i 1

ks kp—1

2

ky kp—l

M’ = T

b3 b3

k,? k2,
L 7

Then
bkEk ’
Y PE=Fdet(MY/A(ky, ..o kp-1yz)  (mod ID).

keHa,p.c

Proof. This follows from (5.20) and elementary linear algebra. [J

Thus to prove (5.19) it suffices to show that det (M')£0 (mod p). Let

1 ... 1
xa X3
r(xy, ..., x,)=det | x3 ... x;
xT ... Xy
Then
(5-22) det (M,)=(kl .,.k(p_l)/z)_lr(kl, ceny k(p-l)/Z)'

Let s(x, ..., x,) be the coefficient of x in (x —x,)(x —X;)...(x —X,).
(523) Lemma. We have I'(xy, ..., X,)=+ A(X1, .., Xp) S(X1 -5 Xp).

Proof. To prove this identity we work over an algebraically closed field of charac-
teristic zero. The determinant defining I'(x, ..., x,) vanishes if x;=x; or if there
is a polynomial f(f) of degree n which vanishes on all the x; and in which
the coefficient of ¢ is zero. Such a polynomial exists only if s(x,, ..., x,)=0.
Thus I' vanishes if 4s vanishes. Thus every irreducible factor of 4s divides
the determinant. Further, 4s has no multiple factors and its total degree is
(n(n—1))/2 +(n—1)=(n(n+1))/2— 1, which is the total degree of the determinant.
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Thus 45 and the determinant differ by a constant factor. Finally, the coefficient
of x3 x3...x2~1 xIis + 1 in both polynomials, so the constant factoris +1. []

From (5.22) and Lemma 5.23 we have

det(M")= £ A(ky, ..., k- 1y2)(ky "'k(p—l)/2)_1 S(kis ooes Kp—1y2)

1 1
=+ A(k,, ...,k(p—l)/2)<E+.l.+k( 1)/2>.
o

Clearly A(ky, ..., k- 1)2)%0 (mod p). To prove det(M')%0 (mod p) and finish
the proof of Theorem 5.13, we have the following miraculous fact.

(5.24) Lemma. ) %E —q(a®*b®c®)  (mod p).

keHq, b, ¢

Proof. It follows easily from the definition that q(uv)=q(u)+q (), q(u™')= —q(u),
and q(u)=q(ju|). Thus g(a®b®c)=aq(a)+bq(b)—|c| g(/c|). On the other hand,
it is easy to deduce from the definition of H, ; . that

- L BT

Thus it suffices to show that, for 1 <s<p—1,

x|

p—1
;Z'l [%] %E sq(s) (mod p).

This follows easily from a formula of Vandiver [23] 17. [

Since the curve we are considering is wild split, q(a®b®c?)£0 (mod p), so
det (M’)=£0 (mod p), and we are finished. []

§ 6. Computation of the local pairing

Let v be the valuation of Q(u,) extending the p-adic valuation of @, and let
K be the completion of @Q(u,) at v. Using Theorem 2.6, we will explicitly compute
the local pairing

=<,k J(K)/AI (K) x J (K)/AJ (K) - Q/Z.
Let 4=Gal(K/@,), and let x: 4 >Z} be the cyclotomic character giving the

action of 4 on the group of p-th roots of unity. Let e K be the unique uniform-
iser such that 7?7 '=—p and n/(1—{)=1 (mod n). Let U’ denote the image



Shafarevich-Tate group of the Fermat jacobian 661

in K*/K*? of the group of units in K congruent to 1 (mod n'). If M is a A-module,
let M (i) denote the k' eigenspace of M. Then

exp (1) 2<i<p-2
(6.1) U(i) is generated by 1 and 1+n? i=1
14+nr! i=0

It is well known that U (i) pairs non-trivially with U (j) under the Hilbert norm
residue symbol if and only if i+j=1 (mod p—1).

(6.2) Proposition (Faddeev [5]). The image of 1pis U((p—1)/2) x U** 2 if F, , .
is wild split, and is U?* V2 if F, , _is tame or wild non-split.

Most of the computation of { , > may be disposed of by the following propo-
sition.

(6.3) Proposition. Let 6e4. Then

2, Y%y =<x, yye.

Proof. Since x is defined over @, 1p is 4-equivariant. Denote linear equivalence
of divisors by ~. Since Q=P and Z*=x ()1 (mod £2), we have Z(Dy—x(J) DY)
~ADy— P DYy~Dp—D3=0, so Dy—k(5)Dy~nDp for some neZ, so f=f@ x"
(mod K*- K (F)*?). Thus 15(x%)=14(x)*® (mod im(1p)). By Proposition 1.14 and
Lemmas 2.2 and 2.7, the image of i1, is isotropic for the Hilbert norm residue
symbol. Also the Hilbert norm residue symbol is Galois equivariant, and hence
(@, B%),=(a, P& for all §e 4. Thus

(1p(x%), 10(3°), = ()%, 10(1)**®), = (1p(x), 10(¥))5 .
The lemma follows from Theorem 2.6. []

(6.4) Corollary. The local pairing {, ) is trivial in the tame and wild non-split
cases. In the wild split case its restriction to the subgroup 1p * (U *3/2) is trivial.
This subgroup has index p.

Proof. Since 1, is a A-equivariant injection, it follows from Proposition 6.2 that
J(K)/AJ(K) has a basis of eigenvectors for 4 with characters k?~ 172 and «',
(p+3)2<i<p, if F, ;. is wild split, and &', (p+1)/2<i<p, if F, , . is tame or
wild non-split. From Lemma 6.3 we deduce that if two eigenvectors, with charac-
ters 't and k2, pair non-trivially, then i; +i,=2 (mod p—1). In the tame and
wild non-split cases, this leaves only the possibility of pairing the eigenvector
for xP*1/2 with itself; however, the pairing is skew symmetric by Lemma 1.10,
$0 it is trivial in this case. In the wild split case, the only two eigenvectors
which can pair non-trivially are those with characters /2 and x?*3/2, In
this case the pairing is trivial on 15 ' (U“?*3/?), which has index p in J (K)/AJ (K)
by Proposition 6.2. [J

It remains to compute the pairing of the two eigenvectors which can pair
non-trivially. To do this we need the following lemma. As we saw in §2, 1p
18 computed by evaluating x on divisors.
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(6.5) Lemma. Suppose that F, , . is wild split. Let P, be any point in X (K) such

that t(P)en'R*, let O be the point where t(0)=0, and let D;=P—0. Then
x(D)eUP+ V2 +i _ yp+3y2)+i,

Proof. From (5.3) we have
x=—ajc(1+n?~V2s),

By Lemma 5.5, s has a power series expansion on X in terms of t which converges
for t| < 1. From (5.6) that expansion has the form

s=ap+ma,(t’—t)+0(n?t?),

where ag, a, e R*. The result is now clear. []

Remark. If we let O’ be the point where t(0')=0 in X' and set D=0-0,
then x(D)eU((p—1)/2) (mod U®*3/2), In fact, the computation of the lemma,
suitably modified for the wild non-split and tame cases, leads to a proof of
Proposition 6.2. First one shows that the group given as the image of ip in
the proposition is achieved by evaluating x on certain divisors. Then one proves
that this is the full image by observing that it is a maximal isotropic subgroup
for the Hilbert norm residue symbol, and one knows a priori from Proposition
1.14 and Lemma 2.7 that the image of 1, must be isotropic.

(6.6) Theorem. If F, , . is wild split then { , ) induces a non-trivial pairing between
(J(K)/AJ (K))(p—1)/2) and (J (K)/AJ (K))(p + 3)/2).

Proof. Choose a point PeX(K) such that t(P)enR* and Pé¢supp(f) Let
D=P—0. Let xeJ(K)/AJ(K) be the point represented by D. Then x has non-
trivial image in (J (K)/AJ (K))((p + 3)/2), since by Lemma 6.5 1(x) has non-trivial
image in (K*/K*?)((p+ 3)/2). By Theorem 2.6 it suffices to show that iy(x) pairs
non-trivially under the Hilbert norm residue symbol with any element of
(K*/K*?)((p—1)/2). Now 14(x)=f (D), and by Theorem 5.13 f(D)e1+n®* /2 R*.
Hence 14(x) has non-trivial image in (K*/K*?)((p + 1)/2). Since (K*/K*?)((p — 1)/2.)
and (K*/K*?)((p+ 1)/2) pair non-trivially with respect to the Hilbert norm resi-
due symbol, the theorem is proven. []

§ 7. The Shafarevich-Tate group

In this section K will denote the global field Q({,). Having computed the local
pairing, we can now compute the Cassels-Tate pairing on S,. If v is a valuation
in My, denote by 1, the map 1, relative to K,, and by i, the map i,. Then
the isomorphism j, identifies S, with the subgroup

{xeK*/K*?: xeim(1,) for all ve My}
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of K*/K*?. If v(p)=0 then im(i,) is the group of unramified cocycles in
H'(K,, J;), so im(1,)={xeK¥: v(x)=0 (mod p)}. If v(p) %0, then by Proposition
6.2, im(1,) = {xe K¥: v(x)=0 (mod p)}. Thus if

U={xeK*/K*": p(x)=0 (mod p) for all v},

and if w is the unique valuation of K above p, then S, fits into the cartesian
diagram
Jjp
S, — U

1

im(1,,) —— K¥/K}P.

Further, by Lemma 1.5, the Cassels-Tate pairing on S, factors through the
local pairing on its image in K}/K}P. Thus, by Theorem 6.6, the pairing will
be non-trivial if and only if there are elements x and y in U whose images
in K¥/K*P are non-trivial and in the k?~ 12 and xP*3)2 eigenspaces. This
problem of determining the image of U in K¥/K}? is a problem from the theory
of cyclotomic integers which is not completely solved. We will summarize what
is known about it here. Let I={ieZ:i even, 2<i<p—3}. If iel, denote by
i’ the complementary odd integer such that i+i'=p. Let V=K}/K¥P.

(7.1) Proposition. There exists a subset S<I such that the image of U in V
is
ol Viu | Vi)

ieS il -8

Further, S=1 if p is regular, and more generally i€S if p ¥ B;.

Proof. We have {0,1,2,...,p—2}=10l'u{0, 1}. First, V(0)nim(U)={1}.
Indeed, it follows from the fact that # Gal (K/Q) is prime to p that (K*/K*?)(0)
=Q*/@Q*?, and obviously Q*/Q*? n U ={1}. Second, V(1) nim(U)=p,. Indeed,
by (6.1), V(1)=p,u(1+n?R¥). Suppose that there is an element xeUn
(1+nPR¥*). Then L =K (x'/?) is an extension of K which is unramified anywhere
and which has a non-trivial residue field extension at (1 —{). By class field theory
there is no such extension, since (1 —{) is principal.

Now let L be the maximal abelian unramified extension of K. Let A be
the ideal class group of Q((,). Then class field theory gives an isomorphism

A/pA —> Gal(L/K).
Kummer theory gives an isomorphism

xeK*/K*P: K, (x'/?) is unramiﬁed}

Hom{Cal (LX), “")_’{over K, for all v
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If v(p)=0, then K, (x'/?) is unramified if and only if v(x)=0 (mod p), and K,,(x'’?)
is unramified if and only if xe(1+n”R,)K*P. As we saw above, this latter
condition implies that xe K}P. Hence we have an exact sequence

(7.2) 0— Hom(A/pA, p,)—»U—-V.

Let E be the group of units in the ring of integers of K. If xeU is the image
of xeK*, then (x)=a? for some ideal a. The map x+a is well defined modulo
principle ideals. Its kernel is E/E?, and its image is A[p]. Thus we get an exact
sequence

(7.3) O0—-E/EFP>U—>A[p]—-0.

Let iel. Then (E/EP)(i)~Z/pZ and (E/E*)(i')=0 (see [25] 8.10 and 8.13). Hence
from (7.3) we have

(7.4) tk (A[p]())+1=1k(U(i)) and rk(A[p]())=rk (U()).

We claim that either im(U)n V(i) or im(U) V(i) is non-trivial, but not both.
Indeed, from (7.2) it follows that

im(U) N V(i') is non-trivial <tk (U (7)) =tk (4/pA) () + 1,
(since Hom ((4/pA), p,)(i')=Hom ((4/pA)(i), 1))

<1k (A[p](")=1k (4/pA)D)+1 (by (7.4)
<1k (4/pA) (7)) =rk (A[p] () +1
<>rk (Hom (4/pA, p,)(@)) =1k (A[p]())+1
<>rk (Hom (4/pA, p,) @)=tk (U(@))  (by (7.4))
<im(U)nV(@=0 (by (7.2)).
Since, for ieS, V(i) and V(i') have rank 1 by (6.1), this proves the first statement.

Finally, it follows from the theory of cyclotomic units that it is the i component
that is non-trivial if p ¥ B; (see [25] 8.16). []

(7.5) Theorem. If p=1 (mod4), px B(,—1)2Bp+3)2, and F, ;, . is wild split, then
I [A] contains a subgroup isomorphic to Z/pZ DZ/pZ.

Proof. By Proposition 7.1 and Theorem 6.6, the conditions guarantee the
existence of elements in U whose local pairing is non-trivial. []

Concluding remarks

1. Using the same methods and the fact that there is a non- tr1v1a] Q(pp)-ratlond‘
A3-torsion point [7] one can compute the local pairing { , >‘ and see if there
are any elements in II(Q(xu,), J) of exact order A% It turns out that there arc
none if p is regular. However, if p satisfies a certain irregularity condition, then
I(@Q(u,), J) contains a Z[u,]-submodule isomorphic to (Z[u,]/(A%)>. Specifi-
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cally, this occurs if F is wild split and the image of U is non-trivial in V((p—1)/2)
and V((p+5)/2), or if F is wild non-split and the image of U is non-trivial
in V((p+1)/2) and V((p+3)/2). For the condition to be satisfied, one of the
following is necessary: in the wild split case, p=1 (mod4) and p|B,_s,,, or
p=3 (mod4) and p|B,,),; in the wild non-split case, p=1 (mod4) and
PlBp-1y2> or p=3 (mod 4) and p|B,_3),. These conditions are also sufficient
if Vandiver’s conjecture is true. However, the author knows of no primes satisfy-
ing these conditions. First, it is a well-known and elementary property of Ber-
noulli numbers that pt B, ), when p=3 (mod4). Second, by inspection of
the tables in [12] one finds that no prime less than 8,000 satisfies any of the
conditions, and according to [24] the condition p=1 (mod 4), p|B,_,,, is not
satisfied for p <125,000.

2. Faddeev’s computation of S, enabled him to bound the rank of J(K).
Gross and Rohrlich [8] found a point on J(K) which has infinite order except
in certain cases. Combining this with Faddeev’s bound, they determined the
Z[p,)-rank of J(K) for p<13 except in one case (see the table at the end
of §4 of [8]). In each of these cases the rank was 0 or 1. Our results decrease
Faddeev’s bound by 2 whenever the conditions of Theorem 7.5 are satisfied.
In the case p=17, two of the three isomorphism classes of curves F, , . satisfy
the conditions; thus we can deduce that the rank is 1 in those cases. The third
isomorphism class, F; , 4, is wild non-split, and its rank should be 2 according
to the conjecture of Birch and Swinnerton-Dyer.

3. On heuristic principles one expects plenty of pairs (p, F, ; ) to satisfy
the conditions of Theorem 7.5 (in particular, infinitely many). However, since
it is not even known if there are infinitely many primes not dividing
Bi,—1y2 B(p+3y2, We cannot prove this. From the tables in [12] one finds that
no p=1 (mod 4) less than 8,000 divides B, _ )/, B(,+3)2, and for any such prime
about half the curves F, , . are wild split.
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Oblatum 6-IX-1987 & 29-11-1988

Note added in proof

The step in the proof of Theorem 5.13 after (5.15) requires further justification. A congruence mody
does not always hold mody, since D°(Y)¢ D°(X). However, in this case we can argue as follows.
The two residue classes R and R where |u| <1 on Y have u as a parameter, and contain the components
W and W of X as the closed balls |u|<|IZ|. Note that from (5.8) s is congruent to a non-zero
constant on each of R and R. Let g be as in (5.15). Since g is a rational function in ¢, it may
be regarded as a function on Y; further, since cge A°(Y)—I1A°(Y) for some cel*, dg/geD°(Y).
Combining (5.15) and (5.12), we get

ﬂzn(p—l)lle Q*‘P Q-{-TE("—”/Z o
! s g

where w is in D°(Y) and regular on X. Furthermore, since s is a unit on RUR, o has only simple
poles on RUR. To show that the congruence (5.15) also holds mody, we must show that weD’(X).
On each residue class R and R we can write

w=_g(u) du+terms of the form a du/(u—»b), a, beS, |IT|<|b|<1.

where g(u) is a power series with integer coefficients. Expanding the polar terms in powers of u/b
and setting u=ITt, we get something in D°(X).
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