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Introduction

Let 7 be a cuspidal automorphic representation of GL(2) which corresponds
to a primitive cusp form f of weight k=2 for the congruence subgroup I;(N),
where N is some integer > 1. For each prime number 7, let M ,(m) be the ¢-adic
representation attached to m by Deligne. The symmetric squares Sym? (M, (n))
of these /-adic representations form a compatible system of 3-dimensional /-adic
representations for the Galois group of @ over @, and we write L(Sym? (M (n)), s)
for the complex L-function attached to this compatible system. After earlier
work by many authors, the analytic continuation and functional equation for
LSym? (M (m)), s) were finally established in general using work of Jacquet-Gel-
bart [5] and Carayol [1]. An important step in this work is the identification
of L(Sym?2 (M (m)), s) as the (twisted) L-function of a certain automorphic repre-
Sentation IT of GL(3).

Now let p be a prime number which is ordinary for m in the sense of §3.
The aim of the present paper is to construct a p-adic analogue of each twisted
L -function L(ITI® A, s) or of L(Sym? (M (n))® 4, 5), and to prove its p-adic holo-
Morphy and functional equation. This strengthens results in our earlier paper
(2] where only a weaker statement about the p-adic meromorphic nature of
Some of these functions was established. The main interest of this p-adic analogue
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of L(II®J,s) is its conjectural relationship with a certain Iwasawa module
attached to = (see [2] for the definition of this module when f has weight
k=2 and rational Fourier coefficients). However, we do not discuss this module
at all in the present paper, and simply concentrate on establishing the analytic
properties of the p-adic analogue of L(II ® 4, s).

Notation. Let A denote the adéle ring of @ and let I=A" be the idéle group.
Z denotes the formal completion imZ/nZ and G, is the Galois group of an

algebraic closure Q over Q. For any prime number p we write 2, for the comple-
tion of an algebraic closure Q, of the field of p-adic numbers @,. Sometimes
we interprete a character of the Weil group Wy, as a groBencharacter y: I/Q*

—C* and write y=[]x,, where x, is the restriction of y to the local field
¢

Q, for £+ 00 resp. R for /=o00. If x is of finite order we denote by y, or
% the corresponding primitive Dirichlet character, and we let ¢, denote the
conductor of y, (which is equal to the conductor of y). For higher dimensional
representations X of the Weil group let cond (X) denote the Artin conductor
of Z. We use the convention that y,(n)=0if (n, c,)> 1.

I,(N) denotes the group of all matrices (a Z) in SL,(Z) where N divides
c

c. The symbol [r] stands for the integral part of reIR. We normalize the Petersson
inner product of two forms f;, f, of weight k for I3(N) by putting

Sufo={fufox= | f[i(@LE)Y " dxdy,

To(N\#

whenever this is defined. We decompose the group of p-adic units Z, by writing
Z;=A-T where I'=1+pZ, and 4 denotes the group of (p— 1)-th roots of
unity in Z.

Acknowledgements. The research described in this article was supported by the Deutsche Forschungs-
gemeinschaft and was performed in part at the Max-Planck-Institut in Bonn and at the Mathematical
Sciences Research Institute in Berkeley. The author thanks these institutions, and their directors,
for their friendly hospitality.

§ 1. The Jacquet-Gelbart lift

The aim of this first section is to develop the complex-analytic properties of
the L-function of each twist of IT or what comes to the same of each twist
of Sym? (M (n)) following Gelbart and Jacquet [5]. We must do this because
later on we will need some information about the e-factors in the functional
equation of these L-functions for rationality questions of special values .‘dnd
for the study of the p-adic analytic properties of the associated p-adic L-func'qc‘ﬂS
in the later sections. We also want to describe explicitly how these L-functmlﬂS
are related to the (imprimitive) symmetric square L-functions considered °Y
Shimura [11] and Sturm [13].
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We start out with a primitive normalized eigenform feS,(N, y), ie. a cusp
form of weight k=1, level N and nebentypus character Y. Let ny=n=Qmn,
denote the irreducible cuspidal automorphic representation of GL, () attached
to f. Suppose f has the Fourier expansion

f@=Y ayq', q=exp@niz),

and for any prime number ¢ let
l—a, X+y(@)* ' X*=(1—a,X)(1-B,X). (L.1)

The L-function associated with f is defined by
L(S,f)= z a, ‘n~*
n=1

and has an Euler product expansion of the form

Ls.N)=]](1 -0 7)1 ~B, 7).
2

In terms of the representation 7 one usually takes L(s, m)= L(s+k—_2-l, i3 ), where
the local L-function attached to 7, contributes a factor

=1

Lis, n)=(1—0, ¢ T =9 1 (1=B,¢ T 791, (1.2)

By the work of Eichler, Shimura and Deligne we know how to attach to =
a compactible system o ={¢'?} of 2-dimensional A-adic representations of the
Weil group Wq of @, where A runs over all finite places of the number field
F generated over @ by the Fourier coefficients of f. The system ¢ is such that
for all but finitely many prime numbers ¢ the restriction g, of ¢ to the local
Weil group Wy, has to correspond to , in the sense of local Langlands corre-
Spondence. Since by the work of Kutzko the local Langlands correspondence
for GL(2) is fully established, one knows that even for the exceptional primes

the representation 7, corresponds to some 2-dimensional representation o
of Wy,. That ¢, is in fact equivalent to o, was one of the main results in Carayol’s
thesis [1]. So if for any prime number Z and any finite place Af¢ of F we
Cohnsider the representation ¢: Wy, —» GL(V,), we find that L(s, n,)=Z(V,, ¢ ™%),
Where

Z(Vy, t)=det(1—,t; V97", (1.3)

With the standard notations as in [15]. Thus at all prime numbers £ we have
L, n,)=L(s, a,). Moreover conductors and e-factors coincide.
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The action of W on ¥, via ¢'¥ also defines a canonical action of W, on
the dual space V;*. This defines the contragredient representation ¢#: Wy
— GL(V3¥). Note that for the natural pairing < >: V;* x V, - F, we have

(FDW)v*, v) =¥, dD(w™)v),

so that the pairing extends to a homomorphism of Wg-modules V¥®V, > F,,
where Wy, acts trivially on F;. The kernel U, therefore defines a 3-dimensional
representation X: W, — GL(U,) and moreover X={Z®} forms a compatible
system of A-adic representations. So we can define for each ¢ the usual local
L-function

L(s, 2,)=Z(U; ¢ (14)

with any A}, where again Z(U,, t)=det(1—¢,t, Uf*) ™! is independent of the
choice of A. In order to twist X by an algebraic Hecke character y: Wy — C”
we fix an algebraic closure Q,=F, of F, and an embedding i,: @ —» @, such
that i,(F)c F;. We have

IOy Wo— GLU,®Q,), wrx(w)-ZP(w),

and we can define the local L-function L(s, X, ® y) as in (1.4) taking into account
that Wy now acts via Z® y={Z?®y}.

Example. The symmetric square. A little exercise in linear algebra shows
d~o®(deto)™!, where (deto)?=det(c¥): Wo— F;* factors through
Wb~ 1/Q* =R o x Z*. In fact by (1.1)(1.3) det ¢ is the unique groBencharacter
of @ trivial on R, (in the decomposition above) whose restriction to Z*
factors through the finite quotient (Z/NZ)* such that det o|g,z« =y ~'. Note
that by the convention in [15] ¢,eWg? corresponds to £e@, under the
isomorphism Wy~ @;,‘. The action of Wy on Sym?(V;) <V, ® V; defines a com-
patible system of A-adic representations Sym?(¢) where Sym’ ()"
=Sym? (6'¥): Wg — GL(Sym?(V})), and we easily find

Sym?(c)=Z@®y L (15

(Here we use the same notation for the Dirichlet character y and the correspond-
ing groBencharacter.) '

We come back to our system of A-adic representations X @® y, where y 15
an arbitrary groBencharacter of Q. We will take care now of the infinite plgce
of Q. The component n,, of = is a twist of the discrete series representation
with lowest weight k. The corresponding representation o, of the Weil group
Wy is the irreducible 2-dimensional representation induced from a quasi-charac-
ter of We=C":

k=1

z
0 =Ind (Wg, Ve, 0), 0(2)=W, (19)

where det o, =sgn* and ¢, >0 . The analogue of X at co is now defined as
a0 ¢}

%, =Sym?(0,,): Wg = GL5(TD), (L
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and we have (see (3.3.12) in [5])
2 o =Ind (Wg, W, 0?)@sign. (1.8)
Lemma 1.1. The L-function of X, ®sgn® (k=0, 1) is given by
L(s, 2, ®@sgn")=Ig (s + 1 —x) - Ig(s+k—1),

where as usual we put Ig(s)=n"%%-I(s/2), I(s)=2(2n)~*- I'(s).

Proof. This follows immediately from Sect. 3 in [15] and (1.8), using the fact
that Ind (Wg, W, 0*)=Ind (Wg, W, 0?)®sgn.
We can now formulate the main result in [5] in our situation. From now
onlet y=yxo- ] | x. be an idéle character of finite order such that y|¢ = 1. Put
¢

L(Sa Z®X)=L(S, an ®Xuo) ) n L(S, 2{®Xl):
'3

and

S(S, Z@X)’ZE(S, Zm®Xoo) : ]—[ G(S, ZI®XI)
1

Here the local e-factors at finite places ¢ are those of (3.6) in [15] in Delignés
convention [3], i.e.

S(S, Z(®Xl)=£(zl®X{ws, 'Ilh dxl)

with an additive character ¥, %1 of @, and the Haar measure dx, on @, self-
dual with respect to ¥. The e-factor at oo is normalized by taking ¥, (x)
=exp(2nix) such as in (3.2.4) in [15]. The ¥ are chosen in such a way that
¥Y=¥,-]] % is an additive character of A trivial on Q.

4

Theorem 1.2 (Gelbart-Jacquet). The global L-function L(s, Z®y) continues to
a meromorphic function on the whole complex plane and satisfies the functional
equation

L(s Z®p)=2¢(2Z®x)-L(1—s, Z®x ).

There is an automorphic representation IT of GL3(&), such that for any grofen-
character x of I/Q* we have L(s, I®x)=L(s, Z®y). If n is not equivalent to
any twist m® y with y + 1, then II is cuspidal and L(s, I ® x) is entire for all x.

In the exceptional case (see (3.7) in [5]) let # be a non-trivial groBencharacter
such that n=n®n. Then n?=1 and 7 therefore defines a quadratic extension
field K/@Q. Moreover there is a groBencharacter 6 of K such that o,
= I“d(WQ,, W, 0¢) in case n,% 1, ie. when ¢ does not split in K and &£ |/;
if '7;1=1 then /=% %" splits and 0,=0,@ 0 in this case. As a consequence
We have

Ind (Wg,, Wy, 0202 V®n, if n,+1, 19
2,= — -4 gl (L.9)
0,02 @O0y 0z @n, if n,=1,
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where the conjugate groBencharacter 6’ is defined by 6’ (x) = 60(x”) with the nop.
trivial automorphism peGal(K/@). Hence we get an L-function with groBen-
characters

L(s, Z®x)=L(s, 0- 6"~ ' - xx) - L(s, 1 x), (1.10)

where yx =y o Ny q (see Remark 9.9 in [5]). It is now an easy exercise to classify
those y for which L(s, Z®y) is not entire and which poles actually occur. The
result is

Proposition 1.3. a) If 0+0' then L(s, Z®y) is entire for all finite characters
x£n. L(s, Z®mn) has only simple poles at s=0, 1.
b) If 6=0 then

L(s, Z®x)=L(s, x)- L(s, n X)z

is entire for y+1,n and for x=1 or n the poles are the obvious ones of the
Riemann zeta function at s=0, 1.

We now gather properties of the global e-factor in Theorem 1.2 for later

reference. For an automorphism t€Gg, let a,=(a,, /) in 2" = [1Z; be such that
¢

on roots of unity 7 acts like taking the a-th power. We denote by j the associated
primitive Dirichlet character defined by restricting the idéle character y to 2
Note that each /-adic representation X, (£ o) is in fact defined over Q and
hence 27 is well defined. We put 2%, =X .

Lemma 1.4. a) For any integer meZ the e-factor e(m, X®y) is algebraic and
for 1€Gg we have

e(m, ZQp)'=7(— 1) 272 y*(a)’ - e(m, Z' @ 1).

b) Let A be another character of conductor c; such that (c;, c,)=1, and assume
(cy» N)=1. Then we have

s, Z@Ax)=¢(s, Z®4) | =1 e, 3 GAr ) 73 -cond(Z®4) ),

VIz—p © 6@

where |/ Z(—1)=1 or i and the Gauf sum G(7) is defined by
G(A)= Z Z(x)-exp(2mix/c;).
x=1

Proof. a) Since in the non-archimedean case our measures dx, are such .that
Z, gets measure 1, the local e-factors do behave well under automorphisms
of € (see (3.6.10) in [15]). Namely for any e Aut (C) and for meZ we have

e(m, Z,@ 1) =e(Z; @ Yt O ¥, %) =E(Z;R Y} Oy W, dXp)s
since w,(x)=|x|F'e@. Since ¥ (x)*=¥(x - a,, ,) we get from (3.4.4) in [15]:

e(m, Z,@ 1, =13 (@, o) - e(m, ZE@ 7). (110
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In the archimedean case we know X, ®y,, =Ind (Wg, We, %) ® 1., Dsgn - 1o,
where we can omit the y-twist in the first term. Since ¢ is inductive in degree
0 we use Ind (Wg, Wg, 1)=1@sgn to get

E(S, 200 ®Xm)=8(lnd(WRs WCs 92)®ws) N £(Sgn Ao ws)
=¢(Ind (Wg, W, 0% 0,—1))-e(sgn®sgn - 1, )
=ec(0? ) - er(sgn Dsgn - 1, ).

Hence by (1.6) and (3.2.4), (3.2.5) in [15] we have
&(s, 2o ® o) =(—= 1)/ (- 1), (1.12)

and therefore we find in particular

&lm, 2o, @) =F(—1) =272 g(m, 2, @), (1.13)

which completes the proof of a).
b) As in a) our proof works locally. In case ¢ divides the conductor
cond(X®4), x, is unramified by assumption. Thus we know (see for instance

(6], p. 23)
(s, Z,® A, x2)=x,(cond (Z,®4,)) - (s, Z,® 4,). (1.14)

If # does not divide cond(X®24) and if in addition y, is unramified, then
&(s,Z,®4,x,)=1. In the remaining case /|c, our assumption implies that
L,®4, =0, @a,®as, where the a; are unramified 1-dimensional representations
of Wy,. Now proceeding as in Tate’s thesis we get

&(s, 2 1) =¢y,” G(Xo) - % Xe(Cy)s (1.15)

Where we point out that the additive character ¥ here is normalized such that
Y.(¢ "™ =exp(—2mi/¢") for n=0. (Since ¥, (x)=exp(2nix) this is necessary to
have the global ¥ trivial on @.) Since o, a,a3=4 the formula in b) follows
by the well known product formula for GauB sums and by (1.12). This finishes
the proof of Lemma 1.4.

In the remainder of this section we shortly want to indicate the connection
to Shimura’s work [11]. Given an arbitrary primitive Dirichlet character x,
Shimura studies the Euler product D(s, f, xo)=] | D,(x0(¢) ¢ ~*)~ ', where for each

pPrime number ¢ &
D,(X)=D,(f, X)=(1—a} X)(1 —a, B, X)(1 - B7 X) (1.16)

With «,, B, as in (1.1). Comparing Euler factors it becomes clear that D(s, f, xo)
coincides with L(s—k+1, Z®(x¥)" ") up to the Euler factors at co and at
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the bad primes /| N. Here y denotes the groBencharacter with J=y,. Recall
that for /| N we have a, f,=0 and that moreover

a) |a,|=fk2 if ord,c,=ord,N,
b) aZ=y(()-* 2 if ¢y |N/¢ and 2N, (1.17)
¢ a,=0 otherwise.

We may and we will assume that the conductor N of the automorphic representa-
tion m=n, is minimal among all twists 7®A with finite gréBencharacters ..
Note that the Jacquet-Gelbart lift IT of n, and that of n,®A are the same.
Thus by comparing local L-functions one immediately sees that the three possible
cases a), b), c) have the following representation theoretical meaning:

a) m,=mn(u, v)is principal series representation with v unramified,
b) m,=a(u, v) is special representation with y, v unramified and uv='=||,
¢) m,is a supercuspidal representation.

In these terms we will describe the local L-function (see [5] (3.11))

L(s, ,, @ W )z ' x 1)
, 1.18
L(s, W07 D (19
using (1.2) and (1.4) in [5]. We first dispose of the harmless cases a) and b).
By (1.4) in [5] and Proposition 3.5 in [8] we have
L(s, T,@W ;")
=L(s, vu 'z 1) - Ls, pv ™ W07 ) Lis, 0z 1) (1.19)

if m,=n(u,v), and if m,=o(u, v) we have L(s, I, @ x); )=L(s+1,¥x: ")
Note that v(£)=a,- £ "2 and u=v~'y,; L. So we get

L(s, I,@W ) )=

Lemma 1.5. If n,=o(u, v) is special, then we have
D(xo(¢)-¢79) "' =L(s—k+1, Z,@W ) ).
If n,=n(u, v) is principal and u is ramified, v unramified, then we have
Lis—k+1,Z,®@W 0, ")
=D, (1) ™) (1 —W2 0o () @ £ ™) (A=) 1 77"

Now suppose 7, is supercuspidal. Let n, denote the unramified quadratic charac-
ter of @ . In this case clearly D,(X)=1 by (1.16) and (1.17)c). We must generaliz¢
(1.3)in [5].

Lemma 1.6. Let p be any finite character of Q. If u? is ramified, ther
L(s, Z,®u)=1. If u is unramified, then we have

A+u@)¢™" ' if n,2n,Qn,,
L s Z = X
(5, 2, ®H) {1 if m,2n,®mn,.
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If u is ramified and u? is unramified, let Ay, A=A, 1, denote the two quadratic
ramified characters such that p A; is unramified for i=1, 2. Then we have

1 if‘nt$n[®li for i=1’2s
L(s, Z,Qu)={(1—Au) ¢! if m,2n,®A for exactly one ;= A,
A=p?>@) %) if n,=n,®4 fori=1,2.

Proof. By (1.2) in [5] a complex number s, is a pole of L(s, n,® u x 7,) if and
only if 7, ®| |*°u is equivalent to m,. Also the poles are simple. Note that in
general a necessary condition for such an equivalence to hold is, that the twisting
character be quadratic, i.e. | [**=p"', u~ !5, or ! 1 with some ramified quadra-
tic character A. If u? is ramified then such a s, obviously doesn’t exist, hence
L(s, Z,®u)=1 by (1.18). Here we always keep in mind that L(s, 1, @pux ;) "}
is a polynomial P(X) in X =¢""° such that P(0)=1. The explicit formulas now
follow from the characterization of poles given before. This proves the lemma.

§2. Galois properties of special values

In this section we want to discuss the algebraicity properties of special values
of the finite part of the L-functions considered in the previous section. We
put

(s, f, x0)=[ 1 L(s; Z:® o) 2.1

where y, denotes a primitive Dirichlet character and x is the idéle character
with 7=y,. Following Deligne [4] we say that an integer meZ is critical for
the motive X ® y if L(m, 2, ® x,,) and L(1—m, Z, ® 1) both are finite.

Lemma 2.1. Let k=0 or 1 according as yo(—1)=(—1)*. The critical m for Z® x
are given by
me{2—k,3—k,...,0}  such that m=k(2)
and
me{l,2,...,k—1}  such that m¥x(2).

Proof. The poles of L(s,Z,®y.) are by Lemma 1.1 the poles of
F(S +1—x
2
=1, —2, ... we easily find the desired list of critical m.
Since (s, f, o) differs from L(s, Z®y) only by a product of I'-functions,
we see from Theorem 1.2 that (s, f, xo) continues to a meromorphic function
on €. Moreover Lemma 1.1, Theorem 1.2 and Proposition 1.3 show

Remark 2.2. 1f m is critical, then 2 (m, £, xo) is finite.
For a systematic study of these special values we introduce some more nota-

tion, Let x& denote the primitive even Dirichlet character such that for all
a€Z with (a, 4c,)=1 we have

—1
xs(a)=xo(a)-(i‘i——’). 22)

a

)-F(s+k——1). Since the (simple) poles of I'(s) are exactly at s=0,
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As in the previous section G(xg) denotes the GauB3 sum
G(xo)= ). 1o (@)-exp(2mialr),
a=1
where r is the conductor of g . For critical m let 6 =4d(m, x,)=0 or 1 according

as yo(—1)=(—1)""*?, and put

+1+4
Z(m, f, 7o) = K0

7t(l +o)ym+k—1 <f;f>

“D(m, f, Xo)- (2.3)

Theorem 2.3. If m is critical for Z® y then % (m, f, xo) is algebraic and for any
1€ Gg we have

g(m’j; Xo)’=g(m,f', XB)

Remarks 2.4. a) This establishes in particular the conjecture of Deligne in [4]
for the motives Z®y, i.e. the motives Sym? (M (f))®x in Deligne’s notation
(see (7.8.4) in [4]).

b) For non-critical m<0 we have % (m, f, x0)=0, so the statement of the
theorem trivially holds.

¢) The analogue of the theorem for the imprimitive symmetric square L-
function defined via (1.16) was proven by Sturm [13], [14] and in special cases
by Zagier [16]. Note that our L-function differs from that one by finitely many
Euler factors which may vanish at a critical s=m.

Proof. We may and will suppose that f has even level N. If not we might
twist f by a character ¢ of conductor c¢,=4. This won’t affect the function
D(s, £, %0)=2(s, f.» x0)- In addition we know by Proposition 1 in [12] that the
quotient J(f)=<f,, £.>/<{f,f> only depends on f and the conductor of &, and
that we have J(f)'=J(f") for any teAut(C). So suppose N is even. Under
this condition Sturm [13, 14] has shown that the statement of the theorem
holds if we replace 2(m,f, xo) in (2.3) by the imprimitive L-value D(m+k
—1, f, (x¥)s Y). Remember that by Lemma 1.5 and 1.6

D6, 1, 10)=2(, f, x0) - D(s+k—1, £ (x¥)o 1), 24

where 2(s, f, yo) is a finite Euler product defining an entire complex function
whose possible zeros are on the line Re(s)=0. Note that in Lemma 1.5, 1.6
we assume f has minimal level among all twists, whereas here we want / 0
have even level (which might destroy minimality at 2). So if the minimal Jevel
of all twists is odd we replace f by f, in (2.4), so that the whole Euler factor
at the prime /=2 is a factor of (s, f,, xo). Again the zeros of this (good) Euler
factor are on the line Re(s)=0. By the explicit formulas in Lemma 1.5, 1.6
we know that for any integer m the value 2(m,f, xo) is algebraic and thal
for 1€ Gg we have 2 (m, f, xo)'=2(m, f*, x5). Hence the statement of our theoremn
becomes obvious for m=+0 by Sturm’s results.
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Case m=0. If m=0 is critical then y, is even and m=1 is also critical. So
by what we proved before we know that Z(1, £, 5o)'=2Z(1, %, o) for 1€Gy.
On the other hand the functional equation in Theorem 1.2 tells us that

G(x0)

20 1= G 2000, 2@ * 3 2 (L, o

hence by Lemma 1.4a) our proof is complete.

Remark 2.5. Although it seems that we prove the theorem only for a form
f of minimal level among all twists, the statement holds in fact for any f by
the same reasoning as at the beginning of the proof.

Corollary 2.6. Modifying (2.3) we put

1+6
tin (S0 LS.z

@) "L
If mis critical for X®y, then for any 1€ Gg we have
I(m, £, xo) =1(m, %, x5)-
For later reference we work out a “functional equation” for the numbers
T(m, £, Ao xo)=T(k+m—1)-(=c; )™~ DI+ I(m, £, Ao xo)

where A, y is a pair of finite groBencharacters such that the conductor c, of
7 1s prime to N¢,; and 6=45(m, 4, xo). Let

G(4o) )3

VAo(—=1)c;

C(E, H=s(0, E®)- (

and put M,;:=—c; 3-cond (Z®A).

Proposition 2.7. If m<0 is critical for £® Ay, then we have
T(m, £, Ao xo)=C(Z, A)- M7 ™ 7o(M;)-2- T(1—m)-T(1—m, £, 4 xo).

Proof. By Lemma 1.1 we easily get

Ll—m,(Z®A0w) 1 sm-2 ~x+z L[(k=m)-T(1—m) o
LmEeig, e 2 Tmtk—1) 23)

Where Ao xo(—1)=(—1)*. Now specialize the functional equation in Theorem
2 to s=m and use Lemma 1.4b) to control the contribution by e-factors.
Together with (2.5) this proves the proposition.
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§ 3. P-adic interpolation of half the critical values

We fix a prime number p>2 and an embedding i,: @ - @Q,. Throughout the
rest of this article we make the following

Hypothesis. p does not divide N and a, is a p-adic unit, ie. |i,(a,)|,=1. We
say p is “ordinary” for =.
Thus in the decomposition

1—a, X +y(p) P ' X2=(1—, X)(1— B, X)

we may choose «, to be a p-adic unit.

Remember that a distribution u on Z, is determined by the integrals of
all finite order characters y of Z, i.e. any family (4,) of values defines a distribu-
tion u by demanding that

z_f xdu=A4, forall y.

We fix a primitive Dirichlet character 4, with corresponding gréBencharacter
A of conductor c; prime to p, and we define for each m=2—k, ..., 0 a complex
valued distribution p,,=p,,(£ ® 1) as follows. Define an Euler factor at p by

E,(X)=(1—Y,(p)-B7-p' " X)(1-X)

and put y,,:==p™**~2.y(p)- «, % Let Q,, ;==I(k+m—1)-(—c,)™ Then p,, is given
by

(@) | dbtm=0m, 2-(1=20() ym) - E,(Ao(0) p™™) - I (m, f;, Ao),
z;

and for all primitive Dirichlet characters y, of conductor ¢, =p™x, m,>0

(i) I Xodlm= Om, 2* Ym* - 1(m, £, A Xo)-
z;

Our aim is to prove the existence of a p-adic measure on Z, which roughly
speaking coincides with p,, at almost all characters y, (see § 5). For the moment
we deal with a slightly modified distribution for technical reasons. Let ;, denote
the distribution defined by the formulas (i) and (ii) where we have replaced
D(m, f, Ao xo) by the special values of the imprimitive symmetric square D(m
+k—1,f,(Ax¥)s V). In the following we do not suppose that feS,(N, y) has
minimal level among all twists. Let F denote the field generated over @ by
adjoining all Fourier coefficients of f and the values of 4,. Let F, denote the
completion of F with respect to the place p|p in F which corresponds to the
embedding i,: @ — @Q,. Note that by our hypothesis we have a,€F,.

Theorem 3.1. Suppose N is even. Then each distribution u, for m=2—k, 0
has values in F,. If A, is not imaginary-quadratic then these values are p-adically
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bounded, i.e. ji,, is a measure. If A, is imaginary-quadratic then for any topological
generator u of Z; there is a unique measure y,, , such that we have

(A=Fo@u' ™) [ xodpm= [ xodity,. for all xo.
y £3 zx

P P

Proof. The algebraicity results of Sturm [13] easily imply that the values of
i, are in F,. The crucial point of the proof is to show that these distributions
have bounded p-adic absolute value for 4, not imaginary-quadratic.
As in [9] we define the modified form f,(z)=f(z)—B, - f(pz) of level Np
and note the following properties:
D(s, fo, (A )0 )=DGs, £, (A¥x)e ')  for m,=1, (3.0)

J dbtm=0m, s(1=20(D)- ym) - I'(m, fo, Ao), (32
z;

Where for any character d, of parity d,(—1)=(—1)" we put

G(6o) D(m+k—1,fo,(0¥)s ")
@mi)" LA ) ’

fol T(p)=w,-fo for the Hecke operator T'(p). (3.3

I,(m’f0’50)==

For any subset U=y +p"Z,<Z, we therefore can write

U (0) =222 (1 =y Ao (B) - T (m, fo, )
o(p)
+ Y 700)- 7 Tm fo, Ao x0) (3.4)

x¥1
my<r

and we must show the existence of a constant C> 0 such that |y, (y+p"Z,)|,<C
for all y and r. It is obviously sufficient to show this for r=2.

The starting point of our proof is the following integral formula of Shimura
[11]. Let p,=0 or 1 such that (2§ y)o(—1)=(—1)’» and recall from §2 that

(A5 (@)= (x A)o(a) - (""—’10(_—1)) Then by (1.5) in [11] we have
a

(47) ™2 I(s/2)- D(s—pys fo, A 1o ")

= [ fo@) Ouypo@ 1 His,2)y > dxdy, (3.5)
FoN\#

Where we put N,:=Lc.m. (Np, 4¢3,

H(s,2)=Ly,(2(s— p) — 2k +2, (405 2) E(z, s+ 1=2p,, 2k—2p,— 1, (A2)5)
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and

H(MIIX)O(Z)_E Z (AY x)o(n)- nx- g™

E(zs t,w)=y" Y o) j0, 2k, 27,

'Yerno\ro(Nx)

b .
where the y=<a7 d’) run over a system of representatives for I(N,) modulo
c}‘ »

1 . .
I,= {+( 0 1) neZ} If necessary we do replace f by a twisted form in order

to make sure that we have
¢, divides N/2, ie. N,=lcm. (Np, 4c2), (3.6)

without changing the function D(s, f, (AY x) !). This is possible since twisting
f by a character ¢ of conductor c,=c}, will for large n create a factor c}
in the level of f;, whereas the conductor of 1y E2is c; and

D(s, f(A¥ )6 )=D(s, fe, A& 1) 1)

with fzeS, (M, y &%) for some M. In particular we have N, =p-lc.m. (N, 4). We
replace s by t=s+k—1+p, in (3.5) and put

=9f(za X3 S) = 0()../11)0(2) ’ LNp(ZSa ('1 X)(Z)) : EO(Za S, XO)’ (37)

where Eo(z, s, x0):=E(z, s+ p,+1—k, 1—-2(k—p,), (Ax)g), so that for real s in
terms of the Petersson inner product we get

(4m) =2 I(t/2) D(t—pys fo, AV e ) =Lfo(2), # (z, X, n,- (338)

0 —1 St
We must study #7*(z, x, )= (z, ¥, s)|x Wy, where Wy =( 0). By definition

we have N,

H*,1,9)= ow,)o( )LN,,(Zs (1203)- E( Nl,s,xo) YN 69

N,

X

Following Sturm [13] the specialisations to s=me{2—k, ..., 0} of #(z % )
and hence also those of #*(z, y, s) are generalized modular forrns (m general
non-holomorphic) under the assumption that m be critical for Z®@ Ay, i.e. m= =k
+p,(2). In terms of their holomorphic projection #g*(z, x, m) we have

fol2), H(z, 1 My, =< fo(2), HS* (2, X, Ml Wr On,-



p-adic measures attached to automorphic representations 611

Now we proceed as on p. 217 in [9] applying the trace tr=tr(Iy(N,)\I5(N;))
to the form #5*(z, x, m)| Wy, which leads to the following formulas for any
integer r Zmy:

ag(r—mx) I"'" D(m-{-k" l,an (M)o)

_ —(2my— 1)(§ﬁ 1)

fo@)| Wy, #5%(z, x, m) | T(p)*"~ D, (3.10)
if m,= 1, and for the trivial character y=1 we have

05" (1=ym Ao(P)) - Iy D(m+k—1, fo, (A¥)g ')
=<{fo(@)| Wy,, R(z, )| T(p)*""*)n,, (3.11)

m+k—17 1 _
where I:,,::(41r)_[ 2 ]_7F([T—_L§——l]+%) and where we let

R(z, m)=*(z, 1, m)| T(p)*—(A)o(p) - p™** ™2 H5* (2, 1, m).
So if we define the holomorphic form %, ,(z):=%")(z) by
Z,,(2)=G(Ao)- R(z, m)| T(p)*~*

k_ e -
+ Y xo)-cmpz” filey) - G(Ao xo) H*(z, 1, m)| T(p)* 2,
x¥1

we easily get via (3.10), (3.11)
<f0| WNn %.y)Nl
=2 (1Y Ao (P)) - G(do) I, D(m+k—1, fo, (2¢)o)
+3 70 () vax-GlAo xo) - D(m+k—1,fo, ¥ 1)) (3.12)
x

Note that by Remark 2.4b) for non-critical m we can put H*(z, x, m)

=#(z, x, m)=0, ie. it suffices to consider those y where p,=m+k(2). The com-
parison with (3.4) immediately shows

Lemma 32, Let 2,=%, ,=Q,,. ;- (—2mi)""n' "% L' and put
Z,.,@=FR@)=Fu 00" - F ).

Then we have

’ r 2P <f0| WNl, ‘%,y)Nl
Um(y+P" Z)=0, 1 .

The problem of finding a uniform bound for the p-adic absolute values of these
lumbers amounts to showing that the Fourier coefficients of the form Z,,
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have p-adic absolute values bounded independently of r and y. This will be
carried out by using the Fourier development of the generalized modular formg
H*(z, x, m) in an analogous way as in [9]. We will just quote the results tha
we need here and refer to that article for further details. The forms #* have
a Fourier development of the form

[k/2] L
H*(z, xm)=Y @Gry) Y ¢, ;- q",
i=0 n=0

J
where ¢, j=c{"(y). Write the holomorphic projection as #g*(z, x, m)=) c,q",

where ¢,=c™(x). Then we have the following relationship between the coeffi-
cients of s#* and those of #* (see Lemma 4.1 in [9]). Let kq:=[k/2].

Lemma 3.3. There is a positive integer R and there are linear forms F,(X,, ..., X, )
inZ[X,, ..., X,] which only depend on R and n, such that F,(X)=R- X, modn
and

R\%*(Z, x> m)= Z Fn(cn.O’ ceey cn,ko)'qn‘

n=0

Recall that the action of the Hecke operator T(p)' on H#G*(z, x, m) is given in
terms of the Fourier coefficients by

;%*(Z, X! m)' T(p)t= Z c,,pz'qn.
n=0

o]
Since %, ,(z)= ), a, ,(n)-¢" is a linear combination of these forms we can easily
n=0
describe the a, ,(n) as follows.

Lemma 34. The Fourier coefficients of R(z,m)= ) r,-q" are given by T
=Cupr ()= AW (@)- P"** 2 ¢, (1), and we have """

a, () =Glg) Fapr-1+ T %60 €02~ F(c))- Gl Xo)- Capar—1 (1)

x*1
my=<r

Next we want to reduce the proof of Theorem 3.1 in case A, is not imaginary-
quadratic to the proof of

Proposition 3.5. There is a numberfield K, of finite degree over @ containing

the Fourier coefficients of the holomorphic forms %, ,(z)= Y a, ,(n)-q" for all
n=0

residue classes y+p"Z,<Z}. There is a universal bound C>0 such that we have
|, ,(n)|,<C for r22 if 1, is not imaginary-quadratic.
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Proof of Theorem 3.1. Let us assume for the moment that Proposition 3.5 holds.
Let F,:=FK, and denote by M,(N,, Fy) the space of (holomorphic) modular
forms of weight k and level N; whose Fourier coefficients belong to F,. Then
according to Proposition 4.5 in [7] and Lemma 3 in [12] we have a linear
form

W,
&L M\ (Ny, Fo))—» Fy, Fr— <f0|k<f:v'f’>fp>m ,

which by base change induces a homomorphism of @,-vector spaces. Note
that under such maps the image of a Z,-lattice must be p-adically bounded.
In particular we find a universal bound C’ such that |¥ (%, Wl <C, since by
Proposition 3.5 the forms %, , are contained in a certain Z,-lattice. This com-
pletes the proof of the theorem.

We now start with the proof of Proposition 3.5. Put m’ ==[—'E;—k]—1 and
define rational numbers

F(I:m—é(+l]+;+j).(r;_')
B.=B. = for j=0,...,m'.

J Jym
, m—k+1], 1
F(m+1)-F([ : ]+2)

Recall that N':=Lc.m. (N, 4c3,)/(4c},)=1lcm. (N, 4)/(4c},) by (3.6) and put
@ (m, j)i=n™* 1 (—20)Px=1 27"/ NPz~ By Y,

where we recall that we always assume p,=k+m(2). For every integer n>0

let ¢, denote the quadratic character attached to the extension Q(l/_—"N_’)/ Q.
For each character y we put

B, (n)=Y. u(@)- (Ax)o &n(@)- (A1)3(b)-a~"-b' 2",
a,b

where (a, b) runs over all pairs of positive integers prime to N, such that (ab)?
divides n, and p here denotes the Moebius function.

Lemma 3.6. For y+ 1 we have

cu s =6 0m, ) SEYD) 5 o (my)- e
) LNl(Zm_l’U'X)(Z)) ifn2=0’
{LN,('": (4 x)o Snz)‘ﬂz(”z) if ny %0,

where the sum runs over all pairs of integers n;20 satisfying n N +n,=n. If
X=1 then the same formula holds except that we must replace N' by pN' and
&, by €, (also in €(m, j) and B, (n,)).
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Proof. By Proposition 1 in [11] we see analogously to Lemmas 4.2 and 43
in [9] that we have the following Fourier expansion of Eisenstein series for
x+1:

2m+1 k—1-m—p,
LN1(2m9 (}*X)(z)) N, 4y Eo(z, m, XO)'k—px—i WNx

=70(»)- Ly,(2m—1,(2%)3)

+ ‘_Z, 7,(3) - L, (m, (AX)o &) - B, (n) - ™"~ (3.13)

n=1

For trivial x the formula remains true if we replace ¢, by ¢,,. Here the 1,
are given by the Fourier coefficients of the function

o0

i (Z+m)—a(z+m)—3= Z T,,(y, a, ﬂ).eZIinx’

m=—o n=-wo

2 2
tions can be calculated explicitly (see [11]). We find

rm-—3%)
I-.([m;—k])_r([m—éc+1:|+%)
m——k+1]_1

T,(y)=n""tiPx Tk EQpymtE T2y Y Bj(4nny)_j'[__2_— 2,
j=0

where we specialize for n=0 to t,(y):=t, (y, [m + k], [m— s 1] +%) These func-

To(y)= P A 22y,

and for n>0

Thus the function E*(z, 5, xo):=Ly, (25, (A %)3) - Eo (2, 5, X0)lk-p,—3 Wa, hasats=m
a Fourier expansion of the form

E*(Z, m, Xo)= Z Z dn.j(47U’)_j‘f1",
j=0 n=0

where by (3.13) the coefficients d, ;=d\™(x) are easily described as follows. With
the convention 0°=1 we have

d"'j=Nx-(2»I+1)/4(_2i)k—p,—-§nm'+1 Bj
nm’—j{LNl(zm_ly (]‘X)g) if n=0’ (
LN1(m9 (A'X)O en)'ﬁz(n) if n>05

for x=+1, and for trivial y we must replace ¢, by ¢,,. On the other t.la.nd the
Fourier expansion of the theta functions is well-known (see Proposition 22

in [10]). We have

L G : , .
Oy 0@ lp +3 Wi, =i s Vﬁp"h} 01y 00 (ZN") (3.53)
Cayx

3.14)



p-adic measures attached to automorphic representations 615

for x#1, where now the formula remains true for y=1 if we replace N' by
pN'. Hence writing

H*(z, x, m)=0(a./,1)o(z)|px+g WN,, -E*(z, m, xo),

we find the formula of Lemma 3.6 by multiplying together the two developments
above.

In view of Lemma 3.4 we define linear forms L, ,=I{", in the indeterminates
X,, Y and Z where y runs over all non-trivial characters such that c, divides
p and p,=k+m(2). Let

Ly Xy s ,2)= Y a, X, +0,

x¥1
] Y—@A¥)o@) p™*2Z  if A(—1)=(-1)",
0 otherwise,

k_ b~ =71\ .
where o, :=p? ! o) -7 -Yl(c,) - GAgxo) for x#+1 and a; =G (o). With these
notations Lemma 3.4 says

a,, (=L, y(..., Capzr-1(X) -+ ; Capzr(1); Cppar-2(1)).

We must consider the analogous quantities a, ,(n, j):=a™(n, j) given by
a,, ,(n, j)=L, (..., Cyp2r- 1, j00s -+ 5 Cupar, j(1), Cap2r-2, ;(1)).

Recall that eventually we want a bound for the p-adic absolute value of the
algebraic numbers &, ,(n)=%,- ¢(p) "' a, ,(n). We first show

Lemma 3.7. a) The numbers 2, -a, ,(n,j) are contained in the number field K,

=QG, /N, /P, G(Wo), G(Ao), all Ao(t), Wo(t)). In addition the algebraic numbers
P+ 0+ €™ (x) have bounded p-adic absolute value.

b) There is a constant S€@Q* such that for any residue class (r22) y
+p" Z,=Z* and all n we have 6 - %,- a7)(n, 0)=0 modulo p’, if Ao is not imaginary-
quadratic.

We first finish the proof of Proposition 3.5, whose statement is equivalent
to the existence of a constant &'e@* such that we have &' - &, - a{™)(n)=0 mod p"
for all r, y, n. Note that by Lemma 3.3 these numbers all belong to K,. Also
by that lemma there are linear forms F,, L,eZ[X] in X =(..., X, ...) such that
E(X)=R-Xy,+n-L,(X) and R-c,(x)=F(cn, o(X) coes Cn,iko(1))- Hence we have
a,,(n)=a, ,(n, 0)+p*"- B(n, r), where

n
B(n, 1) ==E;2— (P Lupor-1(%)

+p2 anz"(X)_(W)O(p) : pm+k—2 : anzr—Z(Z))

with xXj=3 %y - Cppar-1, j(X)s 5 =01 +Cupor, j(1) and z;=o, Capar-2, j(1)-
x¥1

By Lemma 3.7 this completes the proof of Proposition 3.5.
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Proof of Lemma 3.7. a) The rationality statement follows immediately from
the explicit description of the c, ;(x) in the preceding lemma. In addition we
see at once that the terms in question have bounded p-adic absolute value.

b) A little calculation as in the proof of Lemma 4.4 in [9] shows

Caps, o)=Y (p)- P" ¥ 72 €0 0 (1) =G ((AY)o) - €(m, 0) P’,:’_1
: Z’ (W)o('h) d e n’fl Ly, (m, 4y Snz) B1(ny), (3.16)

ny, n2

where the sum ) runs over all pairs of integers n;>0 such that n} N' +n,=np?
and p does not divide n;. Note that for 41 the formula for c, . o(x) in Lemma
3.6 simplifies to

Cnp2, 0(X) =G ((AY x)o) - € (m, 0)
- Y Ay x)o(ny)-nfx-n3 - Ly, (m,(Ax)oen)- By(na),  (3.17)

ni,nz
hence we get for r=2

a,. ,(n, 0)=p2 - %(m, 0)-G(Zo)- G((A¥)o)
Z (W)o (ny) ng "’;’

(ny, n2)eW,

: z Xo(yC;..p "1—1 0;1)'ﬂx(”2)‘Lm(m, (A%)o 3»;) (3.18)

XsmySr
Px=pP

where W, denotes the set of pairs (n,, n,) of positive integers prime to p, satisfying
n?N'+n,=np? ! and p=p,, =0 or 1 according as p=m+k(2). Let V, denote
the set of pairs (a, b) of positive integers prime to N, such that (ab)?® divides
n. The product of missing Euler factors in the L-function above is (over primes
r

[TA=(Ax)oen,)r™™) =3 u(@d- (Ao &n,(d) d™ ™1~ (A 2)o &, (P) P™™)

r|N;y d|N
so that by (3.18) we have

ds."n)),(n, 0)=‘%’m, A Z Z Z am, ).(nl’ n29 ad’ b)

(n1,n2)eW, (a,b)eVn, d|N

- M{™(ab*dyc,, nitc;Y), (.19

where we put
k_ e
Hy 2=D2 " -€(m, 0)- G(Lo)- G(AY)o)s

Om, 2(11, Mz, ad, B)=nf - n3 - (ad) ™™ - b' 2™ Pig(ny) - Ao (ab® dny )&, (ad)
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and where for any integer prime to p we have defined

M (x):= % x%o(x)- L{m, (2o &) - (1 —(A1)o £n,(p) P ™).

Xsmy=r
Px=Pm

So by (3.19) everything is reduced to show the congruence M™(x)=0 mod p’~!
for any x prime to p. But this congruence is a well-known integrality and holo-
morphy statement about the Kubota-Leopoldt L-functions £ (4 x)o &,, @' ™™, 5),
where  denotes the Teichmiiller character modp. A perhaps more familiar
formulation of these properties is the existence of a measure v,, on Z), with
values in Z, such that we have

_‘- ZO dvnl:’gp((AX)O 8,,2 wl —m’ m)

z;

Here it is important that the tame component of the character (1), &,, @' ™™
never becomes trivial by the contribution of the nontrivial character ¢,, of con-
ductor prime to p, which can’t be cancelled by 4, if 4, is not imaginary-quadratic.
(For more details see the proof of Lemma 3.9.) This finishes the proof of Lemma
3.7.

Now we suppose A3=1 and Ao(—1)= —1. Let u be a topological generator
of Z, and define a distribution ;, , by demanding that

| %o dtm =(0—Fo@u'™™) | xodm, forall xo.

z; z;

By the same reasoning as before the proof that u,, , is a measure, can be reduced
to show the congruence M™)(x)=0 mod p"~!, where

MT(x)= 3 (1—=xo@u' ™™ x0(x)- Ly(m, (2 )o &n,)-

Now it is again a standard result in Iwasawa theory that there is a measure
Vm,, o0 Z) with values in Z, such that M{",(x)=@(p"): Vm,.(x +p"Z,), Which
eventually completes the proof of Theorem 3.1.

Theorem 3.8. The measures [ respectively p, , in Theorem 3.1 are related by
the formula

d 1 (0) =X d i (x) TSP d o (X) = X" d 1y ()
The proof is based on
Lemma 3.9. For m=2—k, ..., 0 and any r 21 we have

2r—1

M™(x)=x"- M{”(x) mod p

Jor all integers x prime to p. Also the analogue for M{™ holds.
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Proof of Lemma 3.9. Using the p-adic L-function of Kubota and Leopoldt we
express the M™(x) as

Ms-m)(x) = Z XO(x) * gp((l X)O Eny wl —m, m)a

Xo,mySr

where we recall that we put Z,(¢, s)=0 if ¢ is an odd character. Thus in terms
of the measures v, introduced above, we must show the congruence v,(x
+p"Z,)=x"-vo(x+p"Z,) modulo p". From Iwasawa theory we know that there
are formal power series G (¢ &,, X0, @' ~™, T)€Z,[A,][T] such that

gp(()‘X)O gnz wl —m, S)= G(AO gnz XOt wl —m, XO(ul) u% — = 1), (320)
where we have decomposed the fixed generator u of Z according to the splitting

Z;=A4-T in u=w(u)-u, and where yo,= xol,. Recall that (3.20) holds as long
as Ag &, Xo: @' ~™# 1. In the excluded case one has 1y=¢,,, xo,=®™ ' and

(1, xo(u)ui™*—1)
Xo(uy)ui—*—1

G
gp(xoll‘s 5)=

with a certain formal power series G(1, T)eZ,[T]. Now in the case of the
measures 4, (Where we assume A, #¢,,) we have

_f Xo(x) dvo(x)=G (4o &, Xo: @5 Xo(uy) u; — 1),

z;

hence

,|. Zo(x)x"‘dvo(x)=G(/10s,,zxo,wl—"', Xolu)ui " —1)= j Xo(x) dvp(x),

z z;

which proves the desired congruence x™ - dvq(x)=dv,,(x). In the exceptional case
of an imaginary-quadratic 4, we work with

MOE= T (=104 ™ 20(x): Z(Ax)o e @' " m)

Xos My Sr

and the measures v,, , introduced above. The same argument as before now
yields M™)(x)=x"- M%), (x) mod p?>"~*, which completes the proof of Lemma
3.9.

In order to finish the proof of Theorem 3..8 we must show the congruence
Pm(x+ D Z,)=x™- po(x+p"Z,) modulo p"™* and its analogue for yy,, , for some
constant k€N which is independent of x, r and m. By Lemma 3.2 we have

{fo(2)| Wy, ?ﬁ"'i(ZDn
’ ’Z p— 1 s 1 N
SRR fdx
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where we put FM(z)=a,2"-F™(z) with Fourier expansion %™ (z)
o0
=Y b{™.(n)-q". The Fourier coefficients b{")(n) are in Ky(x,) by Proposition

n=0
3.5. Using the linear form

L My (N, - F) > Fy, > fol Wais FOOnILfONs

it suffices to show the following congruence of Fourier coefficients of ™. which
corresponds to the congruence stated in the theorem:

bim(n)=x"- b{%)(n) mod p" ©
for a suitable constant '€ IN. By Lemmas 3.3 and 3.7a) we have
R-2,-a".(n)=R -2, -af"\(n, 0) mod p*" !

for a suitable positive constant RelN, hence

I a™.(n, 0) mod p".

R-bM=R 2"
‘ o) "7

To verify (C) it is therefore sufficient to show the congruence
P+ a"(n,0)=x" - %, - a(n, 0) mod p* "~ . ()

We easily compute 2, - € (m, 0)=i(2i)>*~#(— N')* "™/ ¢; ;"' ¢}, so that by (3.19)
we find

p—k—m
%'ay,":)c(n, 0)=th(i, l/l’ k) Z c(n19n29 a,b,d)'("n%N//"z)

ni,a,b,d
- —1\— -1 ,-1
- (@b*dxcy,nit et ™M™ (ab*dxcy,nytert)

with the abbreviations

k -
(v, R=ip? "Gl G((A)o) - N2 247+,
Ay

c(nl’ n2: a, b’ d):=n,i n2_ ! bc)..[/ C; ! WO("I) : io(abz dn; 1) : 6nz(a’d)'

This immediately implies (C’) by Lemma 3.9 and by the fact that the choice
of (n,, n,) is such that —n? N'/n, =1 mod p*"~ .

This proves Theorem 3.9 for the measures p,. Again the measures pu, ,
can be handeled completely analogous, hence the proof is complete.

Remark 3.10. Results similar to those of this section have been obtained indepen-
dently by Hida (unpublished).
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§ 4. P-adic interpolation of the other critical values

The following last two sections contain the really new ideas of this article.
The measures pu,, resp. p, , constructed in the preceding section provide us
as usual with a package of p-adic formal power series which roughly speaking
interpolate half the critical values of the imprimitive symmetric square. The
aim of this section is to construct measures v, resp. v,, , for the other m's,
i.e. such that the corresponding power series interpolate the remaining critical
values of the imprimitive symmetric square. In the last section we will then
relate the pairs of power series attached to the pair (u;,, Vi — ) 1€5P. (U, us Vi —m o)
via the functional equation of the primitive complex L-function. This requires
of course multiplication by some p-adic Euler factors, i.c. by power series which
interpolate the missing Euler factors in the imprimitive symmetric square. A
priori one ends up with pairs of quotients of power series interpolating the
critical values at m and 1—m of the primitive L-function. However, a careful
analysis of the zeros of the p-adic Euler factors mentioned before eventually
will enable us to conclude p-adic holomorphy and hence the existence of the
measures alluded to at the beginning of Sect. 3, with a few exceptions. As an
aside we get a functional equation for measures and p-adic L-functions.

As in the previous section our starting point is again Shimura’s integral
representation (3.5) which we now want to specialize at s=1, ..., k—1. We do
not suppose that f has minimal level among all twists. As in (3.2) we define
analogous to Corollary 2.6 for any character J, of parity §o(—1)=(—1)"*!

; _(GO0)\* D(m+k—1, fo, 0¥) ")
I(m,fo,éo)-—<(2ni),,,) TS : 4.1

Also we extend the definition of the factors y,, to the whole critical strip by
putting y,,:=p™~ D@D+, y(p). o2, where =0 or 1 is as in Sect. 2, i.e. for
instance & =(1+sgn(m—%))/2 for critical m. The aim of this section is to show
for N not necessarily even:

Theorem 4.1. Let m=1,...,k—1. If A, is not imaginary-quadratic then there
is a unique p-adic measure v,, on Z, such that for any Dirichlet character o
with x3+ 1 of conductor c,=p™ we have

,‘.XodV;l=?:"'I'(m,fo,'10X0) ifloXo(—1)=(_1)m+1,
z;

whereas the integral vanishes if Aoxo(—1)=(—1™" If A, is imaginary-quadratic

then for any topological generator ucZ, there is a unique measure v, , such
that we have either

5 Xo AV, w=(1—xo @) u™) - ymx - I'(m, fo, A0 Xo0)
z;

or the integral vanishes according to the previous cases.
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Proof. For y3+1and m=1, ..., k—1 again by [13] the function 5#(z, ¥, m) from
(3.7) becomes a generalized modular form, and (3.10) remains true for these

m if we put
m+k
([m+k]) (4n) [

Now fix a generator u of Z, and define an auxiliary distribution ¥, , by demand-
ing that for any character x, of conductor p™ we have

| %0dVp u=(1— 30 2)- v I'(m, fy, Ao Xo) 4.2)

zZ;

if p,=k+m+1(2), and that the integral vanishes otherwise. Recall that we
defined p, =0 or 1 according as (Ay x)o(—1)=(—1)*x. As in (3.12) we consider
for a given residue class x+ p"Z,=Z, the modular form & (z)=#"; “(z) defined
by

F@=pt 'Y 200 (1~ 13 (1)

2™~ (c,) G(Ao xo0)® 55 (2, Xoo Mk T(P)* 1,

where the sum runs over all characters x, of conductor c, dividing p” such
that p,=k+m+1(2). With Q,:=(2ni)">" ' "% I, ! we can now easily reformu-
late (4.2) by

Q.

Wa,s
o)

T e+ P T,)= < : > KES. 4.3)

As in the previous section we have to show that the Fourier coefficients in
the g-expansion of the modular forms @, ¢(p")~' £ “(z) have a universally
bounded p-adic absolute value (for 1, not imaginary quadratic). The Fourier
coefficients c, = c™(y) of the #;*(z, x, m) and the Fourier coefficients a,=a{™,* (n)
of # are obviously related as follows

Lemma 4.2. For m=1, ..., k—1 we have

a,=p* ! Y 20(®) (1= x3W)- 2™ 1 P (c))- G(Ao Xo)* Crpar-1s

Xo

where the sum runs as in the definition of F

Our first aim is to show that there is a constant C>0 such that
12, @)~ -a™ n)|,<C for all ,n20, m=1,...,k—1 and x prime to p, at
least for 4, not imaginary-quadratic. Again we must evaluate the Fourier coeffi-
cients c{™,(x) of the generalized modular form #*(z, x, m) from (3.9), now for

k—1
m=1,...,k—1.Let m0==[ﬂ+_2__]_
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Lemma 4.3. Suppose x5+1 and p,=p=k+m+1(2). Then there exist algebraic
numbers €, ;€Q such that we have

=6, “CED) 5 Gy sty

: nl{ . n';o_.i*% N LNl(m’ (A'X)O 8"2) . ﬁx("z)‘

Proof. By Proposition 1 in [11] the same type of formula (3.13) also holds
for m=1, ..., k—1, where the terms at n<0 can be omitted since the 7,(y, ...
vanish and Ly, (s, (Ax)o €,,) never has a pole at m because (), &,,# 1 (cf. Lemma
6 in [13]). We just have to modify the 7,(y). By the formula on p. 225 in [13]
we have 7,4(y, ...)=0, and by Lemma 5 in [13] the right 7,(y) for n>0 are
given by

T,(y):=n""t P 27kt E exp(—2mny)

3 (";)-r(—'”;‘ = —j)— (1Y @rny) I,

where m”:=[k_lT_m]. In these terms we have

E*(z, m, xo)= Nx_w‘ﬂ Y Y () €™ Ly, (m, (Ax)o ) - B, (). (44)

n=1

It is now clear how to determine the coefficients d, ;=d{™(x) in the expansion

E*(Z, m, Xo)= Z Z dn,j'(475",\’)—j'qn-

j=0 n=0
We have d,, ;=0 for all j, and for n>0 we find
dy ;=" Gy ;om0 IR cZm . B (m)- Ly, (m, (A7)0 &), @.5)

where &, ; is an algebraic number independent of n and x. Finally taking the
product of the Fourier expansions of E* and the theta function in (3.15) delivers
the asserted formula, hence the proof of Lemma 4.3 is complete.

We now define similar as in the previous section linear forms L, = L™ (X)
in the indeterminates X, where y runs over all characters such that 2+l
¢, divides p" and p,=k+m+1(2). We let L, , be the function given by Lemma
4.2 such that we have a{™”(n)=L, ,(t) where t,=c™,_.(x), and we put a(n,/)
=9 (n, j)=L, 1(t()) with t,()= e, ;(0)-
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Lemma 4.4. There is a universal constant C' >0 such that we have

ﬁ (m u)(n 0) <(C
(") r

for all occurring r, x, m and n, if we assume that A, is not imaginary-quadratic.

Proof. We will show the existence of some fixed 6e@Q* such that é- Q,, - a™,* (n, 0)
becomes a p-integral algebraic number divisible by p*~! for all r, x and n. Collect-
ing in Ae@™ algebraic factors which only depend on k, m, j we get

Qa3 0=4- 3 Clnv,m) X tolxni )-(1 - 130)

* By(n3) Gxo) Zolc,) e~ ™™ Ly, (m, (A 2)o ),

where C(ny, n,) are p-adic units in @ *. By the functional equation of Dirichlet
L-series we replace n™ - Ly, (m,(Ax)o€,,) by a corresponding multiple of L(1
—m,(Ax)o ! &,,), so that we have

Q- a(n, 0)=A"- Y Y B(ny,ny, d) Y xo(x'dng )

ny,ny d|N Xo

* ) (1= 23 (W) L —m, (Ax)s " &),

where A’e@Q” is independent of r, x, n, B(ny, n,, d) is a p-adic unit in Q®* and
x'=xc, Ce,,,- Therefore it suffices to show for any integer yeZ prime to p that
we have

Y (=x3@)-x() L(1—m,(Ax)s " &,,)=0modp ™.

X0, My =r
px—m+k+l(2)

But this follows exactly as in the proof of Lemma 3.7b) from the existence
of the Kubota-Leopoldt L-functions and their holomorphy properties, assuming
that 4, is not imaginary-quadratic. Thus the proof of Lemma 4.4 is finished.

Completely similar to the proof of how Lemma 3.7 implies Proposition 3.5
we find

Lemma 4.5. If A, is not imaginary-quadratic, then the p-adic absolute values
12, @ (")~ a™, (n)|, are bounded, hence ¥, , is a measure on Z,;.

We now come to the end of the proof of Theorem 4.1. Let v,, denote any
distribution satisfying the conditions in the theorem. The fact that 7, , is a
p-adic measure simply means that for each character ¢ of 4 there is a 6¢6Q
and a formal power series Gy“(T) in O[T] with coefficients in the ring of
integers @ of some finite extenswn field over @, such that we have

Sy § 1d¥pu=GY"" (rluy)—1)

z;
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for all characters y of Z,; whose restriction to 4 coincides with ¢. In case
¢*+1 we find that 1 —yx?(u) is a p-adic unit for all y with y|,=¢. Hence there
exists a power series G§”(T)e O[T such that for all these y we have

0s- | xdVu=GY" (x(u,)—1).
zy

In case ¢?=1 we know by definition of 7, , that GY»*(0)=0. Hence we find
in this case that T~!'G$»*(T) is in O[T], and that there is a power serics
GY”(T)e O T] such that for every x + ¢, where x|,=¢, we have

0p° | 2dvp=G§”(x(uy)—1).
z;

So all together the power series Gi"(¢ed) define a distribution v,, with the
required integrals, and in addition by its definition now v,, is a measure. This
completes the proof of Theorem 4.1 if 1, is not imaginary-quadratic. In case
Ao is imaginary-quadratic the proof works completely analogous if we make
the appropriate modifications, i.e. if we replace the factor 1 —yx3(u) in the defini-
tion of the form £ (z) and in all subsequent quantities by the factor (1

— x5 ) (1—xo ' (W) u™.

§ 5. Holomorphy and functional equation

In this section we return to the study of the distributions u,,=u,(Z® 1) (m=2
—k, ..., 0) attached to the system of /-adic representations ¥ ® A or what comes
to the same attached to the twists of the automorphic representation IT of
GL(3) as considered in the first section. Recall that we assume that the conductor
¢, of A is prime to p and that by definition we have

j Xo d.“m':Qm,).'Y:z I(m’f; A’OXO) (51)
z;

for all non-trivial Dirichlet characters y, of conductor ¢,=p™=. Since the L-
function (s, f, x,) does not change when we replace f by a twisted form, we
may and will assume that f has minimal level among all twists. Thus the compar-
ison with the imprimitive L-function becomes more pleasant. Let P resp. §
denote the set of primes # dividing N where the local representation =, is princi-
pal resp. supercuspidal. The finite Euler product

{k—l
a;

Ets, doxo)=T1 (1 — (Do)

teP

r*)(l—(l_x)ot'”)n Ls, £, @4 2) "

ZeS
obviously has all its zeros on the line Re(s)=0 and we have

Ds, f, Ao Xo)=D(s+k—1,£,(A¢¥ 05 ) E(s, Ao Xo) ™ (52)
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by Lemmas 1.5 and 1.6. We are still free to vary f by twists which do not

raise the level N. This won’t change (s, f, Ao xo) as remarked earlier. Depending

on A we twist 7, by the finite gréBencharacter 6 =[] 6, which is given by 5, =y, !
¢

if #€ P with ¥} ramified and (1), unramified, and where 4, is unramified other-
wise. Let f denote the (minimal) newform such that ny=7n,®J with central
character §. On the right hand side of (5.2) we replace f by J and we modify
E(s, 20 X0)=E(s, f, A9 xo) analogously so that the new E(s,4q x0):=E(s, f, Ao Xo)
is given by

k—1
(s 0= [ (1-0000(0 - 27

1 A=@0o@) ¢ T1LGs, Z:®2r 1) ™",

feP\P, ‘€S

where P, is the set of primes in P such that y? and (1y/), are both unramified.
For later application we remark that by the same argument we can moreover
modify f and E for each fixed ZeP, by replacing the Euler factor at ¢ by 1
—(AP o 1(¢)d; ' £~ 1~=. We will specify the choice of this sort of modification
in the proof of Proposition 5.2. Note that the sets P, P,=P,-, are the same
for f and f. So for the rest of this article we assume that f equals f.

Since the level N might be odd we cannot apply Theorem 3.1 directly to
the imprimitive symmetric square attached to f. So in case N is odd we twist
f by the quadratic character ¢ of conductor c,=4 and put h:=f,. We get D(s, f)
=D,(f,27%)~ . D(s, h) where D,(h, X)=1 and D,(f, X) is as in (1.16). For even
N we let h=f. By Theorem 3.1 for each m=2—k, ..., 0 there is a measure
Him = P, s TESP. M o=t . SUCh that for yo+ 1 we have

§ %0 @Hn=0m, 2~ vm*-I'(m, h, A9 %0) (5.3)

z;
for A, not imaginary-quadratic, resp.

§ %o dbom u=(1—To )t ™™) Q1 V- I'(m, b, Ao X0) (5-3.u)
z;

otherwise. Note that y, also defines the nebentypus character of h and that
o s=02 ;. Furthermore the quotient J:=<Ch, h)/{f, f) is algebraic by Proposi-
tion 1 in [12]. By Theorem 4.1 also for eachm=1,...,k—1 there exists a measure
Y, O V,, , such that for 3+ 1 we have [ xo dv,,=0if A xo(—1)=(—1"*" and

[ xodVm=vmx-I'(m,f, Agx0) otherwise, (54
zZ;

or we have .ond";n.u'—'Oifloxo(—1)=(——1)’"“ and

[ %o dVin,u=(1—To(W) u™) - ypx-I'(m, £, Ao Xo) otherwise, (54.u)

z;
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according as A, is not imaginary-quadratic or it is. Note that the notatiop
slightly differs from that in Theorem 4.1. The fact that these distributions 4, _,
Vin T€SP. M) —pm u» Vm, » are measures can also be expressed by the existence of
power series G ,(T), HY(T) resp. G2, ,(T), HY,(T) in ,[ T | for each char-
acter ¢ of 4, with bounded coefficients, such that for all characters y, of /A
with yol,=¢, x2+1 we have

G(1¢lm(X0(“1)—1)= 5 Xo Ky —m» Hff)(Xo(ul)‘l)= _‘. XodVim (5.5)

z5 z;
if 1, is not imaginary-quadratic, resp.

G(ld’-)‘m,u(xo(ul)_l): I Xo dH1 —m, us H%)u(XO(ul)—1)= j %o d Vi, u(5.5.u)

Zy zZ;

otherwise, where m=1, ..., k—1. In order to take care of the omitted Euler
factors we define further pairs of power series E),.(T), F$(T) with p-integral
coefficients by demanding that we have

E(1¢lm(x0(ul)_ 1)
=E(l—m, Ao %0)- D2 (f; (A¥ 1) (2)7'12"7%) or E(1—m, Agxo) (56)
according as N is odd or N is even, and
EP (1o )~ 1)=E(m, Lo 1o) 57

for m=1, ..., k—1 and y,l,=¢. Now we are going to exploit the functional
equation of L(s, X®Ay) at m=1, ..., k—1 in order to describe the relationship
between the formal power series given by (5.5) resp. (5.5.u).

Lemma 5.1. For each m=1, ...,k—1 and for each character ¢ of A there is
a constant C,eQ”* and a unit UY(T) in Z,[T]* such that we have

G(T)- EP(T)=Cp- U(T)- HO(T)- B ()
for 1o not imaginary-quadratic, and
0 8
G(l¢lm, u(T) b F,S|¢)(T)= Cm : U(¢)(T) : Hgf,)u(T) . E(ld’lm(T)
otherwise.

Proof. Tt suffices to show that both sides coincide when specialized to T
=yo(u;)—1 for almost all y, such that y,|,=¢. We evaluate the functional
equation of Theorem 1.2 at m=2—k, ..., 0 for all characters 1y with x=+1
such that m is critical for Z® 4y. Extending the definition of Q,, , to the whole
critical strip analogous to y,, (cf. Theorem 4.1) by

O, 2=Tlm+k—1)-(— ;)= DU*+D+1, (58
we get by Proposition 2.7 for m=2—k, ..., 0

Om, 2 ymx-1(m, f, AOXO)=CmJ.'X_O(M).)"y'lnlm’l(l—maf; Ao Xo) (59}
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where C,, ;==C(Z,A)-M;™-2I'(1—-m)-Q,_, , with the notations of Sect. 2.
Now writing

D(m, f, 2o xo)=D(m+k—1,h, (A 1) ') EP (xo(u,)—1)""
and
D —m, f, Ao xo)=Dk—m, f, Axy ™ o) F{m(xo(u;)—1)""

whenever EW (xo(uy)—1)- F{®,.(xo(u;)—1)%0 (which is true for almost all ¥),
we conclude by (5.3)+5.7) and (5.9) that for i, not imaginary-quadratic we
have

G%’(Xo(“l)— 1)- Fl(ﬁ-(XO(“l)— 1)
=Cp, 1 To(M3)- HP (x0(u) —1)- ER (10 (uy)— 1),

hence the lemma follows in this case. The proof is similar for imaginary-quadratic
Ao, SO We omit it.

Call p an exceptional prime for Z® A if the set P; of primes € P, such that
0<|1—y3(¢)¢**~2a;*|,<1, is not empty. The set of exceptional primes for
2 ® 2 is obviously finite.

Proposition 5.2. For m=1, ..., k—1 and any character ¢ of A the two power
series E,, and F® are relatively prime in Q,[T] if p is not exceptional for
2Z® A and f is suitably modified.

Proof. We fix m and ¢. The formal power series under consideration have their
coefficients in the ring of integers @ of some finite extension field of @Q,. By
the Weierstra3 preparation theorem there exist polynomials P(T), Q(T)eO[T]
with all zeros in Q, of negative valuation, and invertible power series U(T),
V(T) in O[T]*, such that E{,,=P-U and F{¥=Q-V. Therefore it suffices
to show that P(T) and Q(T) have no common zero. By Lemma 1.6 and by
the remarks following (5.2) we have

E@s, 2o0)= [I (=& @)™ ) A= X))

¢eSUP\P,

/k—l
1 (1= 00 S 27),
¢ePy ¢

where ¢,, & is a root of unity or zero. Hence writing each prime /ePuUS p-

adically in the form £ =u% (/) with e,€Z,, e,+0, we have F?(T)= [] Z/(T)

where tePuS
F(N=(1-5¢@)¢ "1+ T) 1= ()¢ "(1+T))

for /eS U P\ P, and

fk—l—m

%(T)=(1—(¢w>o(f) a +n¢f) for ¢eP,.

a;
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So the possible zeros t of F are of the form t={uy—1 with {€,., coming
from the first type of factors #(T), or t is of the form t={9,uT—1 with {ep,.,
where 9,e@Q, with 97 =i, (AYy pw ™™g (£)-a7-¢* "¥)ei, (@) such that |r1(9=f
=1. Note that a zero of the latter type can only occur if |95 —1],<1. We
now want to specify the modification of f (and E) with respect to the primes
£eP, alluded to in the discussion following (5.2). If for some /eP, a zero t
of %,(T) occurs, not of the form t={uT—1, then we modify f such that Z,(T)
becomes

k—l—m

FH(T)=1- (¢l!/7)o(/) (1+T).

But Z*(T) is a unit in @,[T], since otherwise we get |l
—(@AP)o(£)-£17*"™-aZ|, <1, with together with |95 —1|,<1 implies that we
have [1—y3(¢)¢** % a;*|,<1 in contradiction to the assumptions P, =g and
9,¢ ... Hence we can suppose that all zeros of F? are of the first type ¢t=_{u
—1.

On the other hand we have E¥),(T)=[]&(T), where the product runs
over SU P U {2}, and where we put ‘

E&(M=(1-,,¢) " 1+ T)*)1—-& ()¢ 11+ T)™%)

for /eSUP\P, and
/k+m 2

E(T)=1—(¢AY)o(() —5— (1+T)"* for e,

where  and o, belong to the previously modified f. For even N we put &,(T)=1
If N is odd we put

&(T)=D,(f, (1Y $)o(2)-2"*-(1+T)™).

The possible zeros of E{.,(T) are of the form t=Cu? '—1ort=L3up -1,
where 3,e@, and 9,7 =i,(PAYy 0™ ")o(¢)- &2 -£* %) in lp(Q) with the possibility
for £ =2 to replace a, by f, in case N is odd. Here again (€.

A zero t={u}—1 of F? is obviously never a zero of E‘l“’lm of first type
t={up"1—1. If t were a zero of the second type t={’ .9,u1 “1_1 then we
get u, =(9, for some { and therefore £-w(f)" ' =uf={*9,% in zp(Q) whence
a contradiction comparing archimedean absolute values of inverse images in
Q<= C. This completes the proof of Proposition 5.2.

Remark 5.2.1. Since P, is a subset of
P'(Z, p)={¢eP;0<|1—y3(¢)-£**%-a; *|,<1},

which is empty for all but finitely many p (for fixed X), we see that up t0
finitely many p: for all twists Z® A p is not exceptional.
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Theorem 5.3. Suppose p is not exceptional for Z®A. If Ao is not imaginary-
quadratic, then there is a unique measure p=u(X ® ) on Z; such that for almost
all finite characters y, of Z and for m=2—k, ..., 0 we have

[ 200 X" dp(x)=Qp, - Y- 1(m, f, Ao Xo). (5.10)
Zx

P

If Ao is imaginary-quadratic then for any topological generator ueZ, there is
a unique measure p,=u(X® 4, u) such that for almost all finite characters y,
of Z; and for m=2—k, ..., 0 we have

j Xo(x) x™ dﬂ(u)(x)=(1 —Zo(w)u' ™) Om, - ¥m*-1(m, f, Ao x0)-  (5.10.u)

z;

Proof. By Lemmas 5.1 and 5.2 each quotient ¥9:=G¥/E is a power series
in Q,[T] with bounded coefficients. In particular for m=0 we can define a
measure u by putting

[ 20(x) dp(x)=%% (xo(us)—1) (5.11)
z;

for all characters y, of Z, with y,|,=¢. Obviously this measure satisfies (5.10)
for m=0 and for almost all finite y,, and it remains to show the identity (5.10)
for m<0. Now (5.11) implies that we have

| 20(x) x™dp(x)=4¢" (x0(u,)- uf—1),
z;

and by Theorem 3.8 we know
G (xo(uy) —1)= G (xo(uy) - u7 —1).

Furthermore one easily verifies the analogous relationship for E{), namely
EP (xo(u)—1)=EQ™ (xo (u;) - u7 - 1),

so that we eventually find

GD (1o () — D) =FF" (o) 47— 1)= | x0(x) x™ dpu(x),
z;

which proves the theorem for i, not imaginary-quadratic. In case 4, is imagi-
nary-quadratic, the same proof works for d u,, with the obvious modifications.
This finishes the proof of Theorem 5.3.

Corollary 54. If 1, is not imaginary-quadratic, then there is a unique measure
V=v(X®4) on Z, such that for almost all finite characters yo of Z; and for
m=1, ..., k—1 we have

[ To() x™dv(x)=2-T(m)- Qm, 1~ yux- 1(m, £, Zo X0), (5.12)

z;
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if oxo(—1)=(—1)"*", and the integral vanishes otherwise. If A, is imaginary-
quadratic then for any topological generator ucZ, there is a unique measure
V) Such that we have either

J To(x) X™ d vy ()= (1= o () u™) - 2 T(m) Q- vz - L(m, £, A0 X0) (5.12.u)
z;

or the integral vanishes according to the previous cases.

Proof. By (5.9) the measure y in Theorem 5.3 can also be described by the
identity

J xo()x' " du(x)=C(Z, 2)- M7~ 7o(M;)-2- T(m) Q3 Yo 1(m, £; Ao o)

x
z;

for m=1,...,k—1 and for almost all y such that Ay yxo(—1)=(—1)""1. This
tells us at once that the measure v that we are looking for, is given by

dv(x)=C(Z, )~ -x tdu(x"* MY, (5.13)

thus proving the corollary for non imaginary-quadratic 1,. Again the proof
works analogous for imaginary-quadratic 4y, so the proof is complete.

Finally we want to reformulate our results in a way which exhibits the
p-adic interpolation process. Let 4 denote the set of continuous homomor-
phisms 0: Z — Q,° and define the “p-adic contragredient” 0:=6~'.1, where 1€
is the canonical embedding.

Theorem 5.5. Suppose p is not exceptional for X ® A and that A, is not imaginary-
quadratic.

a) There exists a unique function €;: 7 — Q, with the following properties:

(i) For each character ¢ of A there is a power series g(¢, T) in Q,[T] with
bounded coefficients such that for any 0eJ with 0|,=¢ we have €,(0)
=g(9, 0(u,)—1).

(ii) For all but finitely many 0 of the form 0= yy 1™ With Yo€Jromsion SUCh
that m is critical for £ ® Ay, we have

€O =T )" Qp, 1 Vm*-1(m, f, Ao Xo),

where k=0 or 1 according as Aq xo(—1)=(—1)*.
b) The function €, satisfies the functional equation

€,(0)=C(Z, 1) -0 (M,)-C;(6).

For the proof define €,(6) by the integral of 6 against the appropriate measure.
Then a) follows from Theorem 5.3 and Corollary 5.4 applied to u(Z®4\
p(E®A"Y) and v(Z®4), v(Z® A1), and the functional equation b) plainly foi-
lows from (5.13).

Remarks 5.6. a) The theorem is also true for imaginary-quadratic A, if we make
the appropriate modifications as previously.
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b) Note that the assumption “p not exceptional” is automatically fulfilled
if A is trivial or if for instance A only ramifies outside N. This covers in particular
the case of the symmetric square of a modular elliptic curve (see Conjecture
3.13(ii) in [2] and Remark 4.7b in [9]).

c) In general the symmetric square by (1.5) is of the form Sym? (¢) =X @y .
So avoiding the finitely many exceptional primes p our theorems deliver in
particular measures y(Sym?(¢)) and v(Sym? (o)) which are related by the func-
tional equation (5.13).
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