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Rigid reparametrizations and cohomology
for horocycle flows

Marina Ratner*
Department of Mathematics, University of California, Berkeley, CA 94720, USA

In this paper we establish further rigidity properties of the classical horocycle
flows in addition to those found in [8-11]. Namely, we show that, for flows
obtained from horocycle flows by C'-time changes all their ergodic joinings as
well as all their factors remain algebraic. Moreover, we show that every
nontrivial joining of two smoothly time-changed horocycle flows is induced
by certain cohomological relations between the time changes.

We begin with some basic concepts and definitions (see [10, 11]).

Let T and S be two measure preserving transformations (m.p.t.’s) on prob-
ability spaces (X, ., p) and (Y, &y, v) respectively. A T x S-invariant measure m
on (X x Y, #, x%y) is called a joining of T and S if m has marginals u and v,
ie, m(AxY)=u(A) for all Ac#, and m(X x B)=v(B) for all Be4,. It is clear
that ux v=m is a joining of T and S called the trivial joining.

Let J(T, S) denote the set of all ergodic joinings of T and S. We say that T
and S are disjoint if J(T, S) is either empty or consists of the trivial joining u
x v. (This notion of disjointness was introduced by Furstenberg in [2].)

Let 7; be an m.p. flow on a probability space (X, Zy, 1) and let T=T,=5,
p+0, be ergodic. For seR let m, be the probability measure on (X x X, %,
x%By) defined by m{(x, T,x): xeA}=pu(A) for all AePBy,. It is clear that
meJ(T, T) for all seR. The measures mg,seR are called off-diagonal self-
joinings of T. T is said to have trivial self-joinings if every meJ(T, T) is either
off-diagonal or the product u x u. (This terminology is due to Rudolph [13].)

Sometimes the word “joining” will be used for the pair (T x S, m), meaning
T x S acting on (X x Y, m). We say that (T xS, m) is a finite extension of S if
there is a T x S-invariant subset Q< X x Y with m(2)=1 such that the in-
tersection Q(y)=QnN(X x {y}) is finite for v-almost every (a.e.) yeY. If (T
x S, m) is ergodic, the number of points in Q(y) is the same for v-a.e. yeY.

Similar definitions may be made for measure preserving flows and semi-
flows.

*  Partially supported by National Science Foundation grant DMS-84-20770 and the Miller
Institute for Basic Research, Univ. of Calif., Berkeley
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Let T be an m.p.t. on (X, ) and S an m.p.t. on (Y, v). We say that S is a
factor of T if there is a measure-preserving y: X — Y such that Y T(x)=Sy(x)
for u-a.e. xeX. The map ¥ is called a factor map or a conjugacy between T
and S. T and S are called isomorphic (T'~S) if there is an invertible conjugacy
between T and S called an isomorphism. The conjugacy ¢ induces a T-
invariant measurable partition n of X into sets ¥~ '{y}, yeY, called y-fibers.
The m.p.t. T induces an m.p.t. on the quotient space (X/n, u,) which is isomor-
phic to § via the map ¥,: X/n—>Y, ¢, (n(x))=¥(x), where #(x) denotes the y-
fiber containing xeX. A factor S is called trivial if v{y}=1 for some yeY.
Henceforth the word “factor” means non-trivial factor.

Let T, be an m.p. flow on (X, p) and let 7 be a positive integrable function

on X. Set
[rdu=7.
X

We say that a flow T;* is obtained from T, by the time change 7 if
T7 (%) =T, »(*)

for u-a.e. xeX and all teR, where w(x, t) is defined by

wi(x,t)
| (T, x)du=t.
0

The flow T preserves the probability measure u, on X defined by dpu,(x)
=(t/7)du(x), xeX.

We say that two integrable functions 7, 7,: (X, u)—» R are cohomologous
along T; if there is a measurable v: X — R such that

t
[ (ty =t )(T,x) du=v(T,x)—v(x)
(0]
for p-a.e. xeX and all teR. One can check that two time changes 7, and t, are
cohomologous via v if and only if the map y,: X - X defined by
Xu(x) = T;,r(zx) X

is an isomorphism between T, and T, i.e.
%o TP ) =T 1,(x)

for a.e. xeX. We shall call y, the isomorphism induced by v. If T, is ergodic
and 1., 7, are cohomologous along T, via different measurable functions v, and
v, then v, —v, is equal to a constant a.e.

Let T, be obtained from an m.p. flow T, on (X,, %,, ;) by a time change
1, i=1,2, and let ¢: (X, u;)—>(X,, u,) be an m.p. conjugacy between 7,'" and
T,'¥. Suppose that 7, and 1,0 ¢ are cohomologous along T, via v. It is clear
that the map Y =¢oy, is an m.p. conjugacy between 7, and T;™.

Now let I be an index set and let IF={T,": iel} be a family of m.p. flows
T, on probability spaces (X, ;). Let K,, i€l, be a class of positive integrable
functions on (X, w,) and let K= JK,.

iel
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Definition 1. The class IK is said to be conjugacy (isomorphism)-rigid for the
family IF if given 1,eK;, 1,€K;, 7,=7;, i, jel, and an m.p. conjugacy (isomor-
phism)  between T;" and T;" there are a measurable v: X;— R and an m.p.
conjugacy (isomorphism) ¢ between T, and T’ such that

(1) 7; and ;0 ¢ are cohomologous along T,® via v;

(2) Yy =¢oy, where y, is the isomorphism between T, and 7,%°? induced by

Next we consider a pair of time changes for two m.p. flows, and define
what is meant by saying that these time changes are “jointly cohomologous™.
Let T and TY on (X,, ), i=1,2, be as above. Let X=X, x X, and let

fi: X > R* be defined by
e x)=rix), =12

Definition 2. Let m be a joining of TV and T,'*. We say that t, and 1, are
jointly cohomologous via m if f; and f, are cohomologous along S,= T, x T,'*
on (X, m).

More specifically, if f; and f, are cohomologous along S, via a measurable
function v: X >R then we say that 7, and t, are jointly cohomologous via
(m, v).

We have

t
o(T M x,, T;‘Z’xz)—v(xl,xz)=j.(f1 — TV x, T x,) du (1)
0

for m-a.e. (x,, x,)eX and all teR.
There exists a unique family {m_:x,eX,} of probability measures on X,
such that

jfdm: j f(""(xl)dul(xl)
X X1
for every feL,(X, m), where

f(m)(x1)=£ S(xqs xz)dmxl(xz)

and
nlrsl)xl(A)zmxl(Tizg)A) (2)

for every teR, Ae#, and p,-a.e. x,€X,. Set
e, y=f"(x), x.eX;.

Similarly we define t”(x,), x,€X,.

Expressions (1) and (2) show that if v(x, )eL,(X,, m, ) for p-ae x eX,
then 7, and 4" are cohomologous along T,'* via v™: X, > R. We have just
proved the following.

Proposition 1. Let 1; be a time change for T, on (X,, u,), i=1, 2. Suppose that 1,
and t, are jointly cohomologous via (m,v) with v(x,*)eL(X,,m,) for u-a.e.
x,€X,. Then t, and t§" are cohomologous along T*.

If 7, and 7, are jointly cohomologous via (m,v) then the flows S/* on
(X, m,) and S/ on (X, m,) are isomorphic via the isomorphism g, induced by
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v. Also the map y,: X — X defined by
Vo (x)=(xy, Tig) o), x=(xq, X,)
is a measurable conjugacy between S/* and T,** x T;*?; that is,
o8 =(T" x T,?)o ), 3)
Let v=v,, ,, be the measure on £, x 4, defined by
v(A)=m, (Y, (A)), AcRB, x3AB,.

It follows from (3) that v is a joining of T;** and T;*2. The flow T x T;"* on
(X, v) is a factor of §/* on (X,m,) via ¥, and a factor of §/* on (X, m,) via
W, ox, ' If m is ergodic, then so is v. We shall call v the joining induced by
(m, v).

Definition 3. Let I, IF and IK be as in Definition 1. The class IF is said to be
joining-rigid for the family IF is given t,eK;, t,eK;, 7,=7;, i,jel and a
nontrivial ergodic joining v of T;" and T,%, there are a measurable v: X,
x X;— R and a nontrivial ergodic joining m of T,”” and T,’ such that

(m, v)

(1) 7; and 7; are jointly cohomologous via (m, v);

(2) v=v,,,,, is induced by (m, v).

Next we introduce an analog of Definition 2 for factors.

Let T;* be obtained from an m.p. flow 7; on (X, ) by a time change t and
let { and n be two measurable partitions of (X, u) respectively induced by a
factor U, of T, and by a factor V, of T;*. We shall identify U, with the flow on
the quotient space (X/{, u,) induced by T,.

There exists a unique family {u., Ce(}, of probability measures u. on
atoms of { such that

[ fdu= | f(C)du, (C)
X b7

for every feL,(X, n) where

LO=[f(x)dpc(x), Cel

C
and

/‘C(T,x)(TyA)=#C(x;(A)
for all measurable 4 = C(x), all teR and p-a.e. xe X. Set
7,(x)=1,(C(x)), xeC(x)el.

Definition 4. The factor-induced partitions { and 5 are called shift-related along
T, if there is a measurable function v(x, y)=v.(y), xeX, ye((x), v(x, x)=0 such
that for p-a.e. xeX,

(1) v, is integrable on ({(x), gy

@) n(x)=A{T, , y: ye(x)}.

The following proposition can be deduced from Proposition 1. It is proved
in Sect. 5.



Rigid reparametrizations and cohomology for horocycle flows 345
Proposition 2. Let { and n be the factor-induced partitions of (X, u) described
above. Suppose that { and n are shift-related along T, via v(x, y), xeX, ye((x).
Then

1) 1, is cohomologous to t via §: X — R defined by

v(x)=— I v(x, y) d.uc(x)(_v)-
{(x)
2) n(x)=yx;({(x; ' (x)) for p-a.e. xeX, where y, is the isomorphism between
T, and T induced by 7.
Consequently, U< ~V,.

Definition 5. Let I, IF and IK be as in Definition 1. The class IK is said to be
factor-rigid for the family IF if given 7,€K;, i€l, and a T,"-invariant partition z
of (X, u;) there are a measurable function v: X;— R and a T,"-invariant par-
tition { such that

(1) (z;), is cohomologous to t; via v;

(2) n(x)=x,(C(x *(x) for w-ae. xeX,, where y, is the isomorphism be-
tween T,"* and T," induced by v.

Now let G denote the group SL(2, R) equipped with a left invariant Rie-
mannian metric and let 7 be the set of all discrete subgroups I of G such that
the quotient space M=I'\G={I'g:geG} has finite volume. Recall that the
horocycle flow h, and the geodesic flow g, on M are defined by

1 0 e 0
wro=re(, ). swo=re(; )

g€G, teR. The flows h, and g, preserve the normalized volume measure u on
M, are ergodic and mixing on (M, p) and obey the commutation relation

glohs:hsexp(Zr)ogt (4)
for all s, teR.

It was shown in [11] that there is a large class K(M) of positive square-
integrable functions on (M, u) such that for te K(M) the time-changed horo-
cycle flow h; inherits the rigidity property [8] from h,. The class K(M) specifi-
cally contains all positive bounded functions t such that t~! is also bounded
and s.t. T is Holder continuous in the direction of the rotation subgroup of G
(see [5, 12]).

In the present paper we consider the more restricted class B!(M) of all
continuously differentiable positive functions on M, which are bounded with
bounded reciprocals. We will show that for time changes teB'(M), the flows
hi, in addition to the above mentioned rigidity property for conjugates, also
inherit the factor and joining rigidity properties [9, 10].

The flows hf with te B' (M) are known [4] to be mixing in (M, p,).

Restricting the time change t to B'(M) enables us to show that h{ inherits a
fundamental property of h,, the “H-property”, which we introduced in [10].

An important geometrical fact about the horocycle flow h, is that two
initially close trajectories diverge polynomially. The H-property states that this
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divergence develops much faster in the direction of the flow than in any other
direction. (The exact description of the H-property is rather technical; it will
be given in the proof of the first theorem.)

Theorem 1. Let h, be the horocycle flow on (M=I\G, ), I'eZ, and let hi be
obtained from h, by a time change t€ B'(M). Then h{ possesses the H-property.

The significance of the H-property is reflected in the following corollaries,
proved in [10].
Corollary 1. Let h{ be as in Theorem 1 and let h*=h3, (the “time 17 map).

(@) If v is a nontrivial ergodic joining of h* and some m.p.t U then (h*x U, v)
is a finite extension of U.

(b) If U=U, for some measure preserving flow U, then veJ(h*, U) if and only
if veJ(h;, U,) for all teR.

Corollary 2. Let h{ be as in Theorem 1 and let h*=hj.

(a) If an m.p.t V is a factor of h* via a factor mapy then a.e. fiber of VY is
finite.

(b) If V=V, for some m.p. flow V, and V is a factor of h* via a factor map
then the flow V, is a factor of h; via y.

Let h{" be the horocycle flow on (M=I\G,y,), [,c7 and let h" be ob-
tained from h{" by a time change 7,, i=1, 2.

Consider «k(I}, I})={aeG: [nal,a 'eZ}. For oaex(l},I;), let T
=Inal,a™', M,=I\G and let h® be the horocycle flow on (M, u,). Let
Yi:M,— M, i=1,2, be defined by

v (Lg=lg Y,I,g)=Loa 'g geG.

The flows h{" and h{® are factors of h® via ¢, and y, respectively. Let
7, - M,—R™* be defined by

Ta, () =1,(;(x)),
xeM,, i=1,2. We call 7, ; the time changes associated to a.

Definition 6. 7, and t, are said to be algebraically cohomologous via
aek(l}, I) if t, , and 7, , are cohomologous along h®.

The following theorem is a consequence of the joinings classification theo-
rem for horocycle flows [10, Theorem 6].

Theorem 2. Let hi* be obtained from the horocycle flow h on (M;=T\G, p,),
e by a time change t;, i=1,2. The functions t, and t, are jointly cohomo-
logous via a nontrivial meJ (h{", h{*) if and only if t, and t, are algebraically
cohomologous via some acx (I}, I;).

Theorem 3 (Main Joinings Theorem). Let hl* be as in Theorem 2. Assume that
1,eBY (M), i=1,2 and T, =7,. Let v be a nontrivial ergodic joining of h%' and h®.
Then veJ(h', hj?) for all teR. Moreover, there exist a measurable v: M,
x M, — R and a nontrivial meJ (h'", h'*) such that
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(1) t, and t, are jointly cohomologous via (m, v);

(2) v=v, ,, is induced by (m, v);

) (A x b2, v)~(S]t, m;)~(S],m,),  where S,=h{""xh® and f:M,
x M, — R is defined by f,(x,, x,)=1,(x;), i=1, 2.

Corollary 3. The class B'= | ) B'(I'\G) is joining-rigid for the family H of all
res
horocycle flows on I'\G, where I' ranges over all lattices in G.

We showed in [10] that if m is a nontrivial ergodic joining of h{*’ and h{*
then there are oeR and aex([], I,) such that the set

{(x,, K x,): (x,, x,)€Q,}
has m-measure 1, where
Q. ={Ig Lo 'y,8):geG k=1,...,nfcM,xM,,

n=|I[\I;| is the cardinal number of I\IT={I,y,: k=1, ..., n}.
We obtain the following algebraic version of Theorem 3.

Theorem 4 (Joinings Classification Theorem). Let t; and h, i=1,2, be as in
Theorem 3. Let v be a nontrivial ergodic joining of hi' and h:. Then there exist
aek(ly, I,) and a measurable v: M, x M, — R such that

(1) 7, and t, are algebraically cohomologous via o;
(2) (h™ x h™2, v)~hi' ~h'=2 where h™* is obtained from the horocycle flow
t {4 t 4 13
h® on (M,, u,) by the time change t, ; associated to a, i=1, 2.

(3) vy, (R))=1, where y,: M|, x M,— M x M, is defined by

'ljv(x) =(x1’ h:y%x) xl)’ X =(xl’ xZ)'
Theorems 3, 4 and Proposition 1 imply the following

Corollary 4. Let t; and hy, i=1, 2, be as in Theorem 3.

(1) If h" and h'? are disjoint, then so are hy and h;

(2) If K" has only trivial self-joinings, then so does h{';

(3) If T, and t, are not algebraically cohomologous then hy and hY are
disjoint. If, in addition, M, and M, are compact then h3{ xhP is uniquely
ergodic;

(4) If T,=1 and t, is not cohomologous to 1 along h{* then h\" and h are
disjoint. In this case h" x h'? is uniquely ergodic, if M, and M, are compact.

The following theorem is really a particular case of Theorem 3 (or Theo-
rem 4) (see [10], where a similar situation is discussed in detail).

Theorem 5 (Rigidity of Time Changes Theorem). Let t; and h}', i=1,2, be as in
Theorem 3. Suppose that there is an m.p. y: (M, u, )~ (M ,, p.,) such that

Yhi (x)=h Y (x)

for p -a.e. xe M, and all teR. Then there are a€G and a measurable v: M, —>R
such that
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() a ' Gack;;
(2) Y (x)=hijy, ) (Wa(x)) ae. where (I g)=T, 0" " g, geG;
(3) t, and t,0y, are cohomologous along h{".

In [11] we proved this theorem for 7; belonging to the class K(M;) men-
tioned above. Since K(M,) is much larger than B'(M,) the proof in [11] is
necessarily rather technical.

In Sect. 3 we give a proof of Theorem 5 different from that in [11] and
independent of Theorems 1-4. In fact, this proof combined with some argu-
ments from [10] yields the proof of the Main Theorem 3.

To prove part (1) of Theorem 5 we use none of the techniques needed in
[11], such as the combinatorial Lemma 2.2 or the estimate of the decay rate of
the correlation function of t; for h{". (It is only the cohomological parts (2) and
(3) of the theorem that need these techniques.) It seems plausible that this
method of proof can be extended to deal with various geometrical and algebra-
ic generalizations.

Corollary 5. The class IK= | ] K(I'\G)>B" is conjugacy and isomorphism-rigid
reg

for H={h, on I'\G:T'eZ}. In particular if te K(M)>B'(M) M=T\G, then

hi ~h? if and only if t is cohomologous to T along h,.

Next we classify factors of hf, te B (M), M=T'\G, 'e 7.

We showed in [9] that if U, is a factor of h, on (M, u) then there exists I"
oI, I'eJ such that the h-invariant partition { of M induced by U, has the

form
(g =vyr-{I'e}

Yr.r(Fg)=I"g, geG.
We shall denote { by {(I, I').

Theorem 6 (Factors Theorem). The class B! is factor-rigid for the family H
={h, on '\G:I'eJ }. More precisely, let h; be obtgined from the horocycle flow
h, on (M=T\G, p), F'eJ by a time change t€B'(M). Let V be a factor of h},
and n be the h'-invariant partition of M induced by V. Then n is invariant under
hi for all teR. Moreover, there exist ['>I, I'eJ and a measurable v: M — R
such that

(1) the function t, defined by t,(x)=( Y t)/IF\I'| is cohomologous to t

el(x)
via v, where {={(I, T"); e
(2) n(x)=yx,(L(x; " (x)) for p-a.e. xeM, where y, is the isomorphism between
hi* and h{ induced by v;
(3) V,~h, where h} is obtained from the horocycle flow h, on (M'=I"\G, i)
by the time change v (I'g)=t,(Y . {I"g}), g€G, and V, is the flow on the
quotient space My induced by hi, V,~V.

where

Corollary 6. Let h} be as in Theorem 6.

(1) The number of nonisomorphic factors of hy is finite.
(2) If h, has only trivial factors then so does hj.
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We assumed in Theorems 3-5 that 7, =7,. The case 7, +7, can be derived
from the case 7, =7, using the commutation relation (4), just as in [11].

Indeed, let a=7,+7,=b and let SZ“_"%{’@

a‘rz(g(_zix)

b
Relation (4) shows that hf> and h* are isomorphic via g'*, that is,

. Let 0, on M, be defined by

0,(x)= . We have 6,=a=T1,.

gl ohr=ho g2

Let Yy M, xM,—>M,xM, be defined by ¥,(x,,x,)=(x,,g?x,). It is
clear that a measure v on M| x M, is a nontrivial ergodic joining of h* and hj
if and only if the measure v,=y¥v is a nontrivial ergodic joining of h* and h>.

Thus in order to state Theorem 3 for v one should replace 7, by o, in (1)
and say “v, is induced by (m, v)” in (2).

Similar changes must be made in Corollary 4 and Theorems 4 and 5 for the
case T, +7,.

Finally we pose the following problems.

Problem 1. Does there exist a function te B'(M) which is not cohomologous to
T along h,?

This problem is motivated by a theorem of Kolmogorov [3], stating that
there is a subset A <R of full Lebesgue measure such that if an irrational o
belongs to A then every C®-function 7 on the 2-torus is cohomologous to T
along the irrational flow induced by «. (In fact, T is cohomologous to T via a
C*-function v.) This, however, is not true for many irrational a¢A.

Problem 2. Suppose that te B'(M) and t is cohomologous to T along h, via v. Is
v integrable? continuous? smooth?

Problem 3. Are there other naturally arising families of ergodic m.p. flows
(possibly consisting of just one m.p. flow) for which the class of smooth
functions is conjugacy-rigid? joining-rigid? factor-rigid? Do unipotent flows on
finite volume homogeneous spaces of semi-simple Lie groups form such a
family? (see [14]). What about uniformly parameterized horocycle flows for
surfaces of variable negative curvature? (see [1]). Is the class of smooth
functions conjugacy-rigid for irrational flows on the 2-torus or more generally
for nilflows on compact nilmanifolds? (see [6,7] for rigidity properties of
nilflows).

1. Basic lemma

Let h, and g, be the horocycle and the geodesic flows on (M =I'\G, ), ['e 7
respectively. We shall also consider the flow k, on (M, u) defined by

1t
k(rg)=r
I'8) g(o 1)
geg@, teR.
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One has
gso kt =k1 exp(—Zs)o gs
for all s, teR.
The flows k, and h, satisfy the following commutation relation
htokb:kc(b. t)ogr(b. l)oho'(b. t) (1])

for all b, teR with bt> — 1, where

r(b, t)=log (1 +bt),

a(b, t)y=te=T®0, (12)
c(b,t)y=be "1,

—bt?

1+bt’
For a, beR, t >0, bt > — 1 we have

Denote A(b, t)=0o(b, t)—t=

hyokyo 8=k, 0° 8 b,0° Mo, b.1)
where

r(a,b,t)=a+r(b,t),
a(a, b, t)=e"2a(b, t).
It follows from (1.2) that there exists 0 <r, <% such that if |a|, |bt|<r, then
le=2¢—1]<0.1
|4(b, 1)I/2t <|r(b, t)| =2]4(b, t)|/t

|4(b, 1)l/2t* <|b| £2|A(b, 1)|/t? e
|A(b, s)—s% A(b, 1)/t?| <0.01 |A(b, t)|
for all 0<s<t.
Denote
A(a, b, t)=0(a, b, t)—t.
We have
A(a, b, t)=e~2%A(b, t)—t(1 —e™29). (1.4)

Lemma 1.1. Let a, beR, t >0 be such that |a|, |b|<r,. Then
|A(b, t)| <20 max {|4(a, b, s)|: 0=s<t}.
Proof. Denote 4,=max {|4(a, b, 5)|: 0<s<t}. We have from (1.4) and (1.3),
A(a, b, t/2)=e" 2 A(b, t/2) —t(1 —e~2%)2,

e 290.1|A(b, )| Se (| A(b, 1)|/2— | A(b, t/2)])
<|dA(a, b, t)2—A(a, b, t/2)| <34,/2

since |4(b,t/2)]<0.4|4(b,t)| by (1.3). This implies that |A(b,t)|<204, by
(1.3. O
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Corollary 1.1. If |a|, |bt|<r, and

|4(a, b, )| =max {|4(a, b, 5)|: 0<s <t}
then
|4(a, b, Bt)| 204 |4(a, b, 1)]

for all pe[0.99, 1].
Proof. We have

A(a, b, Bty=e~29 A(b, Bt)+ Bt(e~2*—1)
=e~29(A(b, Bt)— BA(b, 1))+ BA(a, b, t)
and
A |A(a, b, Bt)|Z | A(a, b, t)| —e~**|A(b, ft)— BA(b, 1) (1.5)
S0,
|A(b, Bt)—BA(b, 1) | A(b, Bt)— > A(b, )| +]4(b, 1)| |3 — |
<0.02]4(b, 1)|<0.4|4(a, b, t)|

by Lemma 1.1. Thus (1.3) and (1.5) imply

|A(a, b, Bt)| =04 |4(a, b, t)|
if fe[0.99,1]. O

Let 7 be a positive bounded function on (M, p) and let xeM, y=g__k,x for
some a, beR. For t> —1/|b|, denote

a(a, b, 1)

¢xsa,bt)= | t(h,y)du,
0

&(x; 0,0, t)=E(x, t)= [ t(h,x) du,
0
E(x;0,b, t)=E(x; b, t).
Also let
A.(x;a,b,t)=E(x; a, b, t)—&(x, 1)
We have
A(x;a,b,t)=A4,(x;b,t)+4,(g,y; a,0, a(b, t)). (1.6)

Lemma 1.2 (Basic). Assume t€B'(M). Then given ¢>0 there are y=y(¢)>0, |
=1(e)>0 and a subset E=E(e)cM with w(E)>1—¢ such that if x,yeE, x
=k, g,y for some |a| <y, |b| < v/l then

|4,(x; a, b, t)—TA(a, b, t)| <emax {|4(a, b, 5)|: s€[0, t]} (1.7)

for all ILt<y/|b|.

Proof. Denote
o () =lim (@)
t—0 t
k. x)—
eyl e T
-0 t
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The functions 7, and 7, are continuous on M and
ltx)), [, J6I=L, (1.8)
for some L,=1 and all xe M. We have
[tedp=[1,du=0.
M M
Let £>0 be given and let 0<6=0(¢)<0.01¢ be chosen later. Let K< M be
an open subset of M such that K is compact and
w(K)y>1-0, p(@K)=0

where 0K denotes the boundary of K. B
Let 0<y=7(0)<min{r,, 0} be such that w(0,(0K))<0 and if u,vek,

d(u,v) <% then
|7 () —7, ()| =0,

(1.9)
T (W) — 7, ()| <6,
where O,(0K) denotes the j-neighborhood of JK.
Denote
K,=K—0,0K), u(K;)=1-20.
It follows from (1.2) that there is 0 <y <0.01 7 such that if |bt| <y then
le=27a(b, t)]=0.99¢
e—Zr(b,sj_l 2S (110)

A(b, t)/t t
for all 0 <s<t.
Since h, is ergodic, there exist ¢, =t,(¢)>0 and a subset E=E(¢)= M with
u(E)>1—¢ such that if ueE, t=t, then the relative length measure of K; on
the orbit interval [u, h,u] is at least 1 —360 and

t

%jr(hsu)ds—f <0,
1", (1.11)
— | 1 (hyu)ds| < 0.
Lo
Choose [=1(¢)>t, such that
t,/1<0. (1.12)

Let us show that if x, yeE, x=k,g,y for some |a|<y, |b|<y/l, and
[<t<7v|b| then (1.7) holds if 0 is sufficiently small.
Indeed we have from (1.6),

A(x;a,b,t)=4,(g,y; a0, a(b, t)+4,(x; b, t)=4,+4..
Also, L
A(a, b, )=a(b, t)(e~2*—1)+(a(b, t) —1) = A + A.

We shall estimate 4,/4 and 4,/A.
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1) First let us estimate 4,/4. We have

_ a(a, b, t) o(b, 1)
4,= | zt(hyy)ds— [ t(hsg,y)ds
0 0
a(b, t) a(b, 1) a(a, b, 1)
| tlhg,y)ds= [ t(g,he-2ay)ds=e>* [ (g h,y)ds
0 0 0

a(a, b, 1) a(a, b, t)
=e2“[ | thyy)ds+a | rg(ys)ds]
0 )

where y, =g, h,y for some a(s)e[0, a]. This implies that

_ ola, b, t) a(a, b, t)
A.=1-€*% | rt(hy)ds—ae**® [ t(y)ds=I+I,.
0 0

We have
_ /o(a, b, 1) _
11=A( ] T(hsy)ds) /0(a,b,t)=A(1?+01)

0

where [0,|<0 by (1.11), since a(a, b, t)=t, by (1.10).
For I, we have

a(a, b, 1) a(a, b, t)

I,=ae** | t(hy)ds+ae*® [ (t,(y)—1,(h,y)ds=I,+1I;.
0

0

Also

1 =
1’2=610'(b,[)02=e—_z_—1 AOZ

where |0,|<0 by (1.11). Thus

\I'|<14]6/2.
We have

al(a, b,t)

I151<lal e | |t (v) —1,(h y) ds
0
<lale** | 1T,(v) —14(hy y)| ds+6|al e*“ala,b,t)L,0
Ky

<|A10(1—30+6L)2

353

(1.13)

(1.14)

(1.15)

by (1.8) and (1.9) since yeE, d(h,y, y,)<|a|<y and yseIZ, if h;yeK,, where K,

={s€[0, o(a, b, t)]: hyyeK,}.

It follows now from (1.13), (1.14) and (1.15) that we can choose 0=0(¢)>0

such that _ _ a
|4,—T4|<ed.

2) Now let us estimate A_/A. For se[0, t] denote
c(s)=c(b,s), r(s)=r(b,s), a(s)=0a(b,s).
We have from (1.2),

c(s)=be™"®, g(s)=e" >, A=t(e 1)

(1.16)

(1.17)
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Thus

al(t) t

A= [ t(h;z)ds— [ t(h;x)ds
0 0

where z=k_, x. We have

a(t) t

| t(hyz ds—j‘r(h z)o'(s)ds
0

o(s)

1
—2
= e s K s B Xye P ds
0

=j t(hyx)e 2" ds—b e > (x)ds
0

—jr(s z)e‘z"“ds

where x, =k, _h x for some c,e[ —c(s),0] and z;=g, h,, z for some re[0, r(s)].
This implies

ﬁ:=i(e‘z’(s’—l)r(hsx)ds+bie‘3'*s’rk(xs)ds
ir(s)‘c (z)e 2O ds=J, +J,+J,. (1.18)
Using (1.10) we have
J,:z{(t) o(h,x) ds +£j0 (5) t(h, x)ds=J, +J7 (1.19)

where |05(s)| <0 for all 0<s=<t. Thus

V71=1410(z+0) (1.20)
by (1.11), since xeA,.
For J; we have integrating by parts

Lz j'sr(hsx)dhsz1 j'r(hsx)ds—* j (j (h x)du) ds
0 Lo
=7 f (j t(h, x du) ds+0,(t)
=f+(91(t)—ti2 [s(T+0,(s) ds+0,(t)

where |0,(s)|<0 for all ¢, <s<t and |0,(¢)|<0-L, by (1.11), (1.8) and (1.12).
This, (1.19) and (1.20) imply that

Jl
4

T <O(L,+7+10). (1.21)
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For J, we have, using (1.3),

4)4
st L <o, (122)

by (1.17), since |r(t)| £y <0.01 6.
For J, we have

t

Jy—[r(s) 1 (hx) e 29 ds| 2|r()I[ | |1,(z) —1,(hyX)|ds+6L 10]
0 K.
<2t|r()I(B(1 =30)+6L_0)
<2|4|0(4+6L,) (1.23)
by (1.8) and (1.9), since d(h,x, z) <2y <7, zseIZ if hyxeK,, where
K,={s€[0,t]: hyxeK,}.
We also have

t

} r(s) ty(hyx) e 2" ds— [ r(s) T (h,x) ds| | A/t|2+0) - |r(D)] -2 - L,
0

<3|4|0L, (1.24)

0

by (1.10).
Finally by using integration by parts we get

Jr(s)t(hyx)ds=r(t) [ 1 ,(hyx)ds— [ r'(s) (j rg(hux)du) ds=Q,+0Q,
0 0 0 0
where ¥'(s)=be™"" by (1.2). We have
10,1=2614] (1.25)
by (1.3) and (1.11). Also,
151 s t
|Q2|§|bl[je"‘s’ [ 7,(h,x) du ds+20jsds]§2|j|o(L,+1)
0 0 ty

by (1.3), (1.8) and (1.12). This and (1.18), (1.21)~(1.25), imply that
|4, —7A|<1000|4|(L,+7T+1).
This, (1.16) and Lemma 1.1 show that
[4,(x; a, b, t)—TA(a, b, t)| <e max {|4(a, b, s)|: s€[0, ]}
if 0=20(¢) is sufficiently small. This completes the proof of the lemma. []

Remark 1.1. It follows from the proof of Lemma 1.2 that we can set E=M in
the lemma if M is compact, since in this case h, is uniquely ergedic.
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2. The H-property

In this section we shall prove Theorem 1. Let us state this theorem in full.

Theorem 2.1 (The H-property, see [10]). Suppose teB*(M), M=I\G, I'eJ.
Then the flow h{ possesses the following property: given p>0, ¢>0, N> 1, there
are a=a(p,&)>0, 6=0(p, & N)>0 and a subset B=B(p, e, N\ M with u(B)>1
—e& such that if x, yeB, d(x, y)<0J and y is not on the hi-orbit of x, then there
are L=L(x,y)>0 and Q=Q(x,y)=N with Q/L=a such that either
d(hy,, hiyy 1)) <€ for all integers ne[L, L+Q] or d(h;,, hi,_,,,)<¢ for all in-
tegers ne[ L, L+ Q], where d denotes the distance in M.

np’>

Proof. First let us show that Theorem 2.1 follows from the following property:
glven p,&, N>0 there are a=da(p,e)>0, 6= 5(p,8 N)>0 and a subset B
=B(p, &, N)\c M with y(B)>1—£ such that if x, yeB, x=h kyg,y for some [c],
Ial |b|<d, |al+|b|#0 then there are L=L(x, y)>0 and Q O(x, y)>N with
Q/L =4 such that
IbL+Q)<e

and

either |4,(x;a,b,t)—p|<e forall te[L, L+Q]

. o~ 2.1
or |4,(x;a,b,t)+p|<e forall te[L, L+Q], @1)

where 4,(x; a, b, t) is as in Sect. 1.

Indeed, let p, e>0, N> 1, be given and let ¢, =min {¢/3, a@(p, &/3)}.

Since h, is ergodic, there are t, 22N p/7T and B, =M, u(B,)>1—-04¢,/1+¢,
such that if ueB,, t=t, then

#1/2< [ (h,u) ds S371/2. (2.2)
0

Also there are t,2=2¢t, and B, M, u(B,)>1—¢/3 such that if ueB,, t=t,
then the relative length measure of B, on the orbit interval [u, h,u] is at least 1
=0.58;/1 %8

Now set a=a(p, £/3)/6=3a/6, =05(p, &/3,t,)/3=05/3, B=B,nB,nB(p, ¢/3, t,),
u(B)>1—¢g, and show that «, 6 and B satisfy Theorem 2.1.

Indeed, let x, yeB, d(x, y)<6 and y is not on the hj-orbit of x. Then x
=h,k,g,y for some |c|, |b], |a| <4 and [a|+|b|=%=0

Since x, yeB(p, ¢/3,t,) there are L>0, §>t, with §/L=a such that (2.1)
holds with ¢/3 instead of &. We have

al=0=t,>2t,, L=t,. (2.3)

Since xeB, there is se[L, L+ Q] such that h xeB,. This and (2.3) imply that

L+Q
Ehypx, Q)= [ t(h,x)ds2Q7/421t,T/22 Np.
L

Also ~ .
E(x, L)<37L/2 (2.4)
by (2.2), since xeB,.
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Set L=¢&(x, L)/p, Q =E(h x, Q)/p. We have from (2.3) and (2.4)
Q/LzQ/6L=8/6=a, Q2=N.

It is clear that if é(x, t)=np for some integer ne[L, L+ Q] then te[L, L+Q]
and either d(h )<¢ or d(K )<e& by (1.2) and (2.1) with &/3
instead of ¢.

Thus (2.1) implies Theorem 2.1. Now we shall prove (2.1).

It was shown in [9] that the horocycle flow h, satisfies the following
stronger form of (2.1): given p,e N>0 there are 0<oc—oc(p, ¢)<1 and o
—6(p ¢, N)>0 such that if |a|, |b|<9, |a|+|b|*0 then there are L=L(a, b)>0,

0=0(a, b)= N with Q/L =4 such that

Ib(L+Q)<e
max {|4(a, b, 5)|: se[0, L]} <p

np’ (n+l)p np? (n Lp

and L
either |4(a,b,t)—p|<e¢ for all te[L, L+Q]

or |A(a,b,t)+p|<e forall te[L, L+Q].

We use this and Lemma 1.2 to prove (2.1). Indeed, let p, &, N>0 be given.
Let g=p/7 and let
y=1y(e/4q)<min {e/4q, /47, ¢/4},
I=1(e/4q), (2.5)
E=E(e/4q)cM, uE)>1-—¢
be as in Lemma 1.2.
Set a=a(q, y), 0=min{y/l,d(q,7,l/%)}, B=E(e/4q), u(B)>1—¢e We claim
that &, J, B satisfy (2.1).
Indeed, let x, yeB, x=h k,g,y for some |c|, |al, |b|<J, |a|+|b|+0. Set L
=L(x, y)=L(a, b)>0, 0=0(x, y)=0(a, b)>0.
We have, by our choice of §,

O0=t,/a2N, af=Lzt, (2.6)
Also,
Ib(L+Q)<y<e/d
max {|4(a, b, s|: se[0, L]} <q
and

either |A(a,b,t)—q|<y for all te[L, L+Q] 2.7
or |A(a,b,t)+q|<y forall te[L, L+0]. '
It follows from (2.6), (2.7) and Lemma 1.2 that
|4,(x; a,b,t)—TA(a, b, t)| <e/4

for all te[L, L+ Q7. This, (2.5) and (2.7) imply (2.1). This completes the proof of
Theorem 2.1. [
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3. The rigidity of time changes theorem

In this section we give a proof of Theorem 5 independent of Theorems 1-4.
So let 1,eB'(M), i=1,2, T,=7,. We can assume without loss of generality

that 7, =7,=1. Also,
Q7' sIn(x)I=Q G.1)

for some 0=>1, i=1, 2.
Let y: (M, u, )= (M, p.,) be m.p. and let

Yhit(x)=h3 ¥ (x)

for all teR and p,  -a.e. xeM,.

Let p:G—» M, be the covering projection p(g)=I,g, geG. Since I, is
discrete, there are a compact K <M, with p, (¥ ~'(K))>0.999 and p=p(K)>0
such that if gep~!(K) then p is an isometry on the ball of radius p centered at
g

Let ¢,=107",n=4,5, ... and let 0<¢,<0.1 ¢, be such that

1~ 1(B)=0.1¢,
whenever u,(B)<t,, BcM,.
Let y9=y9,), I¥=19(,) and EY=EY(,) be as in Lemma 1.2 for t,, i
=1, 2. Denote
y,=min {3V, 72 0.1¢,},
[ =max {10, (20
E,=ED Ay~ 1(ED).
We have
u,(E)>1-0.2¢,.

Since ¥ is measurable, there is A,cM,, u,(4,)>1—0.1¢, such that ¥ is
uniformly continuous on A,. Given &¢>0 let 5(¢)>0 be such that d(¥(u),
Y(v)) <¢/4 whenever u, veA,, d(u, v) < 6(¢).

Denote

D=p/2Q.

Since h{" is ergodic, i=1,2, there are t,2max {l,,20Dy, '} and a subset
A,=M with u,(4,)>1-0.1¢, such that if ueA,, t=t, then the relative length
measure of A4,y ~'(K) on the orbit interval [u, h{"u] is at least 0.998 and

t
[t (AP u)ds—t|<0.1¢,t,
0 (3.2)
[1(hP Y(u) ds—t|<0.1¢,t.
0
Denote
V.=A,nA,nE, u,(V)=1-¢,=1-10" (3.3)

For a, beR, |a|+|b|*0, let L(a, b) denote the first t >0 with A4(a, b, t)=D/4,
where A4(a, b, t) is defined in (1.4).
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Let 0<w, <7y, be so small that if |a|, |b|Sw,, |a|+|b|+0, then

L(a, b)=max {5t,, 2D(d(¢,) "'} (3.4
Denote
0,=min {w,, é(w,)}/4,
r,=max { _(lOg 5n)5 lOg tn}! (35)
v=U ()&,
m=1 n=m
It follows from (3.3) that
m(V)=1.

Lemma 3.1. Let x, yeV and x=k{" y for some beR. Then d(X,, k>’ y,) —0 when
n— oo, where X,=g ygVx, y,=g% ygly n=1,2,....

n

Proof. Denote

(1) _ o(1) (1) _ 5(1)
Xn _gr,. Xps Vn —gr,. J.

Since x, yeV, there is m =4 such that x{", yV'eV, for all n=m.
Henceforth we assume that n=m. Denote

by=e"b,  XP=y(il), YA =YD,

n

We haVe
x(l)_k(l)y(l)

|b,|<1b| 07 <6, <,
if n is sufficiently large. Also,

(2) _ [(2) 5(2) p(2) 1,(2)
x" —kﬁn ga" hCn y

n

for some |a,|, |B,l, lc,|=n,<7,. We can assume without loss of generality that

¢,=0. Denote
L,=min {L(0, b,), L(2,, B,)} = 5t,.

Since x\V, yP'eV, and L, = 5t, there is

2t,<099L, <A, <0995L, (3.6)
such that
Y xVed,ny~ 1K),

(1) (1) =1 (37)
ha(b,.. An) yn EA"ﬂl// (K)

if 9, is sufficiently small, where o(b,, 4,) is defined in (1.2). Also

2|4(b,, L,)|
L

n

|b, Al £214(by, A)/4, =D/2, <7,

d(h&t‘)x(l) h(li y(l))é

n 2 "%a(bn, An)/n

D
+21b,| S7+26,25(,)

by (1.3), (3.4) and (3.5), since t,<A,<L,.
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This implies via Lemma 1.2 that

|4, (xV; b,, ,)— A(b,, 4,)| <0.1 De, (3.8)

n 2> “n>""n

since x\VeE, and 1,>t,21,.
Denote

— K(2) (2) — h(2) ,(2)
zn_hs,. xn H Wn_hu,. yn ’

where s, and u, are defined by

EDGEN, ) =EP 2, 5,)

n > n

EVWY, a(b,, 2)=EP 0P, u,)
and

t
EO, =t (W o) ds, VeM, i=1,2.
0

We have using (3.2) and (3.6),

21,2098 L, <s,<0996 L, < L(x,, B,),

3.9
ls,—4,/=0.8¢,s,. )

Also,

B 2052

n n

=

n

by Lemma 1.1, (1.3) and the definition of ¢,. This implies via Lemma 1.2 that

14,,(x2; a,, By $.)— Aty B 5,)| 0.1 D,

since |o,| S w,<y,, [,<t,<s,. This and (3.8) imply that

IEP 5?5 0y, Br» ) = EP ;5 w,))
—(4(a,, B, s5,)—(4(b,, 1,))| 0.1 Dg, (3.10)
and therefore

a(an, Bn, Sn)
7,(h? yP)ds=EP(?; a(a,, By, 5,)) — EP (P u,)| £2D.

Un

This implies that

= (s Br» 5,1 S2DQ = p. (3.11)
We have
dh) o VP, z)<3y,Z¢,/3. (3.12)
Also,
z,=¥(hY) xV)eK,
w, =¥y, 5, WeEK, (3.13)
d(z,, w,)<¢,/4.

This and (3.12) show that

2 2
d(h( ) Bn, sn)yfl )’ Wn)ésn

a(an,
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and therefore
lu,—o(a,, B,,s)I=¢€

n

by (3.11) and the definition of p. This implies that

IEP (D5 6ty By 5,) —EP 0475 w,)| S Qe
and therefore
|4(0ty, Bys 85)— A(by, 4,)| Z€,(D+Q)
by (3.10). Also
|A(b,, 5,)— A(b,, 1) <106, 4(b,, 4,) <S&,D

by (1.2) and (3.9). This and (3.15) give

|4(et,, B,» 5,)— A(b,, 5,)| <¢,(6D + Q).
We have
X2 = kD (k2 g2 y(2))
where p, =8, —b,. Expression (3.16) says that
|4(a,, pys (b, 5,)| SE,(6D + Q)
and therefore
2¢,(6D+Q) .
S0 T T X o 12,
[o(b,. 51 =+ /1
2¢,(6D+0Q)
lo(b,, s,

by (1.2), (1.3), (3.6) and (3.9), where ¢, >0 is a constant.

|pal =

|an|§ éClen/Ln

361

(3.14)

(3.15)

(3.16)

(3.17)

It follows now from Corollary 1.1, expressions (3.6), (3.9) and the definition

of L, that
max {|4(b,s 4,)l, |4(a, By )1} 20.1 D,

This implies via (3.15) that
min {|4(b,, 4,)I,14(e,, B, s,)I} 20.05D
if n is sufficiently large. This gives

005D _|4(b,, 4,)

22 = 272

=Ib,|

by (1.3) and therefore
Ipnl =c,¢, [b,|
lo,| S, 8, 16,1

for some ¢,>0 by (3.17). We have

7 —o0(2) +(2) — (2)(L(2) (2) 5
x,,—g_,-nx,, _kb (kp,,ez"nga,. yn)

where
|p,| €™ =Z¢c, ¢, |b,| €¥™=c, &,|b|.

(3.18)
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This and (3.18) show that
d(%,, k»y,)—>0 when n— oo.
This completes the proof of the lemma. []

Lemma 3.2. If xeV and y=h"x for some peR then d(j,, h}?X,)—0 when
n— oo, where X,, y, are as in Lemma 2.1.

Proof. Let x%, y¥ i=1,2, be as in the proof of Lemma 2.1. We have

1 1 1 2 2)(4(2
y: e ), (xf, )), ( )=h;,,)(x5, ))

pes’n n
where g, is given by
VY, pe)=E P2, q,)

and
pe*mzptlzt,

if n is sufficiently large. It follows from (3.2) that
|pe*™—gq,|<e,pe*™ (3.19)
if n is sufficiently large. We have

V=82 ¥ =h e (X,)
where
lp—q,e” ™ <e,p
by (3.19). This completes the proof. []

Lemma 3.3. There is an h'V-invariant subset UcM, with u,(U)=1 and a
subsequence {n,:k=1,2,...}c{n:n=1,2,...} such that if ueU then limi,

k-
={(u)eM, exists and {(h\" u)=h'? {(u) for all peR, ueU.

Proof. Let M,= UK,,, where K, are compact and pu,(M,—K,)<27" n
n=1

=1, 2,.... Denote

K,=M,—K,
E=gD ¢y~ 1P K, n=L2,...
We have
Y u(F)<oo.
n=1
Let

F={ueM,: u belongs to finitely many F,}.

By the Borel-Cantelli lemma,
py(F)=1.

If ueF then @,eK, for finitely many n. This implies that there is a subsequence
m(u), k=1,2, ..., such that @, , converges in M,.

ny(u



Rigid reparametrizations and cohomology for horocycle flows 363

For xeM, let W(x)={gV k" x: s, teR} be the stable leaf of x for g!". Let
I(x) denote the orbit interval [x, k" x] and let n: I(x) > W(h{" x) be defined
by

T (y)=h, 1Y
if y=k) x, 0<b<1, where a(b, 1) is defined in (1.1). The map =, is a diffeo-
morphism from I(x) onto 7 (I(x)).
Denote ¥ =h{" x. We have from (1.1),

X=k{{p, 1,86, 1) T (Y)
if y=k) xel(x). Define q,: I(x)—[%, g") ., X]1=J () by
2. (0)=g% % y=klx.
The map g, is a diffcomorphism from I(x) onto J(X). Let

T(x)={zeJ(x): the length measure of M, —V on the k{"-orbit
of z is 0},

S'={xeM,: the relative length measure of T'(x) on J(x) is 1},

S={xeV: XxeS" and the relative length measure of the set
JX)=TFEnq . (Vor ' (V)nI(x)) on J(%) is 1}.

Standard measure theoretic arguments show that p, (S")=p,(S)=1.

Now pick xeSnF and let n,=mn,(x), k=1, 2, ... be such that X, converges
in M, when k — co.

Let J=J(%X) and let ueJ. Then g;'(u)eVnI(x) and therefore (g5 '(u)),,
converges in M, by Lemma 2.1 and (n(q; ' (u))), converges in M, by Lemma
2.2. This implies via Lemma 2.1 that z, converges in M, for every zeV on the
k{-orbit of u, since m (g; ' (u)) lies on this orbit and belongs to V.

Thus Zz,, converges for every z in the set

7=va(JIw).
ueJ

It follows from the definition of J that the Riemannian volume of ¥ on the leaf

W(X) is positive. Let ”
U={hVv: veV}.

The set U is h{"-invariant, u,(U)=1 and lim z, ={(z)eM, exists for every

k=

zeU by Lemma 2.2. It also follows from that lemma that {(h{" z)=h{> {(z) for
every ze U. This completes the proof. [

Proof of Theorem 5. Let Uc=M,, u,(U)=1 and a subsequence {n,} c{n} be as
in Lemma 3.3. We can assume without loss of generality that U=M, and {n,}
={n}. Th

tn}. Thus lim @,={(WeM,

n— o0

exists for all ue M, and
CRY w)=h2 L (w)
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for all peR, ue M. This says that the map

(oM, py)— (M, py)

is a measurable conjugacy between h!") and h{®. It follows then from the
rigidity theorem [8] that there are CeG, aeR such that

CI,C~'cI, and
() =hP Ye(u)

for p,-a.e. ueM,, where y.(I;g)=I,Cg, geG. It follows from Lemma 3.1 that
if u, veV, v=k{" u then
)=k {(w).

This implies that =0 in (3.20) and therefore
W=y

for pu,-a.e. ue M. This completes the proof of part (1) of the theorem.

Part (3) follows from part (2). In order to prove part (2) one has to repeat
the proof of the corresponding part of the main theorem in [11].

Let us outline the main point of this proof. The proof makes essential use
of the decay rate of the correlation function of t;,—1 for A", i=1, 2, found in
[5] and [12].

Indeed, using this decay rate we proved in [11] (Lemma 3.1) that given
>0 there are P=P(e)cM,, u,(P)>1—¢ and m=m(P)>0 such that if ueP,
t=m, then

(3.20)

st

t
[t (hPu)ds—t
0

(3.21)
="

j- T,(hP Y () ds—t
0

for some 0<a<1 and all t=2m.
Now let XM, u(X)>1—¢ and ny>0 be such that if ueX and n=ng
then
d(i,, (W) =e.

Fix n=n, with e >2Q?%m, where Q=1 is as in (3.1), and denote
v(u)=u,.

Let X be the generic set of X ng'") (P) for h{"), u,(X)=1. This means that if
ueX then the relative length measure of Xng'*) (P) on [u, h"u] tends to
ul()?mg‘_l:"(P))g 1—2¢ when t — o0.

Let

X=XnXng® (P, pu,(X)>0

and for ueX let

Au)={seR*: KV ueX ng") (P)}.
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For seR™ define t(s)>0 by
h(Z)

@ v(u)=v(h? u).

We have for se A(u),
gV A ue P
(g hY u)=g® o(h u)= g2 hZ) v(u).

L2

It follows from (3.21) that if 5, '€ A(u) and |s—s'| =1 then
2 ’([(5)_[(5’))_(S_S/)| = |S__S/|ze20:rn

and therefore
[(t(s)—t(s') — (s —8) = s —s'|" (3.22)
Also,
d(hZ) o), K (W) e (3.23)

t(s)
for all se A(u) and
(AW [0, t])/t=1—2¢

for all sufficiently large t, where [(A) denotes the length measure of A. This,
(3.22) and (3.23) are the main conditions of the basic Lemma 2.1 in [11]. It
follows then from that lemma that v(u)=i, lies on the h{*-orbit of {(u) for
every ueX, if £>0 is chosen sufficiently small.
We have
C(gsh u)=g1? L (u)

for u,-a.e. ue M,. This implies that if we denote

X"=g‘r}l’X, u(x,)>0,
then
Y (u)= hff&) (u)

for some o(u)eR and all ueX,. The set
X ={ueM: y(u)=h2), {(u) for some o(u)eR}

is h{"-invariant and contains X,. Therefore u,(X)=1, since h!! is ergodic and
1,(X,)>0. This completes the proof of the theorem. []

4. The Joinings theorem

In this section we prove Theorem 3. The proof follows that of Theorem 5 in
the previous section using the techniques from [10].

So let r;,eB'(M), i=1,2, T,=7,=1 be as above and let v be a nontrivial
ergodic joining of A} and hP. By Corollary 1(b), v is an ergodic joining of h!
and hf? for all teR.

By Corollary 1(a), (h{* xh;?,v) is a finite extension of h{'. This means that
there are an integer N>1 and an (b} x hf)-invariant subset Q= M, x M,, v(Q)
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=1 such that for u_-a.e. xeM, the set 71(x)=Qn({x} x M,) consists of exactly
N points {(x, z,), ..., (x, zy)} with v {(x,z)}=1/N, j=1,..., N, where v_ is the
probability measure on {x} x M, obtained from the Fubini theorem applied to
v. We can assume without loss 0f generality that this holds for all xe M.

Let # denote the partition of @ into sets 7(x), xeM,. For AcQ we write
A<ijif A consists of atoms of 7.

Let m;: M, x M, —>M,, i=1,2, be the projection 7, (x, z)=x, n,(x, z)=z.

It follows from the Fubini theorem that if 4<=Q, v(4)>1—a/N? for some
0<a=1 then there is A'=Q such that v(4')>1—a/N and 4’ <.

This implies that if B& M,, u,(B)>1—a/N?, then there is Bc M, pl(B)>1
—Q?a such that m,(7f(x)) =B for all xeB, where Q is as in (3.1). We say that B
is induced by B

Let a compact KcM,, 1,(K)>1—-10"%/Q*> N*> and 0<p=p(K)<1 be as in
Sect. 3 and let K<=M,, u,(K)>1—10"* be induced by K.

Since atoms of 7 are finite there are p, >0 and K, <# with v(K,)>1-10"*
such that if w, +w, and w,, w,e K n#j(x) for some xe M, then d(w,, w,)=4p,.

Let

K=n,(K)nK, u,;(K)>0999, p=min{p,p,}.

Let &,=10"" n=5,6, ... and let £, =min {0.1¢,, ¢,/Q* N*}.
Let y“’—y‘”(s) l("—l‘”(a) and EV= E"’(s) be as in Lemma 1.2 for 7, i
=1, 2. Denote
y,=min{yV, ¥® 0.1¢},
I,=max {IV, (31}

E=EVnE®, u,(E)=1-02¢,

where E(?) is induced by E?.

As in [10] there are Q'<#, v(2)=1 and pairwise disjoint measurable
subsets Q (=918 v(Q)—l/N j=1,..., N such that for every xen,(€’), the in-
tersection ;7( )r\QJ consists of exactly one point and the map y;:n (Q)—»Q
defined by v ;(x)= 7(x)nQ; is measurable, j=1, ..., N. We can assume w1thout
loss of generallty that @' =Q.

Let A,=M,, p,(4,)>1-0.1¢, be such that y; are uniformly continuous on
A, for j=1,...,N. Given £>0 let d(¢)>0 be such that d(;(u), ¥;(v) <e/4 for
all j=1, ..., N, whenever u, veA,, d(u, v)<d(e).

Denote

D=p/20.

Since the flows A", i=1,2, are ergodic, there are t,=max{l,,20Dy; '} and a
subset A, M, with u,(A,,)> 1—-0.1¢, such that if ueA,, t=t, then the relative
length measure of A4,nK on the orbit interval [u, h{"u] is at least 0.998 and

=0.1e,t

fr (WP u)ds—t
o

T, (WP ny W (u)ds—t|<0.1 ¢, t
A 2\U% Jj n
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for all j=1, ..., N. Denote
V=A4,nA,nE,, 1, (V)=l—¢g,=1—10""

Now let L(a, b), w,, 9,, r, and V, u,(V)=1, be as in the proof of Theorem 5 in
Sect. 3.
For xeM, denote
X, ;=82 m¥;gx, j=L,...,N.
Lemma 4.1. Let x,yeV and x=Kk{"y for some beR. Then d(X
when n— oo for all j=1, ..., N.

k(zl'vn‘ j) -0

n, j?
Proof. We shall prove the lemma for j=1. For j=2, ..., N, the proof is the
same. Denote _ _

nzwlzw’ xn.I:xn

and repeat the proof of Lemma 3.1 up to expression (3.13), substituting ¢~ *(K)
in (3.7) by K and replacing p in (3.11) by p. Instead of expression (3.13) we now

have ) (D)
z, =1, ¥ (hy,) X, )eK

w, =10, (AL} y)ek

0(bn, An)

for some k, je{l, ..., N}. Also
Az, mo Y, 10 Y0 N S804 (4.1)
since hY) x{V, KLY, yPed,. This, (3.7) and (3.12) imply
AWy, o Y, 2y Vi NS P+E,52p,

if n is sufficiently large. This implies by the definition of p, that

_ 1) 1)
W,=T, l/’k(hir(b,,.).,,)yil )

and
dlw,, K2, 5. so V)2,

n> "ta(an, Pn,

by (3.12) and (4.1). This implies
lun‘ O‘((Xn, ﬁn’ Sn)l § 8"

by (3.11) and the definition of p. Thus we obtained expression (3.14).
Now we repeat the proof of Lemma 3.1 from (3.14) to the end. This
completes the proof of the lemma. []

Denote
(2) (1)

n(x)=m,n(x), n,(x)=g=, nlg,’ x).
For A, Bc M, define
d(A, B)=max {d, g, dp 4}
where
d, g=sup infd(x, y).

xeA yeB
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Corollary 4.1. If x,yeV and x=k\"y for some beR then d(n,(x), k' n,(y)—0
when n— 0.

Lemma 4.2. If xeV and y=h{" x for some peR, then d(n,(y), h$’n,(x)) >0 when
n— oo.

Proof. The proof is completely analogous to that of Lemma 3.2.

Lemma 4.3. There are an h!"-invariant subset Uc=M, with p,(U)=1 and a

subsequence {n,:k=1,2,...}c{n:n=1,2,...} such that if ueU then limn, (u)
k—

={(w)c= M, exists and {(h}" u)=h? {(u) for all peR, ueU.

Proof. Let K,=M,, u,(K,)<27", n=1,2, ... be as in the proof of Lemma 3.3

and let N
F,={ueM,:n,ng(K,)+0},

F={ueM,: gV’ ueF, for finitely many n}.
We have, using the Fubini theorem,
By (F") éz—n+l

if n is sufficiently large. This implies by the Borel-Cantelli lemma that p,(F)
=1. Thus if ueF then there is a subsequence n, such that 7, (1) converges to a
finite subset of M, when k — oo.

From now on we proceed exactly as in the proof of Lemma 3.3 to
construct an h{"-invariant subset U< M, as required in the lemma. []

Let UcM,, u,(U)=1, and a subsequence {n,} —{n} be as in Lemma 4.3.
We can assume without loss of generality that U= M, and {n,}={n}. Thus

lim n,(w)={(u)=M,
exists for all ueM, and
(Y W =hP () (42)
for all peR, ueM,.
The set {(u) is a finite subset of M, and the cardinal number |{(u)| of {(u) is
the same for p,-a.e. ueM,, since h" is ergodic. It follows from Corollary 4.1

that

Lk )= ki { (u) (4.3)
for all beR, p,-a.e. ue M,. This implies via (1.1) that

(" u) =g C(u) (4.4)

for p,-a.e. ueM, and all seR. Let
Q={(u,z): ueM, ze{(u)}
and let m be the probability measure on Q defined by

m(4 x B)= [ [BA{(u)|/£dp, (u)

A

for any measurable subsets Ac M, Bc M,, where £ =|{(u)|.
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Expressions (4.2), (4.3) and (4.4) show that m is invariant under h!" x h{?,
g x g ? kW x k'?. 1t is clear that the M,-marginal of m is u,. Let m, be the
M ,-marginal of m. Then m, is preserved by h{?, g'* and k* and therefore m,
=p,. Thus m is a nontrivial G-invariant joining of h{") and h{*.

We shall show that 7, and 7, are jointly cohomologous via m and that m is
an ergodic joining of h{" and h{®. To do so we follow the proof of part (1) of
Theorem 5, which makes essential use of combinatorial Lemma 2.2 in [11] and
the decay rate of the correlation function of t; for h{”, i=1, 2, found in [5] and
[12].

Indeed, using these decay rates we were able to prove Lemma 3.1 in [11]
which implies for the case in question that there is 0<a<1 such that given
>0 there are Pc M, with pu,(P)>1—w and i=t(P) such that if ueP, t=>1.
Then

=

fri (R u)yds—t
0

4.5)
=r

]
[1,(h? z)ds—t
0

for all zen(u).
The following lemma is analogous to the Basic Lemma 2.1 in [11].

Lemma 4.4. Given 0<a, w<1 there are Y& M, with p,(Y)>1—w, 0=0(a)>0
and e=¢(Y)>0 such that if ueY, ze{(u), weM, and d(z, w)<¢e then w lies on the
h®-orbit of z whenever there is a subset A=R™ with the following properties:

(1) Oe4;

(2) If seA then hMueY and there is t(s)>0 increasing in s such that
d(h{Qw, z)<¢ for some z,e{(h" u);

3) |(t(s)—t(s)—(s"—9)|Z|s—5'|* for all s',se A with |s'—s|=1;

4) I(AN[O0, A])/A=1—0 for all AcA with A=A,, where I(A) denotes the
length measure of A.

Proof. We begin as in the proof of the Basic Lemma 2.1 in [11]. Given
O<a<l1 let 0<y=y(ax)<a/2 and 6=0(y)>0 be as in (2.1) of [11], where the
combinatorial Lemma 2.2 has been used.

Denote y=min {y, ®}. Let a compact K =M, with pu,(K)>1-—0.1y/4* and
0<p(K)<1 be as in Sect. 3. Let IZCMI, 1, (K)>1-0.17 be such that {(u)c K
for all uekK.

Let Y,c M, u,(Yy)>1—0.1% and p(Y;)>0 be such that if ueY,, z,, z,el(u)
and z, #z,, then d(z,, z,) =4 p(Y,).

Since gV is ergodic, there are Y =M, with u,(Y)>1-0.17 and t,>0 such
that if ue Y, t>1,, then the relative length measure of KnY, on [u, gVu] is at

least 1 —0.2 7. Set _
Y=YnKnY,, u(Y)>1-o.

Now in order to show that e=¢(p(K), p(Y,), t,)>0 can be chosen so small as
to satisfy the requirements of the lemma, we just have to repeat the proof of
Lemma 2.1 in [11]. O

Proof of Theorem 3. (1) Let us show that there exists an h{Y-invariant subset
X cM, with ul()?)=1 such that if ueX, wen(u) then there is z(w)e{(u) such
that w lies on the h{®-orbit of z(w).
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Indeed, let 0<a <1 be as in (4.5) and 6=0(x)>0 be as in Lemma 4.4. For
O<w<0let P=P(w)cM,, p;(P)>1—-0.1 w and i=7#(P)>0 be as in (4.5). Also
let YeM,, u;(¥Y)>1-0.1 w and e=¢(Y)>0 be as in Lemma 4.4.

Let XcM, u;(X)>1-0.1 w and n,>0 be such that if ue X, n>n,, then

d(n,(w), {(w) =e.
Fix n=n, with e?™>=2Q?#(P), where Q21 is as in (3.1). Let X <M, be the
generic set of X ng"") PnY for h", u,(X)=1 and let
X=XnXng® (P)AY, u,(X)>0.
Let ueX and wen,(u). Then there exists ze{(u) such that d(w, z)<e. Let

={seR*: K" ueYnX g (P)}.

We have 0e 4 and
I(AN[O0, A])/Az1—w=1—-0 4.6)

for all 1> 4,, since ueX.
For seR™ let t(s)>0 be defined by

V(gL u, e2ms) =L@ (g2 w, e 1(s))
where ¢ i=1,2, are as in Sect. 3. We have
k) ven, (R u)
since # is h{* x h{*-invariant. This implies that if se A then

A0, z) e (47)

for some z e (h{" u). We have

(Z)h(Z)

ywen(gt hi u).

Also
gV hueP

if seA. This implies via (4.5) and our choice of n that if s,s'e4 and |s—s'|=>1
then
e*m|(t(s)—1(s) —(s—s) S[s —s'|* 2™

and therefore

(t(s) = t(s) —(s=s) = s —s"I"

This, (4.6) and (4.7) imply via Lemma 4.4 that w lies on the h!®-orbit of z or
that g!? wen(g!! u) lies on the h{®-orbit of g2 ze{(g!! u).
Now let
X,=gD(X), 1, (X)>0
and let

X ={ueM,: for every wen(u) there is z(w)e{(u)
such that w lies on the h¥-orbit of z(w)}.
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The set X is h'-invariant and X, X. This implies that u,(X)=1, since h{" is
ergodic. This completes the proof of claim (1).

We can assume without loss of generality that X =M.

(2) Now let us show that 7, and 7, are jointly cohomologous via m.

Indeed, it follows from (4.3) that for pu,-a.e. ue M, no two distinct points of
{(u) can lie on the same orbit of h{*. This implies that the map w— z(w) from
n(u) to {(u) is well defined for u,-a.e. ueM,.

Also for p,-a.e. ueM, no two distinct points of n(u) can lie on the same
orbit of A%, since 7 is invariant under h{* x h?> and v is an ergodic joining of A
and Ak, This implies that the map w-—z(w) is bijective and the
map ¢: (2, v) - (L, my,) defined by

¢ (u, w)=(u, z(w))

is an isomorphism between A x h> and S/', where S,=h{" xh® and f,(u, z)
=1,(u), (u, z)€Q. This implies that m is an ergodic joining of A{*’ and h{®.

Let f,(u, z)=1,(2), (u, z)eQ and let v(u, z) be such that w=h}, . z, where z
=z(w). It is now clear that f, and f, are cohomologous via v along §, acting
on (2, m) and that v=v,, , is induced by (m,v). This completes the proof of

Theorem 3. [

5. The factors theorem

In this section we prove Proposition 2 and Theorem 6.

Proof of Proposition 2. Let { and n be shift-related partitions of (X, u) invariant
under T, and T respectively. We have

n(x)={T;, ,y: yel(x)}

for p-a.e. xeX, where v(x,*)=v.eL,({(x), ). We shall assume without loss
of generality that this holds for all xeX. We have

v(x, y)= —v(y, X)

(5.1
v(x, 2)=0v(x, y)+v(, 2)
and
o(T,x, T,y)—v(x, y)= [ («(T,x)—t(T, y) ds (5.2)
0
for all y, ze{(x), xeX and all teR, since # is T;*-invariant.
We have
TC(X)= j T(Y)dﬂg(x)(}’)’
{(x)
B(x)=— [ v(x, y) dpy ().
{(x)
Expression (5.2) gives
t
B(T, x)—0(x)= | (t,— )T, x) ds (5.3)

0
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for all xeX, teR. This shows that 7, and 7 are cohomologous along T; via 7.
Also . .
b(x)=0(y) —v(x, y) (54)

for all ye{(x), xeX by (5.1).
Let y; be the isomorphism between T, and T;* induced by 7, that is

() =T5,x, xeX.
We have
() ={T5,, y: yel(x)}
= {T;?r(x)-i-v(x, ¥) y: ,VGC(X)}
= Ty n(X) =n(T5 ) ) =1 (x;3(x))

for all xeX by (5.4), since n is T -invariant. This completes the proof of the
proposition. []

Proof of Theorem 6. Let teB'(M), V be a factor of h} and 5 be the h}-invariant
partition of M induced by V. It follows from Corollary 2 that a.e. atom of # is
finite and # is invariant under h{ for all teR.

Let v be the probability measure on M x M defined by

VA XB)= [ ne(A) ue(B)dp, ,(C)

M/n

for every measurable 4, B< M, where (M/n, u_,) is the quotient space induced
by 1, uc(A)=|AnCJ/|C| for every Cen and |C| denote the cardinal number of

C. The set _
Q={(u, w): wen(u),ue M}

is h{ x h{-invariant and v(Q)=1.

The measure v is a nontrivial joining of h; with itself. It might not be
ergodic. Since atoms of n are finite, v is a finite convex sum of nontrivial
ergodic joinings of h; with itself (see [10] for this).

It follows from Theorem 3 that there exists {(u)c M, ueM and a measur-
able v on M x M such that

1C(w)=n(w)

(5.5)
'7(“)= {hlrj(u, w) wi WGC(u)}

for y-a.e. ue M and ( is invariant under the action of G on M.
Henceforth we use without loss of generality the word “everywhere” in-
stead of “almost everywhere”.

We claim that
{w)=L(u) if wel(u), wueM. (5.6)

Inded, it follows from Lemma 4.3 that

{(w=1limg_, (n(g,, u) (5.7)

n— oo

for some sequence r,— oo when n—oo. This implies that ue((u) for all ueM,
since uen(u), ue M.
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Denote u,=g, (u). We have
un’ W"EC(U"), r’(un) = {h;(um z) z: ZGC(u")}'
This implies that

T

’I(wn) = hA v(Up. wn) rl(un)

since # is hj-invariant. We have
8 () ={ho-2r, 5z, 20’ 26L(U)}
where s(z,) is defined by

s(zn)
| t(hz,)dt=v(u,, z,)
0
and

e ?™ms(z,)>0, when n—co (5.8)

for all ze({(u), ue M by (5.7). Also

g~rnr’(wn):{he‘2"n§(z")z: ZGC(M)} (59)
where
v(Un, Wn)
S(z)=s(z,)— | 1 ' (hhy,, z2,) dt=5(z,)—3(z,)
and ’

5(2)1 £Q2s(w,)

for all ze{(u), ueM, where Q=1 is as in (3.1) for t;=t, i=1, 2. This, (5.8) and
(5.9) imply that )
{w)=limg_, n(w,)={(w).

This proves (5.7).
Denot
enote I'={geG: [gel(l <)}

where ¢ denotes the unity in G.
Let g,,g,el” and z=g7'g,. We have

I'g,el(l'z)
since { is G-invariant. Also,
I'zel(I'g,)={(T"¢)

by (5.6). Therefore zel™.
This proves that I'" is a discrete subgroup of G. Also I'cI" and hence

I'eJ. We have P
(rg)=vyrril'e}

where Y. .(I'g)=1"g, geC.
Expression (5.5) shows that n and { are shift related along h,. The theorem
now follows from Proposition 2. []



374 M. Ratner

References

1. Feldman, J., Ornstein, D.: Semirigidity of horocycle flows over compact surfaces of variable
negative curvature. Ergodic Theory Dyn. Syst. 1987 (to appear)

2. Furstenberg, H.: Disjointness in ergodic theory, minimal sets and a problem in diophantine
approximation. Math. Syst. Theory 1, 1-49 (1967)

3. Kolmogorov, A.N.: On dynamical systems with integral invariant on the torus. Doklady Akad.
Nauk. SSSR 93, 763-766 (1953) [Russian]

4. Marcus, B.: Ergodic properties of horocycle flows for surfaces of negative curvature. Ann.
Math. 105, 81-105 (1977)

5. Moore, C.: Exponential decay of correlation coefficients for geodesic flow. In: Moore, C.C. (ed.)
Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics. Berlin,
Heidelberg, New York: Springer 1987

6. Parry, W.: Metric classification of ergodic nilflows and unipotent affines. Am. J. Math. 93, 819-

828 (1971)
. Parry, W.: Dynamical representations in nilmanifolds. Compos. Math. 26, 159-174 (1973)
. Ratner, M.: Rigidity of horocycle flows. Ann. Math. 115, 587-614 (1982)
. Ratner, M.: Factors of horocycle flows. Ergodic Theory Dyn. Syst. 2, 465-489 (1982)
10. Ratner, M.: Horocycle flows, joinings and rigidity of products. Ann. Math. 118, 277-313 (1983)
11. Ratner, M.: Rigidity of time changes for horocycle flows. Acta Math. 156, 1-32 (1986)
12. Ratner, M.: The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dyn. Syst.
1987 (to appear)

13. Rudolph, D.: An example of a measure preserving map with minimal self-joinings, and
applications. J. Anal. Math. 35, (1979)

14. Witte, D.: Rigidity of some translations on homogeneous spaces. Invent. Math. 81, 1-27 (1985)

00 <

O

Oblatum 6-VIII-1986



	
	Rigid reparametrizations and cohomology for horocycle flows.


